
Journal of Theoretical and Applied Information Technology 
15th May 2020. Vol.98. No 09 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
1379 

 

ASSESSMENT OF CREDIT LOSSES BASED ON ARIMA-
WAVELET METHOD  

JAMIL J. JABER1,  NORISZURA ISMAIL2, SITINORAFIDAHMOHD RAMLI3, S. AL WADI4, 
DALILA. BOUGHACI5 

1,2,3School of Mathematical Sciences, Faculty of Science and Technology,UniversitiKebangsaan Malaysia, 
Malaysia 

1,4Department of Risk Management and Insurance, Faculty of Management and Finance, The University of 
Jordan, Jordan. 

5Department of Computer Science.The University of Science and Technology HouariBoumediene, Algiers, 
Algeria. 

E-mail: 1j.jaber@ju.edu.jo, 1Jameljaber2011@hotmail.com 

2ni@ukm.edu.my 

ABSTRACT 

The aim of this paper is to estimate and forecast the loss-given defaults (LGD) using a sample data of credit 
portfolio loan collected from a bank in Jordan for the period up from January 2010 to December 2014. We 
use a wavelet-inspired analysis to convert the original observations into a time-scale domain. Then, we 
combine the wavelettransform with the ARIMA (Auto-Regressive Integrated Moving Average) model to 
get an ARIMA-WT new model to forecast the LGD data time series.We evaluate four wavelet functions, 
which are Haar (Haar), Daubechies (d4), least Asymmetric (La8), and Coiflet (C6).  The numerical results 
show that the ARIMA-WT is more accurate than the pure ARIMA and the other considered ARIMA-
Wavelet transform based models. We consider several metrics (MAPE, MASE, RMSE, AIC, AICs and 
BIC) to measure the performance of our proposed model. The combination between ARIMA-WT and La8 
function improves highly the forecasting accuracy. According to our findings, we can say that the resulting 
forecast model is able to produce a high quality result.  

Keywords: CREDIT RISK, LGD, WT, ARIMA, FORECASTING. 

 

1. INTRODUCTION 
 
Forecasting financial time series is an important 
issue in finance and insurance. It has received a 
considerable attention by several researchers [1]. 
Forecasting is a way employed in credit risk 
management for protection from financial loss. 
Credit risk management refers to the set of practices 
and techniques used by financial and monetary 
organizations to manage the financial risks. It is the 
mitigation of the probability of the losses of a 
company when a borrower defaults in making 
payments on any type of debt. According to the 
Basel Committee, the credit risk can be assessed by 
using three main approaches, which are the 
standardized approach (with low accuracy, low 
complexity, and high capital charge), the Internal 
Ratings-Based (IRB) approach (with medium 

accuracy, medium complexity and medium capital 
charge) and the advanced IRB approach (with high 
accuracy, high complexity and low capital charge). 
The two IRB based approaches are sensitive to risk; 
they depend on the bank’s interior risks. The IRB 
based approach is widely used compared to the 
standardized approach because of its high accuracy 
and low capital charge [2]. 

The evaluation of credit risk is crucially 
important for banks because credit portfolio has the 
lion’s share of bank assets. The Basel II Capital 
Structure announced by the Basel Committee 
supervision in June 2006, requires that banks 
should hold a minimum capital to cover the 
exposures of credit, market, and operational risks. 
For this reason, all banks are required to assess their 
portfolio risk, including credit risk [2].  
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Several credit risk models have been suggested 
since the introduction of the classical Z-score 
model for confirming the grant of credit of 
counterparties [3]. The ZETA discriminate 
examination model is developed through the linear 
function of market variables and accounting, and 
can be used to separate the repayment and non-
repayment of a credit borrower. The logistic 
regression model is applied to foresee the 
likelihood of a borrower’s default. Also, the 
parametric and non-parametric model, which 
assumed that the aggregate likelihood has a 
parametric and non-parametric functional form, is 
used to foresee the likelihood of a borrower’s 
default [2, 4]. 

Wavelet Transform is a mathematical 
model used to convert the original observations into 
a time-scale domain [5, 6] . The wavelet transform 
model is suitable for financial data that is utmost 
non-stationary [7, 8].  

The main contribution of our current study 
is to estimate and forecast the LGD using the data 
of credit portfolio loan from Jordan in the period 
from January 2010 to December 2014. The 
estimation uses both the ARIMA and the ARIMA-
Wavelet transform. The ARIMA-WT is a 
combination of the wavelet transform and 
theARIMA model. It has received great attention in 
the economic and finance areas. The ARIMA 
model can be defined as the following: ARIMA (p, 
d, q) where p is the order of autoregressive part 
(AR), d is the degree of first differentiation (I) and 
q is the order of the first moving part (MA).  

We consider four wavelet functions 
namely: Haar (Haar), Daubechies (d4), least 
Asymmetric (La8), and Coiflet (C6). In addition, 
we use the accuracy criteria to compare the 
different studied models. We use several metrics 
(the MAPE, MASE, RMSE, the AIC, AICs and the 
BIC metrics) to evaluate the performance of our 
new model. The numerical results show that the 
ARIMA-WT with La8 function has more precision 
than the ARIMA and other ARIMA-WT based 
models. 

The rest of the paper is organized as 
follows. Section 2 presents some related works. 
Section 3 gives a background on the mathematical 
formulation used in this study. Section 4 details the 
research design and the data descriptions. Section 5 

reports the results of the empirical analysis. Finally, 
Section 6 concludes and gives some future works. 

2. LITERATURE REVIEW 
 

The aim of this section is to give an overview of 
some important related works.  

The loss given default (LGD) is commonly used 
in credit risk management. The most common 
approach for estimating the LGD is LossCals. The 
latter is presented by Modey’s 2005; it depends on 
the multivariate linear regression model that 
includes certain risk factors, industry and 
macroeconomic components. In [9] , authors 
suggested a beta distributed LGD and applied 
different kinds of beta regressions for modeling the 
LGD. In [10], authors used the Japanese bank loan 
information to analyze the factors affecting the 
LGD. They build a multistage model for predicting 
the LGD and the expected loss (EL) values. They 
found that the collateral, the guarantees, and the 
loan size affect the LGD value. In addition, they 
found that the multistage LGD model has superior 
predictive accuracy than the corresponding debit 
model, OLS model, and inflated beta regression 
model. Furthermore, in [11], the author investigated 
a new model for bank loan loss given default by 
leveraging time to recovery. In [12], authors 
estimated the downturn LGD modeling by using 
quintile regression. Finally, in [13]  authors 
constructed a model to predict the risk of a 
cardholder for the lifetime of the account where the 
survival analysis methodologies was applied to a 
case study from capital card services. 

The LGD is nonlinear and nonstationary 
data. Therefore, the filtering method such as kalman 
[14] and spectrum filter models are suitable. The 
spectral analysis is a tool for extracting embedded 
structures in a time series. In particular, the Fourier 
analysis was used extensively for extracting 
deterministic structures from time series. However, 
it is unable to detect nonstationary features often 
present in geophysical time series [15]. The wavelet 
analysis can extract transient features embedded in 
time series, with a wavelet power spectrum 
representing variance (power) of a time series as a 
function of time and period.  

Wavelet Transform is a mathematical 
model used to convert the original observations into 
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a time-scale domain [5, 6]. Wavelet is an interesting 
method that can be used in credit risk. Several 
works have been studied the effectiveness of 
wavelets in finance and credit risk. Among these 
works, we give the following ones: authors in [16] 
designed and implemented a new numerical method 
for inverting the Laplace transform based on Haar 
wavelets approach. This model was used to 
estimate expected shortfall for the individual loan 
portfolios under the one-factor Merton model with 
constant loss given default. The result showed that 
Wavelet Approximation method is accurate, fast, 
robust, and able to deal with concentrated or small 
portfolios at high loss levels. In [17], authors 
investigated the continuous wavelet coherency for 
the ”time-varying” correlation for three different 
loans categories; loans to non-financial 
corporations, loans to private households (without 
mortgages) and mortgages. The study was done on 
German data from 1971 to 2010.  

To investigate the lead/lag relationship, the 
wavelet phase difference is computed for various 
frequency bands. The results showed that the 
coherence between real GDP (gross domestic 
product) and loans to non-financial corporations 
changes over time. In [18], authors proposed a new 
methodology to estimate the Value at Risk [19]for 
quantifying losses in credit portfolios. They 
approximated the cumulative distribution of the loss 
function by using a finite combination of Haar 
wavelet basis functions. They calculate the 
coefficients of the approximation by inverting its 
Laplace transform. The loss function assumed to be 
exposure at default for creditors. The results 
showed that Wavelet model is an accurate, robust 
and fast method, allowing estimating VaRmuch 
more quickly than a Monte Carlo (MC) method at 
the same level of accuracy and reliability. 

Authors in [20] worked on 100 companies 
according to industry types to construct wavelet 
structural model to improve predictive ability of 
corporate defaults. They applied wavelet 
decomposition; built different models separately for 
low frequency part and high frequency part and 
then reconstruct the predictive return. They found 
that the wavelet structural model has more 
sensibility and more precision than time series 
model. In [21], authors investigated a Discrete 
Wavelet Transformation process to achieve a better 
characterization of the loan applicants on the basis 
of the information previously gathered by the credit 
scoring system. The performed experiments 

demonstrated how such approach outperforms the 
state-of-the-art solutions. 

3. BACKGROUND AND MATHEMATICAL 
FORMULATIONS 

 

This section gives a background of the main 
concepts used in our study. 

3. 1. Loss-Given Defaults (LGD) 

The internal rating based (IRB) approach is a well-
known technique for measuring credit risk. It 
permits to banks to model the probability of default. 
Further, the advanced IRB approach can model the 
loss given default (LGD). LGDcan be defined as 
the amount of money lost when a borrower 
defaults. 

The capital necessities for credit risk in 
Basel II Internal Rating Based (IRB) can be defined 
by using the Risk-Weighted Assets [8] equation 
where theLGD is considered as the main parameter 
to estimate RWA.  

The monthly value of LGDis computed as shown in 
Equation (1):  

Monthly LGD   =
∑ ௅ீ஽ ௙௢௥   ௘௔௖௛  ஻௢௥௥௢௪௘௥_ ௜೙

೔సభ

௡
 (1)

Where Borrower_irepresentsthe borrower numberi 
in the same month and n is the number total of 
borrowers for the given month. In addition, the 
LGD of each borrower iis estimated by using the 
proxy given in Equation (2). 

𝐿𝐺𝐷𝑓𝑜𝑟𝑒𝑎𝑐ℎ𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑟

ൌ
𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝑎𝑚𝑜𝑢𝑛𝑡

𝐶𝑟𝑒𝑑𝑖𝑡𝑎𝑚𝑜𝑢𝑛𝑡
 

(2)

LGD is then the proportion of exposure that is 
lost in the event of a default[22]. 

3.2. Wavelet Transform Formula 
 

As already said, the wavelet transform [23] is a 
mathematical model for converting the original 
observations into a time-scale domain. The WT 
based model is an appropriate model for analyzing 
financial data because most of the financial data are 
non-stationary.  We distinguish between two WT 
models, which are the discrete wavelet transform 
(DWT), and the continuous wavelet transform 
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(CWT). DWT consists of many functions such as 
Haar, Daubechies, and Maximum overlapping 
Wavelet transform (MODWT) and others. All of 
these functions have the same properties with 
different applications.  

In this section, we present the main concept of 
WT.  For more details, the readers can refer to [6, 
7,24]. 

Wavelets theory is based on Fourier analysis, 
which represents any function as the sum of the 
sine and cosine functions. A wavelet is simply a 
function of time t that obeys a basic rule, known as 
the wavelet admissibility condition[7]: 

C஦ ൌ න
|φሺfሻ|

f
df ൏ ∞

∞

଴
 

 

(3)

where φሺfሻ  is the Fourier transform and a 
function of frequency f, of φሺtሻ . The WT is a 
mathematical tool that can be applied to numerous 
applications, such as image analysis and signal 
processing. It was introduced to solve problems 
associated with the Fourier transform, when dealing 
with non-stationary signals, or signals that are 
localized in time, space, or frequency. 

 

There are two types of wavelets within a given 
function/family. Father wavelets describe the 
smooth and low-frequency parts of a signal, and 
mother wavelets describe the detailed and high-
frequency components. Equation (4) represents the 
father wavelet and mother wavelet respectively, 
with j=1,2,3,..., J in the J-level wavelet 
decomposition:[25].  

 

ϕj, k ൌ 2ቀ
షౠ
మ ቁϕ ቆt െ

2୨k
2୨ ቇ 

φj, k ൌ 2ቀ
షౠ
మ ቁφ ቆt െ

2୨k
2୨ ቇ 

(4) 

 

Where J denotes the maximum scale sustainable 
by the number of data points and the two types of 
wavelets stated above, namely father wavelets and 
mother wavelets and satisfies: 

 

න ϕሺtሻdt ൌ 1 and න φሺtሻdt ൌ 0 
(5) 

time series data, i.e., function f(t), is an input 
represented by wavelet analysis, and can be built up 
as a sequence of projections onto father and mother 
wavelets indexed by both {k}, k = {0, 1, 2,...} and 
by{S}=2j, {j=1,2,3,. . .J}.  

When analyzing real discretely sampled data, 
we need to create a lattice for making calculations. 
Mathematically, it is convenient to use a dyadic 
expansion, as shown in Equation (5). The 
expansion coefficients are given by the projections: 

S୨,୩ ൌ න ϕ୨,୩fሺtሻdt, d୨,୩ ൌ න φ୨,୩fሺtሻdt, (6) 

The orthogonal wavelet series 
approximation to f (t) is defined by: 

 

Fሺtሻ ൌ ෍ S୨,୩ϕ୨,୩ሺtሻ ൅ ෍ d୨,୩φ୨,୩ሺtሻ

൅ ෍ d୨ିଵ,୩φ୨ିଵ,୩ሺtሻ ൅ ⋯

൅ ෍ dଵ,୩φଵ,୩ሺtሻ 

(7) 

S୨ሺtሻ ൌ ∑ S୨,୩ϕ୨,୩ሺtሻand D୨ሺtሻ ൌ
∑ d୨,୩ϕ୨,୩ሺtሻ 

(8) 

 

The WT is used to calculate the coefficient 
of the wavelet series approximation in Equation (7) 
for a discrete signal, where S୨ሺtሻ  and D୨ሺtሻ  are 
introducing the smooth and details coefficients 
respectively. The smooth coefficients dives the 
most important features of the data set and the 
details coefficients are used to detect the main 
features in the dataset.  

2.3. Comparison Between the Four Main 
Wavelet Transform Functions 

 

As already said, two terms are used when 
describing a wavelet. The first is non-orthogonal 
wavelet (e.g. Morlet wavelet). The second is 
orthogonal wavelet, which refers to an orthogonal 
set of functions. Non-orthogonal wavelet used with 
the DWT (Discrete Wavelet Transform) or CWT 
(Continues Wavelet Transform) while orthogonal 
wavelet is used with dWT only a variety of 
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different WT algorithms can be applied over the 
data for analyzing depending on the nature of the 
data. Each transform has its own characteristics and 
advantages over other algorithms based on the 
individual cases. WT has four popular transform 
functions[6], namely Haar, Daubechies, Symlet and 
coiflet. Table (1) compares the main properties of 
Haar, Daubechies, coiflet, and symlet wavelets.  

These functions are summarized as follows:  

1) Haar Wavelet Transform (Haar) is the first 
algorithm with the simplest and oldest 
Wavelet function in the WT family. It was 
developed to overcome problems in the 
Fourier transform (FT). Haar is considered 
the simplest wavelet function[26].  

2) Daubechies wavelet transform (d4) is 
widely used in statistics and finance 

application and represents a development 
and an improvement of the HWT in terms 
of frequency-domain characteristics and 
arbitrary regularity.[26].  

3) Coiflets Wavelet Transform (C6) was also 
proposed by Daubechies in 1992. However, 
Coiflets wavelet transform has unusual 
properties in the zero moments of the 
scaling function, because the wavelet 
function associated with Coiflets wavelet 
transform has 2h zero moments. [6, 26].  

4) Least Asymetric (La8) : wavelet is 
considered a good general-purpose wavelet 
whose “width” (8) strikes a balance 
between providing smooth approximations 
with few artifacts, and minimal edge effects 
at the boundaries of the data[27]. 

TABLE 1: Comparison BetweenHaar, Daubechies, Coiflet, And Symlet Wavelet Functions 

Coiflet (C6) 
Least Asymetric 

(La8) 
Daubechies (d4) Haar Property 

Yes Yes Yes No Arbitrary regular 

Yes Yes Yes Yes Orthogonal and compact 
support 

Near Symmetry A Symmetry A Symmetry Symmetry Symmetry 

Yes Yes Yes Yes Arbitrary number of zero 
moments 

Yes Yes Yes Yes Existing of the scale 
function 

Yes Yes Yes Yes Orthogonal analysis 

Yes Yes Yes Yes Bio-orthogonal analysis 

Yes Yes Yes Yes Continuous 
transformation 

Yes Yes Yes Yes Discrete transformation 

Yes Yes Yes Yes Exact reconstruction 

Yes Yes Yes Yes Fast algorithm 

No No No Yes Explicit expression 

Real Real Real Real Real or complex wavelet 
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2.4 Autoregressive Integrated Moving-Average 
Model (ARIMA) 

 

The auto-regressive moving average (ARMA) 
models are used in time series analysis to describe 
stationary time series. The ARMA model is a 
combination of a moving average (MA) model and 
an autoregressive (AR) model.  A time series {𝑒௧} is 
called a white noise [28] process, ሼ𝑌௧ሽ  is called 
Gaussian process iff for all t, 𝑒௧ is iid𝑁ሺ0, 𝜎ଶሻ. A 
time series{𝑌௧ } is said to follow the ARMA(p,q) 
model if: 

 

𝑌௧ ൌ 𝜇 ൅ 𝜙ଵ𝑌௧ିଵ ൅ 𝜙ଶ𝑌௧ିଶ … ൅ 𝜙௣𝑌௧ି௣

൅ 𝑒௧ െ 𝜃ଵ𝑒௧ିଵ
െ 𝜃ଶ𝑒௧ିଶ … െ 𝜃௤𝑒௧ି௤ 

(9)

where 𝑞  and 𝑝  are non-negative integers, 𝑝 
represents order of autoregressive part (AR), 𝑞  is 
defined as order of the first moving part (MA) and 
{𝑒௧} is the white noise [28] process. An extension 
of the ordinary ARMA model is the auto-regressive 
integrated moving-average model (ARIMA(p,d,q))  
given by :  

𝜙௣ሺ𝐵ሻሺ1 െ 𝐵ሻௗ𝑌௧ ൌ 𝜃଴ ൅ 𝜃௤ሺ𝐵ሻ𝑒௧   (10) 

where 𝑝 , 𝑑  and 𝑞  denote orders of auto-
regression, integration (differencing) and moving 
average, respectively.When d=0, the ARIMA 
model reduces to the ordinary ARMA model.  

3. RESEARCH DESIGN  
 

The aim of this work is to forecast the LGD based 
on data of credit portfolio loan issued from Jordan 
bank in the period from January 2010 to December 
2014. To do this, we use both the ARIMA and a 
combination of ARIMA and WT where the three 
parameters (p, d, and q) are estimated. Also, we 
consider the four WT functions which are: 
Haar(Haar), Daubechies (d4), least Asymmetric 
(La8), and Coiflet (C6).  Further, we make use of 
the accuracy criteria to compare our models.  The 
proposed framework is detailed in following. 

 

 

 

3.1. Proposed Framework for an Accurate 
WTForecasting. 

 

We propose several models to forecast the LGD 
data. We use a wavelet transform to convert the 
original data into a time-scale domain. Then we 
combine the WT with the ARIMA model to 
forecast the LGD data time series. We study 
various functions of WT to evaluate our models.  
Figure 1 draws the different steps of the WT 
forecasting process.  

We note that when the data pattern is very 
rough, the wavelet process is repeatedly applied. 
The aim of the pre-processing step is to minimize 
the Root Mean Squared Error (RMSE) between the 
signal before and after transformation. The noise in 
the original data can thus be removed. Importantly, 
the adaptive noise in the training pattern may 
reduce the risk of over fitting in training phase. 
Thus, we adopt WT twice for the pre-processing of 
training data in this study. 

As shown in Figure1, the Maximum 
Overlapping Wavelet transform (MODWT) 
converts the data into two sets: details series (DA1 
(n)) and approximation series (CA1 (n)). These two 
series give a good behavior for the data set 
especially with the financial data since it is 
significantly fluctuated. Then, the transformed data 
is anticipated more precisely. The purpose behind 
the good behavior of these two series is the filtering 
effect of the MODWT. Additionally, we use the 
approximation series since the series behave as the 
main component of the transform.  

 

Our methodology can be summarized as 
follows: To handle our data, first, we break down 
through the MODWT the available historical return 
data. Second, we use an improved ARIMA model 
fitted to the approximation series to make the 
forecasting. As already said, we propose a hybrid 
method combining the ARIMA model with WT 
decomposition. The decomposition process is done 
by using four WT functions which are: HaarWT, 
WTd4, WT La8 and WT C6. The overall method 
starts by applying WT in order to decompose time 
series data and reconstructed it in two parts: details 
series (DA1 (n)) and approximation series (CA1 
(n)). The ARIMA model is applied on 
approximation series. The aim of the ARIMA-WT 
model is to forecast the LGD data time series. The 
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new technique is compared with a pure ARIMA 
model used directly to forecast the LGD data series 
by utilizing the specified criteria.  Further, the four 
ARIMA-WT based proposed models are compared 
based on several metrics. The best model is the one 
given the best accuracy. 

 

Figure 1. The Flowchart Of The WT Forecasting. 

 
3.2. Accuracy Criteria 

 

We consider several types of accuracy criteria: 
The Mean absolute percentage error (MAPE), the 
Mean absolute scaled error (MASE), the Root 
means squared error (RMSE), the Akaike 
information criterion(AIC, AICs), the Bayesian 
information criterion (BIC), and the Log likelihood 
test. The MAPE criterion is also known as mean 
absolute percentage deviation (MAPD) that is a 
measure of prediction accuracy of a forecasting 
method in statistics. It usually expresses accuracy 
as a percentage, and it is definedas: 

𝑀𝐴𝑃𝐸 ൌ
%ଵ଴଴

௡
∑ ቚ

௑೟ିி೟

௑೟
ቚ௡

௧ୀଵ , where 𝑋௧ is the 

actual value and 𝐹௧ is the forecast value. The 
absolute value in this calculation is summed for 
every forecasted point in time and divided by the 
number of fitted points 𝑛.  

 

Also, the MASE is recommended for 
determining comparative accuracy of forecasts. It is 
estimated by  

 

𝑀𝐴𝑆𝐸 ൌ
∑ |𝑋௧ െ 𝐹௧|௡

௧ୀଵ
௡

௡ିଵ
∑ |𝑋௧ െ 𝑋௧ିଵ|௡

௧ୀଶ

 

where the numerator is the forecast error for a 
given period, defined as the actual value (𝑋௧) minus 
the forecast value ( 𝐹௧ ) for that period, and the 
denominator is the mean absolute error  which uses 
the actual value from the prior period as the 
forecast: 𝐹௧ ൌ 𝑋௧ିଵ.  

Next, The RMSE is known also as root-mean-
square deviation (RMSD) that is a frequently used 
as a measure of the differences between estimators. 
It measures the average error performed by the 
model in predicting the outcome for an 
observation.It is defined as the square root of 
the mean square erroras: RMSE ൌ √MSE ൌ

ට∑ ሺୟୡ୲୳ୟ୪୴ୟ୪୳ୣି୮୰ୣୢ୧ୡ୲ୣୢ୴ୟ୪୳ୣሻమಿ
౟సభ

ே
, where𝑁represents 

the number of observations.  

Another accuracy criterion is AIC which is 
defined as: AIC ൌ െ2 ∗ log െ likelihood ൅ 𝑘 ∗
npar , where npar  represents the number of 
parameters in the fitted model, k = 2, and n being 
the number of observations, where AICc is a 
version of AIC corrected for small sample sizes.  

Finally, the BIC is BIC ൌ െ2 ∗ log െ
likelihood ൅ 𝑘 ∗ npar , where npar  represents the 
number of parameters in the fitted model, k = 
log(n) , and n being the number of observations.  

4. EMPIRICAL RESULTS 
 

In this section, we present the data used in our 
study. Then we give the numerical results obtained 
when applied our models to the considered dataset. 

4.1. Data Description 
 

The sample data of credit portfolio are collected 
from a bank in Jordan and contain confidential 
information on credit of loans. The month-to-month 
information of credit portfolio was collected from 
January 2010 until December 2014. The size of 
portfolio is 4393, while the aggregate number of 
defaults throughout the 5-year time span is 495. A 
borrower is declared default when his/her cash 
installment is not paid within 3 months or more. 
The total number of observations for mathematical 
convenience in orthogonal wavelet transform is 
suggested to be divisible by 2j (j=1,2,3,…). 
However, in this study, the dataset does not satisfy 
this condition. Therefore we adapt the Maximum 
overlapping discrete wavelet transform (MODWT) 

Financial Time Series 
Data

Wavelet Transform 
using

MODWT function

details coefficients

Explaining the main 
feature and co-

movement in the 
transformed data

approximation coefficients

Apply ARIMA-WT models on 
the approximation series data 

and make forecasting.

Selection of the best model for a good 
decomposition and an accurate forecasting
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since the MODWT is a wavelet function does not 
consider the number of observations[6, 7]. 

 

Table 2 shows the risk exposures (number of 
loans at risk) and the number of defaults in each 
year. The highest number of defaults occurred in 
the second year, and the highest number of defaults 
per exposure occurred in the same year (168 
defaults from 1125 exposures).  

Table 2. Number Of Exposures And Defaults In Each 
Year 

Year  Exposure # of 
defaults 

% (# of 
defaults per 
exposure) 

2010 1265 137 10.83 

2011 1125 168 14.93 

2012 783 67 8.56 

2013 652 41 6.29 

2014 568 82 14.44 

Total 4393 495 - 

 

4.2. Results and Discussion 

Table 3 gives the results found by the four studied 
models. The ARIMA- Direct is the model obtained 
when we have applied the pure ARIMA model 
directly on the original data. ARIMA-WT (haar) is 
the combination of the ARIMA model with WT 
with the Haar function. ARIMA-WT (d4) is the 
combination of the ARIMA model with WT with 
the Daubechies function.   ARIMA-WT (La8) is the 
combination of the ARIMA model with WT with 
the least Asymmetric function.  ARIMA-WT (C6) 
is the combination of the ARIMA model with WT 
with the Coiflet function.  We consider several 
metrics to evaluate the five studied models  

Table 3 Appendix 1. 

For a fair comparison, the same sample 
data has been chosen. The selected suitable 
ARIMA model for forecasting the sample data is 

ARIMA (1,1,1) with RSME equal to 0.083 as 
shown in Table 3. However, the forecasting 
accuracy is improved when using HWT combined 
with the suitable ARIMA model which is ARIMA 
(0,1,0) with RMSE equal to 0.0615 as given in 
Table 3.   

Similarly, an enhancement in the 
forecasting accuracy is noted when DWT with the 
d4 function is combined with a suitable ARIMA 
model (that is, (0,1,0)) with RMSE equal to 0.0606. 
The same remark is noted, that is the forecasting 
accuracy is also improved when DWT using C6 is 
combined with a suitable ARIMA model (that is, 
(0,2,0)) with RMSE equal to 0.010.   

Also, the best forecasting accuracy is 
noted when the WT using the function La8 with the 
ARIMA (3,2,0) with RMSE is 0.0033. We should 
note that the difference in terms of RMSE between 
the methods used is relatively small. Nevertheless, 
it is possible to draw two important conclusions.  
First, the forecasting accuracy is improved when 
we use WT combined with the suitable ARIMA 
model since the forecasting using WT with ARIMA 
produces less RMSE than the forecasting carried 
out directly using only the ARIMA model. Second, 
the difference in RMSE between WT's functions 
contradicts existing opinion regarding WT (WT 
(Haar) WT (d4), WT (La8) and WT(C6)), since it is 
well known that the best WT in the literature is 
Daubechies WT. 

In order to further corroborate our findings 
and hence conclusions, we used another statistical 
criterion to analyze the small difference in RMSE. 
We use both MAPE and MASE measures. Table 3 
shows the obtained results using MAPE. When we 
take the results of both RMSE and MAPE 
collectively, we can see that the forecasting 
accuracy is improved using WT functions 
combined with a suitable ARIMA model compared 
to the forecasting accuracy using ARIMA model 
directly.  

Thus, we can say that the findings in this 
study are significant and novel contribution to the 
area of WT and forecasting time series. Thus far, 
the results obtained in this paper indicate that WT is 
an effective model to decompose LGD data for 
forecasting since it is able to remove outliers, noise 
and residuals. In addition, it is able to produce 
smooth data.   
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4.3. Monthly Forecast of LGD Based on 
ARIMA-WT 

 

Figure 2 shows the decomposition of LGD and 
default losses based on ARIMA-WT. The 
decomposition consists of a1, which is the 
approximated coefficients used for the proper 
forecasting, and d1, d2, d3, d4 and d5, which show 
the fluctuations of data. The forecasting results for 
the ARIMA with MODWT are depicted in Figure 
3. 

As shown in Figure 2, the LGD data is 
decomposed using the four different functions; 
Haar WT, WTd4, WT La8 and WT C6. We can say 
that the WT La8 function is the suitable method to 
reveal the fluctuations, magnitudes and phases for 
the closing price data from the data used.  The 
application of the WT La8 to the historical data 
decomposes them into a variety of resolution levels 
that expose their essential structure and it generates 
detailed coefficients at each one of the three 
decomposition levels.  

 

According to WT mechanism, the three levels 
of decomposition can be carried out by the WT 
using the following equation: 
X=TV1+TW1+TW2+TW3 where X refers to the 
original signal which is represented in the topmost 
part of Figure 2. Then the next part consists of one 
approximation level (TV1) which shows the plot of 
the approximation coefficients for the transformed 
data using WTL8. The following parts of TW1, 
TW2 and TW3represent the details levels, whereby, 
TW1 is the plot of the first level of the details 
coefficients, TW2 is the plot of the second level of 
the details coefficients and TW3is the plot of the 
third level of the coefficientsdetails. Any of these 
three levels (TW1, TW2, TW3) can be adopted for 
explaining the data. 

Figure 2 Appendix 1 

The estimated point of volatility at 95% and 
99% confidence interval for LGD are given in 
Table 4. The forecast LGD value is 0.6841 in the 
first month, which is the highest point in the first 
year. The lowest point is in the last month at the 
same year. In the losses, the estimators always 
interested in the upper limit in confidence interval 
more than lower limit. Indeed, confidence interval 
for losses is frequently used as the maximum (0, 
upper limit).  

Table 4 Appendix 1 

Figure 3 shows the diagrams of past and 
forecasting values of LGD using WT functions 
combined with ARIMA model. According to the 
numerical results, we can say that the ARIMA-WT 
method succeeds in finding good results compared 
to the pure ARIMA. Moreover, when using 
ARIMA-wavelet with the La8 function the results 
are promising which leads us to conclude that 
ARIMA-WT with the La8 function based model is 
suitable for forecasting loss-given-defaults and 
losses. 

Figure 3 Appendix 1 

5. CONCLUSION 
 
The probability of default (PD) and loss given 
default (LGD) are two important parameters in 
credit risk management. In this study, we proposed 
an ARIMA-WT new model to forecast the loss-
given defaults (LGD) data time series. We 
evaluated four functions of WT, which are Haar 
(Haar), Daubechies (d4), least Asymmetric (La8), 
and Coiflet (C6). The method was validated on a 
sample data of credit portfolio loan collected from a 
bank in Jordan for the period up from January 2010 
to December 2014. In addition, the wavelet models 
are compared with the ARIMA based on several 
metrics: the MAPE, MASE, RMSE, the AIC, AICs 
and the BIC.  
The numerical results are interesting and show the 
significance of our work. The ARIMA-WT (La8) 
method is more accurate than the ARIMA and other 
ARIMA-Wavelet transform models. The new 
method is able to remove outliers, noise and 
residuals and to produce smooth data. However, 
this study can be improved by considering further 
factors in particular macroeconomic factors such as 
inflation, unemployment, Gross domestic product 
(GDP). This would be the main point to be 
explored in a near future work. In addition, we plan 
to use more sophisticate machine learning 
technique for default forecasting. Further, it would 
be nice to use some meta-heuristics techniques such 
as genetic algorithms and local search method for 
optimization purposes and appropriate factors 
selection. 
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Appendix 1 

TABLE 3.Comparing Between ARIMA And WT's Models With Different Accuracy Criteria 

Models ARIMA Level MAPE MASE RMSE AIC AICc BIC 

ARIMA-WT 
(haar) 

(0,1,0) 1 5.6200 0.9836 0.0616 -158.5300 -158.4600 -156.4600 

ARIMA-WT 
(d4) 

(0,1,0) 1 5.5808 0.9836 0.0607 -160.2512 -160.1810 -158.1736 

ARIMA-WT 
(La8) 

(3,2,0) 3 0.3378 0.1621 0.0033 -487.2200 -486.4653 -478.9783 

ARIMA-WT 
(C6) 

(0,2,0) 3 0.9842 0.4408 0.0102 -362.7947 -362.7232 -360.7342 

 

TABLE 4.Monthly Forecasting Of WT-La8 OfLGDFor One Year 

Months Estimation Confidence Interval 95% Confidence Interval 99% 

Lower Upper Lower Upper 

1 0.6841 0.6775 0.6907 0.6755 0.6927 

2 0.6617 0.6411 0.6822 0.6346 0.6887 

3 0.6386 0.5985 0.6787 0.5859 0.6913 

4 0.6146 0.5508 0.6784 0.5308 0.6984 

5 0.5897 0.4983 0.6812 0.4695 0.7100 

6 0.5645 0.4410 0.6880 0.4022 0.7268 

7 0.5391 0.3793 0.6988 0.3291 0.7490 

8 0.5134 0.3137 0.7131 0.2510 0.7759 

9 0.4876 0.2446 0.7306 0.1682 0.8070 

10 0.4617 0.1720 0.7513 0.0810 0.8423 

11 0.4356 0.0964 0.7749 0.0000 0.8815 

12 0.4096 0.0177 0.8014 0.0000 0.9245 
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Figure 2: Data Decomposition Using WT'sFunctions. 

 

 

 

 

 
 

 
(haar) 

(d4) 

 
 

(la8) (c6) 



Journal of Theoretical and Applied Information Technology 
15th May 2020. Vol.98. No 09 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
1392 

 

 

(haar) (d4) 

  

(la8) (c6) 

Figure 3.Forecasting Diagram ForWT'sFunctions. 

 

 

 


