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ABSTRACT 
 

White matter changes in the corticospinal tract (CST) contribute to executive dysfunction in the context of 
motor control of the body and limbs. The objectives of this study remained to characterize the corticospinal 
tract using different models for the diffusion MRI signal. We employed the DTI (diffusion tensor imaging) 
and Multi-Shell Multi-Tissue Constrained Spherical Deconvolution to estimate a multitissue orientation 
distribution function (ODF) analysis of 10 healthy Subjects. In this paper, our goal is to determine the 
sensitivity of fibre orientation distribution (FOD) compared to the standard Diffusion Tensor Imaging 
(DTI) approach and select the FOD-DEC difference existing in the two regions of interest (PLIC and 
PONS). For each subject, biophysical values were calculated for two Regions of Interest (the posterior limb 
of the internal capsule and the anterior pons) at two b-value (b=1000s/mm² and b=3000 s/mm²). 
Experimental results showed that the pons region more accurately predict CST integrity than the posterior 
limb of internal capsule using a b-value equal to 1000 s/mm². FA and ADC are a promising metric for 
clinical applications especially when we rely on qualitative data from the CSD model. 

Keywords: MRI, Diffusion Tensor Imaging, fibre orientation distribution, Multi-Shell Multi-Tissue, 
Constrained Spherical Deconvolution (MSMT-CSD).  

 
1. INTRODUCTION  
 

Diffusion-weighted magnetic resonance imaging 
(DW-MRI) is the only tool to study the brain 
connectivity and organization non-invasively and 
in-vivo through a process known as tractography 
[1]. In the case of brain tissues, we need to perform 
models that characterize the diffusion and 
reproduce the preferred directions [2]. The complex 
model used to characterize diffusion is the 
Diffusion Tensor model [3] which allows the 
representation of the anisotropy as an ellipsoid. 
Many microstructural properties may be extracted 
from Diffusion Tensor Imaging (DTI) such as 
Fractional Anisotropy (FA) and Apparent Diffusion 
Coefficient (ADC). The quantitative indices 
provided by the DTI technique are exploited by 
neurologists for the diagnosis of a wide variety of 

brain pathologies. Commonly, DTI technique has 
been used to relate changes in white matter 
microstructural properties and motor function after 
stroke [4]. The corticospinal tract (CST) is the most 
important pathway responsible for intact motor 
functions, it has been widely explored using DTI. 
Its integrity is essential for preservation of motor 
functions [5]. FA and ADC assesses how freely 
water molecules can diffuse and are indicative of 
the integrity of white matter microstructure. Several 
methods are currently in use to measure quantitative 
biophysical parameters in a variety of regions of 
interest (ROIs) representing the CST with no 
consensus about which approach is best [6]. 
Accordingly, we focus in this study on the 
variability in parameters derived from DTI and we 
compared the anisotropy of the posterior limb of the 
internal capsule and the anterior pons between 
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healthy subjects. Therefore, the rest of the paper, 
we first describe the steps of the followed process 
to obtain the parameters extracted from the Multi-
Shell Multi-Tissue Constrained Spherical 
Deconvolution (MSMT-CSD) to estimate a multi-
tissue orientation distribution function (ODF) for 
each subject. With the introduction of high angular 
resolution diffusion-weighted imaging (HARDI) 
[5], more advanced methods have emerged that 
better characterize regions with crossing fibre 
populations. Spherical deconvolution is one such 
method, enabling the estimation of the so-called 
fibre orientation distribution (FOD) [7, 8]. As part 
of this work, we applied a metric, which we call the 
Fibre Density (FD). The FD is based on the widely 
used assumption that intra-axonal water is restricted 
in the radial direction [9, 10].  

This paper is organized as follows: Section 2 
details the materials and methods. Section 3 is 
devoted for results and discussions. The 
conclusions are provided in section 4. 

2. MATERIALS AND METHODS 

 
2.1 Data Processing Pipeline 
 

In the Following section, we review the 
pipeline of the data-processing steps used in our 
experiments to measure biophysical parameters 
from diffusion weighted images. We, finally, 
present real data acquired from ten healthy subjects. 
Step 1: pre-processing 
We corrected the diffusion-weighted dataset for 
eddy current distortions and motion artifacts and 
adjusted the diffusion gradients with proper rotation 
of the b-matrix. 
Step 2: Brain mask extraction 
In order to reduce the computation time, the DW 
images were masked to eliminate from the 
parametric computation all the voxels outside the 
subject brain area. The masking process is done 
using BET in FSL software [14]. 
Step 3: Diffusion tensor modeling 
In the current study, we performed DTI diffusion 
model that characterize the diffusion and reproduce 
the preferred directions in each voxel. In fact, for a 
neuron, the diffusion is fast along the axon and 
reduced in the other directions and therefore the 

distribution of the ADC values of the water in the 
white matter can be modeled by an ellipsoid whose 
shape give information about the preferred 
directions of diffusion [11]. 
Step 4: Parametric maps calculation 
The FA index is appropriately normalized so that it 
takes values from zero (when diffusion is isotropic) 
to one (when diffusion is preferred along one axis 
only). We, also, calculate the mean diffusivity that 
is defined as the average of the diagonal 
coefficients of diffusion tensor, it indicates if the 
diffusion is globally large or restricted. 
Step 5: Region of interest (ROI) based analysis 
The diffusion anisotropy measurements (FA and 
ADC values) were averaged across specific 
Regions of Interest (ROIs). We manually delineate 
the following two ROIs in each subject: the 
posterior limb of the internal capsule, and the 
anterior pontine area. 

 
Fig.1. shows the reverent workflow of the Pipeline when 

we compute the biophysical parameters. 

 
2.2 Human Connectome Project Diffusion data 
 
We evaluated diffusion imaging measures of the 
corticospinal tract obtained with a DTI algorithm. 
In this paper, the data of 10 healthy volunteers are 
from Human Connectome Project (HCP), which 
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can be found on Connectome DB with b = 1000 
s/mm² and b = 3000 s/mm². Table 1 summarizes the 
parameters used data acquisition. 

Table 1: Summary of the used parameters for data 
acquisition. 

Parameter  Value  

Sequence   Spin-echo EPI  

TR/TE (ms)  8800/57  

FOV (mm)  210x210  

Matrix  140x140  

Echo spacing (ms)  0.63  

Slices  96 slices, 1.5 thick  

b-values (s/mm2)  1000,3000  

Number of directions   64  

 
The masking process is done using BET in FSL 
software.  We calculated Fractional Anisotropy 
(FA) and Axial Diffusivity (AD) maps from a 
tensor model estimated using MRtrix3 software 
[12]. A two-regions-of-interest approach was used 
to measure FA and ADC metrics [13]. Statistical 
test analysis was achieved using the R programing 
Software (V.2.5019).  

2.3 Response function estimation 
Different response functions can be estimated for 
the three different tissue types: white matter (WM), 
gray matter (GM), and cerebrospinal fluid (CSF) 
[14]. The shape of this response function is a 
sphere, which denotes isotropic diffusion. We can 
already estimate angular resolution and therefore 
anisotropy of white matter. The angular resolution 
increases even further for the last two shells (b1000 
and b3000).   

 
Fig.2 Tissue-dependent response functions estimated 

separately for different tissue types. For each tissue type, 
the response function was estimated from an average of 

the data of the voxels 

2.4 Estimation of Fiber Orientation 
Distributions (FOD)  
Based on the different response functions for the 
different tissue-types, it is possible to differentiate 
between those tissue types to estimate the 
orientation of all fibers crossing that voxel. The 
FOD could accurately resolve crossing fibers [5].   
2.5 Spherical deconvolution 
The spherical deconvolution method provides an 
estimate of the distribution of fibres within each 
imaging [15]. The method assumes that the 
measured HARDI signal can be expressed as the 
convolution over spherical coordinates of a single 
canonical fibre response function with the fibre 
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orientation distribution (FOD). The FOD can then 
be estimated by performing the reverse spherical 
deconvolution operation using spherical and 
rotational harmon [16].  
For this work, we use Constrained Spherical 
Deconvolution (CSD) which places a non-
negativity constraint on the estimated FOD [17]. 
CSD provides more reliable estimates of the FOD 
and makes it possible to resolve fibre orientations at 
more acute angles than is possible without the 
constraint. Like other higher-order approaches, the 
spherical deconvolution method benefits from the 
increased angular contrast provided by high b-
values [18]. In this work we use a two b-value of 
1000 s/mm2 3000 s/mm2[19]. Fibre Density (FD) 
for the analysis of high angular resolution 
diffusion-weighted images using higher-order 
information provided by fibre orientation 
distributions (FODs) computed using spherical 
deconvolution. FD has the potential to provide 
specific information regarding differences between 
populations by identifying not only the location, but 
also the orientations along which differences exist. 
The FOD amplitude is primarily sensitive to the 
partial volume fraction of the underlying fibre 
populations. However, previous studies have 
demonstrated that differences between the actual 
fibre response function and the assumed response 
function may also alter the FOD amplitude, but not 
its orientation [20]. 
 
Deviations from the assumed response function 
may occur during pathology or abnormal 
development. For example, an increase in radial 
diffusivity is often associated with white matter 
pathologies such as axon degeneration and 
demyelination [21]. Employing an identical 
response function to compute FODs in different 
pathologies, causes differences in diffusivity to be 
reflected as differences in the FOD amplitude.  

 
Fig.3. Quality check of Fiber Orientation Distribution 

(FOD) estimation. 

2.6 FD-specific pre-processing steps   
 
Fixels have been used in the field of Diffusion MRI 
for a long time: multi-tensor fitting, ball-and-sticks, 
any diffusion model that is capable of fitting 
multiple anisotropic elements to each image voxel, 
can be considered as estimating fixels. However, in 
the past, researchers have resorted either to lengthy 
descriptive labels to express the nature of the data 
being manipulated, or have adopted existing terms, 
which can lead to confusion with the original sense 
of the terms. Explains how to perform fixel-based 
analysis of fibre density and cross-section using 
single-tissue spherical deconvolution. We note that 
high b-value (>2000s/mm2) data is recommended to 
aid the interpretation of apparent fibre density (FD) 
being related to the intra-axonal space [22].  

 
Fixel-based analysis steps  
 
The diffusion images underwent preprocessing, 
including corrections for head motion, eddy  
current distortions, susceptibility distortions and 
intensity inhomogeneities using the FMRIB 
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Diffusion Toolbox (FMRIB, Oxford, UK) [23]. 
Global intensity normalization was performed 
across participants using tools implemented in 
MRtrix3 [24]. Next, a group response function was 
calculated from all participants fibre response 
functions, which reflect the signal that would be 
expected from a voxel containing a single, typical 
fibre bundle [25]. Data preprocessing included 
removal of noise bias. The noise removal was 
performed by identifying the noise  only principal 
components for local neighborhoods of voxels [26].  
Gibb's ringing correction was performed by re  
interpolating the image [27] and eddy current 
induced distortions were corrected using the FSL 
toolbox [28].   
 
Segment FOD images to estimate fixels and their 
apparent fibre density (FD)  
 
Here, we segment each FOD lobe to visualize the 
orientation of fixels in each voxel.    

 
Fig.4 Fixel-based analysis in the PLIC ROI. 
 
ROIs can be drawn manually on FA, or ADC 
images. They can be placed on predetermined 
anatomic regions. In the WM, the homogenous 

signal and EPI distortions might impair robust 
anatomical delimitation of ROI and reproducibility. 
Basic steps of ROI processing are:  

1 Registration to improve delineation and to 
align corresponding voxels in different 
datasets.  

2 Normalization to allow standardized 
localization and comparisons between 
subjects within a study. For instance, data 
from each subject can be transferred to 
standard space, using a validated template 
or atlas (such as MNI). The choice of the 
atlas involves checking whether 
characteristics of the subjects in each study 
are comparable to those of the subjects 
scanned to build the template.  

3 Definition of the ROI manually. Manual 
delineation can be achieved by free-hand 
drawing, by placement of basic shapes 
such as circles/squares or by drawing of 
the region. In the former, ROI size differs 
between subjects while in the latter, it 
remains constant. Small ROIs may be 
more specific, but also more prone to 
errors while large ROIs may be less 
specific for definition of particular 
structures.  

4 Manual segmentation has high precision 
but has disadvantages such as the risk of 
low reproducibility due to dependence on 
prior knowledge of the researcher and the 
lack of feasibility of use in large datasets. 
Semiautomated delimitation can be a 
useful alternative by combining the 
automated identification of the ROI with a 
manual, interactive selection and 
modification by the user. Although fully 
automated delimitation is promising, such 
as reported by Ohno et al. [29], more 
studies with large datasets in different 
phases of stroke are advisable to create a 
state-of-art automatic method [30].  
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5 Quality control involves assessment of 
accuracy of segmentation and registration; 
report of intra- and interrater reliabilities 
of ROI delineation; clarity of criteria for 
the location of the ROI such as anatomical 
location [31].  

6 Extraction of DTI metrics from the ROI, 
as absolute values from the site.  

7 When more than one ROI is chosen, the 
correction for multiple comparisons is 
recommended to reduce false positives.  

 
Fig.5 Fixel-based analysis steps in the Pons ROI. 
 
 
3. RESULTS AND DISCUSSIONS 

A quantitative summary of the group means and 
standard deviations corresponding fractional 
anisotropy (FA) and ADC results on the ten healthy 
subjects is provided in table 2.    

 

 

 

Table 2: DTI Parameters in Regions of Interest in 
b=1000 s/mm².  

 
 

 
 
DTI quantitative results of the two parametric 
metrics (FA, ADC) derived from the DTI model, 
calculated in two Region of Interest (PLIC, PONS) 
at two b value (b=1000 s/mm² and b=3000 s/mm²).  
 
As can be appreciated from fig.6, overall FA values 

in the pons and using b-value 1000 s/mm² have a 

high level of agreement with each other. The mean 

FA value is equal to 0.1658. This figure indicates 

the high correlation between the FA values of the 

ten subjects in the pons region. In fig.7 a good 

correlation is found in the pons region and the mean 

ADC value at the pons at b-value 1000 s/mm² is 

equal to 0.00189.  

 
 

DTI 
Parameters  

b 
value  

FA 
(mean 
±SD)  

ADC (mean 
±SD)  

PLIC  1K   0.639±0.
0932  

0.0005644±6.92
6e-05  

3K 0.57054±
0.1004  

0.0003986±2.67
64e-05  

PONS  1K  0.165±0.
0932  

0.00102±0.0004
45  

3K  0.1772±0
.123  

0.0006222±0.00
01398  
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Fig.6 Box plot representing the FA values in the PLIC 

and the pons regions for two b-values. 
 

 
 
Fig.7 Box plot representing the ADC values in the PLIC 

and the pons for the two b-value 

 
DTI and CSD metrics varied in different tissue 
types shown that the pattern of DTI and CSD 
metrics varied in different tissue types, Voxel-based 
analysis of FA and ADC in DTI model and FOD 
estimation from the Multicell Multi-Tissue 
Constrained Spherical Deconvolution (MSMT-
CSD) is a promising new tool for characterizing 
white matter degeneration. Visualization of FODs 
and parametric maps derived from DTI model in 
the specific regions of interest in the healthy subject 
provide a good marker to analyze the corticospinal 
tract. The investigation of DTI parameters such as 
Fractional Anisotropy (FA), that can reflect the 
fiber density, axonal diameter and myelination in 
white matter and Apparent Diffusion Coefficient 
(ADC) that present a quantitative biophysical 
parameter, these two parameters providing a good 
biomarker concerning the structural integrity in the 
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analyzed ROIs. For voxel-specific approach, a FOD 
map was obtained by Multi-Shell Multi-Tissue 
Constrained Spherical Deconvolution (MSMT-
CSD) for non-white matter tissues. Interpreting 
population differences in DTI derived scalar 
measures such as FA or tensor eigenvalues is 
challenging in regions with crossing fibres 
[19],[20],[21]. In this work we applied the Fibre 
Density, that uses higher-order information 
provided by FODs to investigate population 
differences not only in space but also over 
orientation. This enables differences to be attributed 
to a single fibre bundle in a region containing 
multiple fibre populations. As demonstrated by the 
qualitative analytical simulations shown in Fig. 4, 
the FOD amplitude is sensitive to the volume 
fraction of the underlying fibre populations, and to 
deviations of the actual response function from its 
assumed form. As shown in Fig.5, FD is primarily 
affected when the actual and assumed response 
functions differ along radial orientations, with 
changes along axial orientations having minimal 
impact. This is due to the shape of the response 
function: for a single fibre bundle, the DW signal is 
highest when measured across the fibres, and 
strongly attenuated when measured along them, 
especially at high b-values. An important 
consideration in estimating the FODs is the choice 
of fibre response function. In this study, the 
response function was computed by averaging the 
response function estimated from all subjects. We 
also note that differences in the response function 
will only affect the amplitude of the estimated 
FODs.  
 
4. CONCLUSIONS 

This work introduces a comparative result between 
two metrics (FA and ADC) in two regions of 
interest (PLIC and pons) at two b-value (b=1000 
s/mm² and b=3000 s/mm²) in healthy subjects. We 
found that they did not yield identical results. The 
main finding from this study is that the quantitative 
biophysical parameter FA and ADC in the pons 
region are a good biomarker concerning the 
structural integrity of CST tract, we have also 
shown that the pattern of DTI and CSD metrics 
varied in different tissue types. Voxel-based 
analysis of FA and ADC in DTI model and FOD 
estimation from the Multi-Shell Multi-Tissue 
Constrained Spherical Deconvolution (MSMTCSD) 
is a promising tool for characterizing white matter 
degeneration. In Future work, we can involve an 
extensive validation study on several subjects and 
testing the accuracy of the proposed framework 
using complex diffusion models. It will be also 

interesting to test metrics extracted from 
tractography in pons region. 
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