
Journal of Theoretical and Applied Information Technology
30th April 2020. Vol.98. No 08

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1269

TOWARDS A WORD EMBEDDING BASED APPROACH FOR
SEMANTIC INDEXING

 1ILYAS GHANIMI, 1ELHABIB BENLAHMAR, 1ABDERRAHIM TRAGHA, 1FADOUA GHANIMI

1University Hassan II, Department of Mathematics and Computer Sciences, Morocco

E-mail: 1 ghanimiilyas@gmail.com,

ABSTRACT

In this article we present a new approach to semantic indexing of documents using word embedding
relaying on representing words as numerical vectors based on the contexts in which they appear. This
approach is validated by a set of experiments and a comparison with other approaches. We show that the
proposed approach achieves results equivalent or better.

Keywords: Information retrieval, semantic indexing, word embedding, BERT, NLP.

1. INTRODUCTION

Currently, due to the steady increase in
computational power, the growing availability of
open source data and the continuous improvement
of machine learning algorithms, the NLP is rapidly
developing.

The ultimate objective of NLP is to read,
decipher, understand, and make sense of the human
languages in a manner that is valuable.

For a long time, the majority of methods used to
study NLP problems employed shallow machine
learning models and time-consuming, hand-crafted
features to derive meaning from human languages.

However, with the recent popularity and success
of word embeddings (low dimensional, distributed
representations), deep learning based models have
achieved superior results on various language-
related tasks.

Our work focuses on semantic indexing. In
particular, we are working on the phase of
extracting information from texts, which is a
preliminary step in the process of indexing
documents. Semantics refers to the meaning that is
conveyed by a text. Semantic analysis is one of the
difficult aspects of Natural Language Processing
that has not been fully resolved yet. It involves
applying computer algorithms to understand the
meaning and interpretation of words and how
sentences are structured.

We therefore use the statistical method TF-ID to
detect the most important terms in the corpus.

 These terms are then transformed into input for
the deep learning based algorithm to get the
indexation terms.

Section 2 presents a state of the art on semantic
indexing methods. The steps of our approach as
well as the theoretical bases are presented in section
3. In section 4 we present an experimental
validation of the proposed method and we end with
a conclusion.

.

2. DEEP LEARNING

Deep Learning means the techniques based on
neural networks. These networks are inspired by
biological neurons: each neuron receives an input
signal from several other neurons (or directly
signals from the outside world) and performs a very
simple operation on these signals; the result of this
operation is transmitted to several other neurons.

Traditional neural networks (feedforward neural
networks) can achieve near state-of-the-art results
on a range of unstructured and structured language
processing tasks. They are suitable for the treatment
of characteristic vectors of fixed sizes and can
therefore be used with TF IDF. Nevertheless it is
difficult to adapt for processing unbounded size
sequences (for example, a sequence of word vectors
obtained with word embedding techniques).

Journal of Theoretical and Applied Information Technology
30th April 2020. Vol.98. No 08

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1270

There are two main architectures for processing
sequences: convolutional neural networks and
recurrent neural networks.

2.1 Convolutional Neural Networks

Convolutional neural networks (CNN) utilize
layers with convolving filters that are applied to
local features [1].

Originally invented for computer vision to allow
successive preprocessing of small parts of an image
using the same set of parameters, CNN models have
subsequently been shown to be effective for NLP
and have achieved excellent results in semantic
parsing [2], sentence modeling [3], search query
retrieval [4] and various NLP tasks [5].

Instead of processing successive parts of an
image, CNNs for NLP are used to process
subsequences of words.

Building a CNN architecture means that there are
many hyperparameters to choose from, some of
which I presented above: Input represenations
(word2vec, GloVe, one-hot), number and sizes of
convolution filters, pooling strategies (max,
average), and activation functions (ReLU, tanh).

Most CNN architectures learn embeddings (low-
dimensional representations) for words and
sentences in one way or another as part of their

training procedure. The fact remains that CNNs
perform very well on many tasks and compete or
even outperform recurrent neural networks in some
situations[13].

2.2 Recurrent neural networks

Recurrent Neural Networks (RNNs) are main stream

in numerous Natural Language Processing
(NLP) assignments. The thought behind RNNs
is to process information by sequences. By
construction, RNNs meet two essential criteria
for NLP:
- They model the dependencies between

words.
- They can be used very for sequences of

different sizes.
 While the ordinary NN does not respect the

temporal order of the input data, the recurrent
neural network avoids this problem by having
the notion of time built into it.

They perform out a similar assignment for each
component in an arrangement, with the yield being
reliant on the past calculations. RNNs have a
memory which catches data about what has been
figured up until this point. To prepare subjective
arrangements of data sources RNNs utilizes their
inside memory. At each layer, new data is included
and that data is passed on for an uncertain number of

Figure 1: CNN modeling on text [12]

Journal of Theoretical and Applied Information Technology
30th April 2020. Vol.98. No 08

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1271

systems. RNNs get information and create yield at
each progression.

Figure 2: Recurrent Neural Network

Classic RNN’S

Recurrent neural networks are generally composed

three layers:

- An input layer corresponding to the
characteristics of the current element of the
sequence,

- A hidden layer having a recurrence relation
with itself.

- An output layer used to establish network
predictions for the current element.

Fi Figure 3 shows what a typical RNN looks like. The

diagram shows a RNN being unrolled into a full
network. For example, if the input sequence is a
four-word sentence, the network would be unrolled
into a 4-layer neural network, one layer for each
word.

LSTM/GRU:

Al Though RNNs have the right framework to model
temporal data, they suffer from some inadequacies.
NNs learn by back propagating the error to modify
the network weights. If the network is too large or
the number of time steps is too long, the distance
over which the error must be transmitted becomes
infeasible and the network stops learning. This
problem is referred to in literature as the vanishing
gradient problem.

 L The LSTM is a modified RNN designed to
overcome vanishing gradients [6]. In addition to the
hidden state, the LSTM carries a cell state that
preserves long term information. The LSTM solves
the problem by having a shortcut path to transmit
the gradients back. This unique architecture
involves three gates. The forget gate decides the
contents of the cell state that are relevant to the

Figure 3: An unrolled Recurrent Neural Network

Journal of Theoretical and Applied Information Technology
30th April 2020. Vol.98. No 08

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1272

problem and discards everything else. The input
gate’s function is to ensure that relevant
information in the input is stored in the cell state.
Finally, the output gate adds the relevant input to
the cell state and passes it on to the next time step.
This architecture ensures that the gradients are
propagated back into the earlier time steps in the
network.

 The GRU is another modified RNN cell that
is similar to the LSTM in many ways [7]. It differs
from the LSTM in that it has two gates in place of
three. The update gate and the reset gate preserve
long term information in the data.

 While the reset gate determines the
information that is important to hold over the long
term, the update gate ensures that this information
is added to the hidden state.

 This architecture ensures that the GRU has
fewer parameters to train than an LSTM. It saves
memory and takes less time to train. However, on
small sequences this typically does not make much
of a difference.

Encoder-Decoder (ED) Model

 Encoder-decoder neural networks were

introduced by Sutskever et al in the context of
machine translation [8]. This model is popular in
the field of natural language processing(Figure 5).

 Here, the cells are layered one over the other
like the basic architecture. However, in the central
layer, the cells are forced to withhold their
connection with the layer above them until the last
timestep. This ensures that the output of the layer is
a summary of the contents of all the input timesteps.
This summary vector is then fed as an input to all
the timesteps in the layer above.

Figure 5: Encoder-Decoder Model

 3. Our new semantic indexing approach

 As shown in Figure 6 , the approach we propose

is composed of two stages: extraction of

Figure 4: Regular stacked RNN architecture with summary vector.

Journal of Theoretical and Applied Information Technology
30th April 2020. Vol.98. No 08

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1273

indexing terms using TF-IDF and extending
them semantically using BERT.

 Our method for detecting key terms is a
preliminary step to a semantic indexing process.
Indeed, to build the final representation of

 documents or queries, a semantic indexing
method must be completed.

 The procedure we use in the first step is
Term Frequency Inverse Document Frequency (TF-
IDF). This weighing scheme can be categorized as a
statistical procedure, though its immediate results
are deterministic in nature.

 Though TF-IDF is a relatively old weighing
scheme, it is simple and effective, making it a
popular starting point for other, more recent
algorithms [11].

 The purpose of our approach is to make use
of the strengths of TF-IDF as a starting point for our
algorithm. The use of the BERT natural language
model is to complement the weakness of the TF-
IDF framework in understanding the true semantic
meaning of a document.

 We consider our document as a sequence of
words. The TF-IDF model, gives higher weight to
the most frequent terms in the corpus. We use TF-
IDF scores to rank our first potential results; then
we add to the potential results, the terms the most
similar to them.

 The similarity is calculated using vectors of
the all terms of the corpus and the vectors for each

potential result, which are generated from the
BERT mode.

Because we already are able to get the weight
TF–IDF score as the previous section described, the
specific approach is to add this two scores together
and make a final sort. It is reasonable because the
information those two scores represented is
orthogonal.

The TF–IDF score represents the scenario that
the user input exactly match the documents; the
semantic score represents the scenario that user
want to search some relevant documents.

Even BERT is the current best model for
language representation; it still is a black box model
and very sensitive to noise. Moreover, a more
common scenario is that user expected search result
exactly matches user’s input, and semantic
information only is a supplement for traditional
keywords searching approach.

On the other hand, TF–IDF model does not take
semantic information into consideration at all. It is a
compromise approach to combining the two score
together.

Figure 6: An overview of our proposed method

Documents preprocessing
sequence

of words

TF‐IDFPotential termsBERT

Indexing terms

Journal of Theoretical and Applied Information Technology
30th April 2020. Vol.98. No 08

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1274

3.1 TF-IDF

The most basic unsupervised method for
keywords extraction is TF-IDF (Term Frequency –
Inverse Document Frequency) [11].

Tf-Idf, is a metric for calculating the relevance of
terms in documents, very used in Information
Retrieval and Text-Mining. Essentially, this
technique measures how important a certain word is
on a document regarding other documents in the
same collection.

Basically, a word gets more important in a
certain document the more it occurs in that
document. But if that word occurs in other
documents, its importance decreases. Words that
are very frequent on a single document tend to be
more valued than common words that occur on
more documents, like articles or prepositions.

Then normalized to prevent word on very long
documents to get higher Tf values.

Equation 1 measures the probability that a term i
occurs in a document j.

 𝑇𝐹 ൌ
ೕ

∑ ೖೕೖ
 (1)

where nij is the number of times the term i occurs in
a document j and then it is divided by the total of
words in document j. Idf component measures the
general relevance of a given term.

Equation 2 consists in the count of the number of
documents that a term ti occurs.

𝐼𝑑𝑓 = log
||

ห൛ௗೕ/௧∈ௗೕൟห
 (2)

where |D| represents the total number of documents
in the collection and { : } j i d j d t ∈ the number of
documents where the term ti occurs. Tf-idf (equation
3) is then the multiplication of the two previous
equations.

 𝑇𝐹𝐼𝑑𝑓 ൌ 𝑇𝐹 ൈ 𝐼𝑑𝑓 (3)

 However, we must consider that TF-IDF select
candidate keyphrases based on their statistical
frequencies without considering semantic similarity
between words. The inconvenient of this method is
that it ignores the words which have low frequency.

Generally, the calculation of Tf-Idf is made in
separate, calculating the Tf and Idf components
separately, and finally multiplying both components
to get the final Tf-Idf value. Tf component (term
frequency) simply measures the number of times a
word occurs on a certain document.

As noted before, a set of terms is typically
extracted as potential candidate terms using
heuristic rules. These rules are used to keep the
number of candidates to a minimum.

In the approach we propose, the following
algorithm is used for selecting candidate terms:

- First, a predefined list of stopwords is used to
remove stop words [10].

.

- Select as candidate keywords the N potential
candidate keywords the most frequent in the
document using TF-IDF scores, while N may be set
to any fixed value, usually ranging from 5 to 20
keywords.

3.2 Word embedding with BERT

 The BERT (Bidirectional Encoder
Representations from Transformers) is a natural
language representation model [9] that makes use of
Transformer, an attention mechanism which reads
the entire sequence of words at once to encode
input token, making it the best language
representations model nowadays.

 BERT also uses multilayer network to
capture the text meaning. BERT is designed to
pretrain deep bidirectional representations from
unlabeled text by jointly conditioning on both left
and right context in all layers. This characteristic
allows the model to learn the contextual relations
between words in a text based on all of its
surroundings.

 It has been proved that the BERT model is
more capable of understanding the true semantic

Journal of Theoretical and Applied Information Technology
30th April 2020. Vol.98. No 08

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1275

meaning of the text by presenting which is
successfully applied in many NLP tasks,

 Pre-trained representations reduce the need
for many heavily-engineered task specific
architectures. BERT is the first fine tuning based
representation model that achieves state-of-the-art
performance on a large suite of sentence-level and
token-level tasks, outperforming many task-specific
architectures.

 Inspired by [9], we propose a new method
that aims to select from the candidate terms the
more representative for the document. As
mentioned above, the input used by the BERT
model is constituted of a list of candidate terms
obtained according to the steps described before.

 BERT is a state-of-the-art pre-training
language re presentations with which we can
generate the word embedding: We use the last layer
of BERT hidden layer and sort up each token’s
output vector used to represent word.

 We utilize the advantages of the pre-trained
language model BERT to generate better word
embedding of the list of candidate terms obtained
by TF-IDF. With the word embedding created by
BERT, we are able to calculate the similarity of
different word and obtain a semantic score, which
could be used to introduce semantic information in
our semantic retrieval task.

 Thus, we use the Cosine similarity to find
out the words the most similar to the potential terms
and add them to the list of keywords.

 The intuition for this new approach is as
follows: Apply BERT word embedding to
keywords extraction task, and improve the
performance of the task by taking advantage of the
rich semantic features of BERT word embedding.

4. Evaluation and results

In this section, we start with the presentation of the

datasets, then we present the results of our
experiments.

.
4.1 Dataset

For our experiments, we tested the proposed
approach on a dataset composed of documents
60 documents extracted from:

 Wikipedia.com

 Medium.com

 Google Scholar

4.2 Results

 We evaluate our new method by studying the
results of our proposed IRS. The typical approach,
which is also adopted by the SemEval-2010 shared
task on terms extraction[14], is to first create a
mapping between the extracted documents in the
gold standard and those relevant in the system
output map, and then score the output using
evaluation metrics the commonly used by
researchers. That is precision/recall/F-measure.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
ேೃಶ

ேಶ
 (4)

 𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
ேೃಶ

ேೃ
 (5)

 𝐹 െ 𝑀𝑒𝑠𝑢𝑟𝑒 ൌ
ଶൈ௦ൈோ

௦ାோ
 (6)

 Where NRE is the number of relevant extracted
document , NE is the number of extracted documents
and NR number of relevant documents.

 We calculated the Mean average precision

(MAP) and the precision with 5 documents (P @ 5)
with of different requests applied on the same
Dataset.

The choice of these two measures is justified by
the fact that the Mean Average precision gives a
general overview of the effectiveness of our
approach.

 The 5-document precision gives a judgment
of the performance of this approach on the
documents most consulted by a user of an IRS (the
first 5 documents in the list returned by the IRS).

 Figure 8 shows the 10-point Mean average
precision curves with our proposed approach
method.

Journal of Theoretical and Applied Information Technology
30th April 2020. Vol.98. No 08

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1276

We provide the experiment results of the two
metrics mentioned above in Figure 8 and Table 1.
The numbers are the mean value computed based
on the outputs of the queries using the
corresponding experiment setup.

The approach MAP P@5

Our approach 0.798 0.83

TF-IDF 0.612 0.66

 Table 1: Results for the new approach to the Dataset
of evaluation

4.3 Evaluation

 As reflected in the Figure 7 and Table 1, our
proposed method outperforms the traditional TF–
IDF method in the two metrics.

 Figure 8 is an example of the outputs
given with the same input query. The first 4
documents are generated by our approach.

Figure 7 presents the curves of Mean average
precision at 10 points of recall with our proposed
method.

 This shows that by using the TF–IDF score,
we are more capable of finding the most relevant
documents to user queries.

 Moreover, the BERT natural language
model aids the TF–IDF method in terms of
providing semantic relevance measures so as to
better compare the true semantics between the user
query and potential answers.

 As we can see in Table 1, the model of the
TF–IDF method together with the BERT model
outperforms the traditional TF–IDF method by a
significant margin in the two metrics.

 This well illustrates that our proposed model
indeed improves the semantic search precision as
compared to the traditional TF–IDF method.

 However, the precision from both our
proposed approach and the traditional TF–IDF
method is still quite low. We believe that it is
caused by the diverse nature and relatively small
size of the experiment dataset. There may not be
enough semantically similar documents in the
dataset.

Figure 7. Results of the proposed method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

Recall

Our method

TF‐IDF

Journal of Theoretical and Applied Information Technology
30th April 2020. Vol.98. No 08

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1277

5. CONCLUSION

At present, BERT has achieved the most advanced
performance in many NLP tasks, but few works
combine it with TF-IDF method for semantic
indexation.
We proposed a novel approach to combine these two
methods into a unified model that has been tested in
relevant documents extraction tasks.
It calculates the TF–IDF score and then incorporate
the BERT natural language model to complement
the TF–IDF framework by providing true semantic
relevance measures of potential indexing terms.
Experiments show that the model proposed in this
paper achieves good results in the used dataset

during a semantic search. Based on our experiment
results, our proposed approach outperforms the
traditional TF–IDF method by a significant margin
in the metrics used for evaluation.

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.

Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278-2324, November.

[2] W. Yih, X. He, C. Meek. 2014. Semantic Parsing
for Single-Relation Question Answering. In
Proceedings of ACL 2014.

Figure 8: An example of outputs

Journal of Theoretical and Applied Information Technology
30th April 2020. Vol.98. No 08

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1278

[3] N. Kalchbrenner, E. Grefenstette, P. Blunsom.
2014. A Convolutional Neural Network for
Modelling Sentences. In Proceedings of ACL
2014.

[4] Y. Shen, X. He, J. Gao, L. Deng, G. Mesnil.
2014. Learning Semantic Representations Using
Convolutional Neural Networks for Web
Search. In Proceedings of WWW 2014.

[5] Collobert, J. Weston, L. Bottou, M. Karlen, K.
Kavukcuglu, P. Kuksa. 2011. Natural Language

 Processing (Almost) from Scratch. Journal of
Machine Learning Research 12:2493–2537.

[6] Hochreiter, S. and Schmidhuber, J., 1997. Long
short-term memory. Neural computation, 9(8),
pp.1735-1780.

[7] Cho, K., Van Merriënboer, B., Gulcehre, C.,
Bahdanau, D., Bougares, F., Schwenk, H. and
Bengio, Y., 2014. Learning phrase
representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint
arXiv:1406.1078.

[8] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.
Sequence to sequence learning with neural
networks. CoRR, abs/1409.3215, 2014. URL
http://arxiv.org/abs/1409.3215.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2018. Bert:

 Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805 (2018).

[10] Peter Turney. 1999. Learning to extract
keyphrases from text. National Research
Council Canada, Institute for Information
Technology, Technical Report ERB-1057.

[11] Gerard Salton and Christopher Buckley.
Termweighting approaches in automatic text
retrieval. Information Processing and
Management, 24(5):513–523)(1988).

[12] Tom Young, Devamanyu Hazarika, Soujanya
Poria, and Erik Cambria. Recent trends in deep
learning based natural language processing.
CoRR, abs/1708.02709, 2017.

[13] M. D. Zeiler and R. Fergus. Visualizing and
understanding convolutional neural networks. In
ECCV, 2014.

[14] Hasan Kazi Saidul, Ng,Vincent. Automatic
keyphrase extraction. 2014. A survey of the
state of the art. 52nd Annual Meeting of the
Association for Computational Linguistics,
ACL 2014 - Proceedings of the Conference.
Vol. 1 Association for Computational
Linguistics (ACL), 2014. p. 1262-1273.

.

