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ABSTRACT 

The ultra-spectral image set aims to extract the spectra of pure materials from the same scene (the final 
member bars or orange color), as well as the average amount per pixel of the image. Most algorithms rely on 
traditional end-organ exploration techniques that often did not work in difficult scenarios. In this work, this 
problem will be addressed along with the variation of the material by considering that the final member is a 
direction in the surrounding space which in this case is a one-point substitute. Under this work, we will 
propose a new algorithm through which we generate a strong reference spectrum. We see the potential of this 
proposed algorithm which we will apply using real spectra to a set of synthetic data with variability within 
the class, and the landscape will be the image used. 

Keywords: Hyperspectral mixing, variability of end members, Extended Linear Blend Model, Oblique 
Variety. 

1. INTRODUCTION 
       
The hyper spectral detection allows an automatic 
and precise identifications of a material present in 
a observe scene, fine spectral resolutions of a 
hyper spectral image [1]. spatial resolutions are 
however limiting & a field of sea of the singles 
pixels often including several material of interest. 
A spectrum observes are then the mixture of a 
contribution of a different material present at a 
location. The Spectral mix is the matter of blinds 
sources separations whose purposes are to recover 
a spectra of clear material (it is call end member), 
& to estimate their relative proportion. (it is call 
abundance) in each pixels [2]. The Line Alange 
(MML) samples [3] are general adopted for these 
matters. It assume that the pixels of indexed n 
through N pixel of a image xn ∈ RL, let L is the no. 
of spectral band used, are decompose to: 

 
𝑋௡=∑ 𝑎௣௡𝑠௣

௉
௣ୀଵ ൅ 𝑒௡                      (1) 

Let P is the no. of material considered, sp 
∈ RL is the signature of the end member p, which 
is supposed to represent perfectly the 
corresponding material, and apn is a coefficienting 
of abundance of the materials among the pixels n, 
& en are the additive noises., being of proportion, 
is subject to a non-negativity of abundances 
(CNA) constraints and the one-abundance (CSA) 

constraint, i.e. to say that all pixels should be fully 
explain by positive contributions from a different 
material. Geographically, the info are in the 
simple whose vertices are end members. 

MML have been widely use in a last 2 decade, but 
over a year, some of it is limitation have been 
identified, name non-flax in a processed of mixing 
and a variability of material. A first limitation is 
sensitive in complexity scenarios like the tree 
canopies plus  particulate material (e.g. sand) 
&  require very complexity models of mixing like 
that bilinear model [4, 5]. A other side, variability 
End members are simply a quick that all materials 
can not be fully representing by the singles 
spectrum and are always subject to infraclass 
variation [6]. These perhaps due to multiple 
factors, the general one being locally exchanges 
in illuminations condition (due to shadow and 
tope graph), and a intrinsic variability of material, 
correspond to local physicochemical exchanges in 
their compositions. These variabilities can 
considerer to a spatial [7] and temporal [8] 
domain when it comes to image sequences. Here 
we focus on variability with the single images. 2 
classes of method for remedying them has been 
identify in [9]: "bundle" -depend method, where 
end members is represents by the collections of 
signature, possible extract from a info [10], with 
statistical method, where statistic distribution 
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assign in end member in allows estimations in all 
pixels [11]. Recently, explicit models of 
variability have been proposed to direct explain a 
possible variation of end members. [12, 13]. They 
share a formulation to the equation (1), except that 
end member is now index by pixel. 1 like model 
is a Extend Line Bangle (MMLE) sample, 
propose in [14]. It approximate Hapke's physical 
radioactive transfer model [15] into a version 
exploitable in blind mixing. In [16], a variability 
of a material due to a illuminations are in fact 
reasonably explained by positive scale factors 
depending on the pixel. In its simplest version, the 
model is written: 

𝑋௡ ൌ  𝜓௡ ∑ 𝑎௣௡ 𝑠௣
௉
௣ୀଵ ൅ 𝑒௡           (2) 

Where   𝜓n is the scaling factor that accounts for 
exchanges in luminosity in pixel spectral 
signature. In this sample, sp is no long from the 
unique signatures associated with materials p, but 
rather the references providing directions of the 
straight lines join a origin and this point, on which 
find all end members. This formulation led to a 
fast algorithm for estimating the parameters of 
this least-squares non-negative model, called 
Scaled Constrained Least Squares Immixing 
(SCLSU), view [13] for more detail. 'Entails. On 
the other hand, this algorithm cannot solve other 
types of variance of the measuring factor. Not all 
phenomenal changes are taken into account, 
which are difficult to determine because of the 
diversity of their causes. 

The more complexes versions of MMLE 
algorithms were discovered [17, 14]. This 
conclusion takes into account the different scale 
factor for all materials, but it also allow final 
members to move the bath from a small copy of 
the references. , In term of distance Euclidean. For 
Bayes, this means putting a gaussian a priori on 
all the local members, centered around copying 
the reference scale. In this case, the recovered 
variance is more difficult than just an easy 
variance of the scale factor and may to some 
extent explain the effects of fundamental changes. 
These are done by solve the following 
optimizations matter: 

 Let S = {Sn}, n = 1... N with A ∆P that all vectors 
of abundance ∈ RP in all pixel belong to a simplex 
part in P vertex, that is, satisfies the CNAs and 
CSA. pn ∈ Rp × p are diagonal matrices that have 

a scaling factor based on the material on their 
diagonal. S0 is the matrices of the reference end 
members. ||. || F is the Fresenius standard. 

The geometric explanation of MMLE in Figure. 
1. A information in the convex cone, its edge is 
terminal ends; with local instance of these (not 
shown here) is point close to specific location on 
this line. (References members on a scale). All 
pixels always belong to simplex. 

This structure is useful, but it is directly based on 
the S0 end members. They must be carefully 
acquired because they provide convex cone 
edges, which require the entire mixing process 
that the Vertex Component Analysis Algorithm 
(VCA) [18] is best of a most widespread 
extractions algorithm, based on geometry of a 
convex matter. 

Of pure linear decoration. On the other hand, in 
cases where shadow or other strong contrast effect 
is present, this algorithm, which look for extreme 
point of information, are often retrieved from 
them. Signature with low capacity (and small 
signal). 

 

This can explain in a context of a MMLE conical 
sample. A low-capacity spectrum is close to a 
origin with return to the shadow; if the sample 
based on simple geometry is adopted, these points 
are already extreme in information. These are 
pieces that represent the spectrum of pure material 
with cause error in estimating parameters of a 
mixture. 

, we proposed the new formulations of MMLE 
with the new algorithms to address these 
problems. We see that uses the model method k 
and a measure of cosine similarity is 
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FIGURE 1 - Geometric Interpretations Of A MMLE, 
As Presenter In [14]. End Member Is Additionally 

Allowed To Deviate To Benchmark Version Via 
Gaussian Priors. 

Capable of providing relatively reliable initial 
references signature, which we can refine in a 
algebra algorithms, by sampling the references 
end member as directional info, c. 'is to say data 
that are on the hypersphère unit [19]. The point on 
a sphere define in a unique way a directions in a 
space of the characteristics. 

2. PROPOSED SAMPLE AND 

ALGORITHMS 

2.1 Presentation Of A Method 

The materials must no longer be 
summarize by the singles point, but each a points 
of the line joining a origin and the references 
represent a same materials, and different 
luminosity variation. Ideally, the end member 
must then be view as the directions (or the line 
among a origin) in s feature space and this in 
mind, it made more sense for the end member 
extraction algorithms to look for direction more 
than extreme point in the info. Finding references 
direction can be simplied be done use the k-mean 
algorithm as the preprocess step, with a cosine 
similarity cos d (xi, xj)  

This measurement is actually insensitive to 
variables in the size of the spectra. 
Controversially, we can show that the k method 
with cosine similarity may be associated with a 
combination of Von Mises-Fisher distributions 
(analogical Gaussian distribution of vector 
information), similar to the fact that the classical 
k method using the Euclidean distance is 
associated with a combination of Gaussian 
distributions [20] which indicate and conclude 
from this the interest in using the algorithm of 
means k and cosine similarity in the case of 
conical models. 

Cluster midmost can easily be used as a reference 

member. However, these may not be excellent 
with very close to a center of a real convex cone, 
because a assembly made unique mappings per 
pixel. This means that the average pixels 
belonging to the mass tend to be close to the 
center of the cone due to the effect of similar 
pixels. 

Then it is must to be able to correct this erroneous 
situation in a interference algorithms. One way to 
do this in MML is to uses a simplex vole to 
organize an end organ [21]. However, this 
regulation is not convex and difficult to treat, and 
convex relaxations is simple in [22] using the sum 
of Euclidean spacing between possible pairs of 
organs, the process of adapting the latter to the 
conical model of MMLE. It is not easy, since each 
member can represent at all points on a 
corresponding lines. The Euclidean distance 
between any two points on two lines is not 
suitable to determine the distance between these 
two lines if we have them with different capacities 
(as confirmed in a experiment). Spectral angles 
may be possible, but this amount is difficult to 
manage in development problem. 

To resolve these problems, we suggest modeling 
reference members as directional's info, that is, as 
directives in a character space. Eristic. There are 
many way to do these [23], and the easiest way to 
restrict a endpoint members to be normal is: || Sp 
|| 2 = 1 ⍱P. In fact, all lines that pass during a 
original is uniquely positioned with the points on 
a hypersphère part. Equally, a references 
referenced matrix must contain columns from 
Rule 1, ie S0∈ OB (L, P), the so called italic type. 
[23]. In this case, the distances between a 
reference on a sphere has a direct effect on the 
position of the lines: the larger the parameter of 
the linked organization is (or is small), the closer 
the straight line is to the line that connects the 
origin. The average information, with less (or 
better) accuracy of data. We will see that the 
position of reference rights (as well as the 
importance of Gaussian prei on the local member) 
will also have an impact on the analysis of 
abundance. 

Thus, we are developing MMLE so that we can 
adjust the reference line positions in the properties 
area repeatedly. To do this, we suggest reducing 
the following cost functionality: 
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argmin
஺,ௌ,ஏ,ௌబ

1
2

෍ሺ‖𝑋௡ െ 𝑆௡𝑎௡‖2ଶ ൅⋋௦‖𝑆௡

ே

௡ୀଵ
െ 𝑆଴𝜓௡ሻ‖𝐹ଶሻ

൅
⋋ௌ௢

2
𝑡𝑟ሺ𝑆଴𝑉𝑆଴ሻ 

 

        s.t                   𝑎௡  ∈  ∆𝑝∀𝑛b 

                                𝑆଴ ∈ 𝜕𝐵ሺ𝐿, 𝑃ሻ                (3) 

 

Where we note tr the trace of a matrix, and V = 
PIP - 1P 1TP (1P, denotes a column vector 
composed of P 1), so that tr (S0VS0

T) = 
∑ ∑ ║ ሺS0i –  S0 jሻ║௣

௝ୀ௜ାଵ
௣ିଵ
௜ୀଵ  22  , that is, the sum 

of the Euclidean distances between the possible 
pairs of end members of reference [22]. ⋋S and 
⋋S0 are regularization parameters. The term ⋋S║ 
(Sn – S0 𝜓n)║2

F force all local end member to be 
closed to (but not = to) scale version of standard 
(unit) reference directions. Scale factors capture 
the variability induced by illumination conditions, 
whereas Sn can also take into account the effects 
of intrinsic variability. ⋋S is direct relating to the 
variance of a Gaussian a priori (taken here equally 
for all end members by simply). A fact that 
references end members are normalize also have 
a advantage of making it possible to easily kinds 
the amplitude of the scale factor (with therefore a 
impact of the variability induce by illumination) 
for different material with image. Spatial 
adjustments can also add if necessary, as are done 
in [14]. 

2.2 Optimization However 

          We developed the algorithms in order to 
obtain the fixed point from cost functions (4). It is 
difficult to reduce this objective function because 
there are many reasons: it is not convex to all 
variables, which usually require coordinated 
proportional methods in blocks in order to obtain 
the locally mini. In these aspects, these 
approaches are making more difficult cause a 
matter isn't convex with respect to S0 as well, 
because of the standard constraints of the unit, 
which are not convex. On the other hand, we'll 
saw that can away get the local mini for these 
variables by take advantages of the Riemannian 
varietal structures of the constraint sets. Before 
details a various development step, briefly 
describe how to configure the algorithms. The k-

mean algorithms (with cosine similarity) are first 
used in order for us to get the cancroids, which we 
normalize to initialize S0. We configure Sn by 
setting the appropriate columns from this matrix 
to the current pixel xn, according to the aggregate 
label. Other column is initialize use a remaining 
cancroids. A matrix of abundances with size 
factors is initialized by using SCLSU algorithms 
with cancroids as reference, it is best faster. In 
these ways, it is possible to have the best local 
mini despite the complexity of amatter. 

Development for A is simple. The objective 
function is discernible, convex, and it is easy to 
project a set of constraints (simple unity) [24]. We 
can then get the overall minimum problem for this 
sub-pixel problem using pixels (for example) 
descent drop hometown. Developments related to 
Sn and problemn pose no problem and have 
analytical solutions (see [17] for details). 
Developing the S0 level is more difficult due to 
the constraints of belonging to the unit areas, 
although the type of objectives is different. Using 
the fact that the Cod group has a diverse structure 
of Riemann that enables us to find undoing 
easilyInitially, we begin to reduce the graduation 
of communities to diagonal groups. [23] We use 
the MATLAB Manopt toolbox [25]. The 
convergence of all sub-problems is guaranteed. 
We cannot prove the convergence of global 
algorithms to a specific target point in this case. 
Moreover, practical convergence is always 
practical. 

The algorithms are discontinued because the 
relative differences between successive iterations 
of all variable masses are less than 𝜖 = 10-3 (in the 
standard). Note that the convergences will be slow 
from the original MMLE with the standard fixed-
end member, as it is now improved by iteration 
and will have an impact on the underlying. 

3. EXPERIMENTAL RESULTS 

            In this section, we present the results 
obtained on a set of synthetic data whose 
materials comprise and contain realistic spectral 
variability, as well as parts of the data, with a very 
correlated final member and large proportions of 
shaded areas. 

3.1 Synthetic Data 

DATA GENERATION: 

We will first create artificial data sets in the 
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following way. First, we use the basic facts of the 
data parts known as the University of Pavia 1 to 
provide us with so-called spectrum (203 bands in 
infrared and visible fields). They belong to several 
parts of the concerns, integrating their spectral 
fluctuations. We consider 3 parts found in these 
forms: vegetation, concrete and aluminum roofs. 
All these parts include both the variability caused 
by light changes (surfaces and trees with multiple 
paths relative to the sun) and the sources of 
fundamental change (especially in concrete and 
plants). In each pixel, we select the local members 
as a random pattern in each of these parts (after 
normalization so that each representative is in the 
unit field). 

The measurement factor was shared using a 
combination of 4 Gaussian distributions 
(modified from SCLSU result on sub-images of 
Pavia information). This reflects the fact that the 
scale factor often comes from multimedia 
distribution (such as surfaces with different 
directions, or shaded areas). 

Abundance was shared to be similar, using 
Dirichlet distributions so that the probability 
density is centered around the edges and heads of 
single simplicity (which contain a certain 
percentage of heavily mixed pixels and all of 
which are continuous). 

The data were also created using equation (2), 
adding Gaussian noise to make the signal-to-noise 
ratio 30 dB. The latter picture is then leveraging 
the reality of these characteristics. 

RESULTS: 

             First, we perform a VCA + SCLSU 
algorithms to quick obtain spectral variability-
based mixing results using end members obtained 
via VCA. We show below that this approach gives 
very bad results. Then we focus on the test of 2 
algorithm and references obtained via k mean: 
SCLSU with a MMLE of [17]. Moreover, we 
define by MMLE-SDC (Sum of Distance in 
Square) a increased MMLE of convex 
regularization on volume, but without the 
constraint of oblique variability. Finally, we 
compare each this method to the developed 
method, called RMMLE (for a robust version of 
Model of Extended Linear Meelange). Note that 
don't compare a result with a mixture using the 
standard Fully Constrained Least Squares 
Immixing (FCLSU) algorithm [26], because this 
algorithms are depend on a info geometry 

according to a simple, and has been defeated in 
multiple scenarios where variability is significant. 
For all algorithms, we adjust the regularizations 
parameter empirically to obtain the good 
possibility performance (the select value is 
reporter in Table 1). Quantitative result is 
presented uses 2 measures: the mean square 
wrong between actual abundance (a EQM) with 

those estimated: 
ଵ

௡√௣
∑ .ே

௡ୀଵ ║â𝑛 െ 𝑎𝑛║ 2, and the 

average spectral angle (on each pixel with 
material) (SAM for Spectral Angles Mapped) 

SAT= 
ଵ

ே௉
 ∑ .ே

௡ୀଵ ∑ 𝑎𝑐𝑜௣
௣ୀଵ       ൬

ௌመ೛೙
೅ ௌ೛೙

ฮௌመ೛೙ฮଶฮ௦೛೙ฮଶ
൰   

between the real members of each pixel and those 
that are retrieved. This quantity' collated in Table 
1. 

VCA and SCLSU approach achieve very poor 
result together in abundances estimations within 
variability estimations, the rezones indeed 2 of a 
extracted signature is associate and pixel and 
small scales factors. Scales, and have the very low 
amplitude. Uses k means instead, and SCLSU, 
lead to better result. 

Table 1 - Quantitative results on synthetic 
information. With the exception of VCA + 
SLCSU, each algorithm use the k mean to obtain 
the initial reference matrices. The values of the 
organization parameters are indicated as needed 
for these parameters. 

 ⋋ௌ ⋋ௌ଴ AE
QM 

SAM(de
grees) 

Ti
me 
(s) 

VCA+S
CLSU 

× × 0.20
56 

542 2 

SCLSU × × 0.06
50 

6.30 2 

MMLE 0.
01 

× 0.05
00 

5.58 57 

MMLE+
SDC 

0.
1 

0.
25 

0.17
10 

10.38 14
00 

RMMLE 0.
1 

0.
5 

0.04
50 

3.46 22
40 

Away from the best level because the variance is 
explained only by the measurement factor. The 
MMLE is good cause of a add Gaussian bias. see 
a importance of variable oblique constraints on a 
last 2 rows of the table: MMLE + SDC has failed 
because the regularity requirements depend on 
comparing references with potentially different 
capacities, while introducing constraints leads to 
good results. . Figure 2 illustrates successful 
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results using a scattering scheme (by using the 
first three main components) plus obtaining the 
final members of the top three algorithms (other 
schemes show that a line is too far from a real 
cone not belonging for them). Similar conclusions 
can draw from this fig, which illustrate that the 
RMMLE method is able to find a good end organs 
in each pixel. 

3.2 Real Data 

         By using the CASI-3 sensor (72 spectral 
bands in the visible field and near infrared [27]. 
The spatial resolution is 1m. The image we use is 
a 207 x 268 x 72 group size for the entire scene. 
RGB representations are see in Fig 3 (a). These 
inputs set was used for the supervise 
classifications of tree species, uses fact field 
information with LiDAR information as the add 
classifications property, since the different tree 
type is in this case converging. The image also 
includes many gray areas due to tree crowns, 
which were a major problem in previous studies 
[27]. However, there are other non-plant 
materials, such as surfaces, roads and ground. 

 

Figure 2 - Dispersion Of Data (Blue), True End 
Members (Black) And Those Extracted (Red) For (A) 

Sclsu (B) Mmle (C) Rmmle. 

Persian of info with clear pixels' shown in the 
figure 3 (c). We combine info by using P = 4 
material with the algorithms mentioned above. 
Figure 4 shows the scatter plots of data and end 
members retrieved for VCA + SCLSU, SCLSU, 
MMLE and RMMLE. Abundance map I s shown 
in Figure 5. For the MMLE, we use ⋋S = 0.02, and 
for the RMMLE, we use ⋋S = 0. 6 and ⋋S0 = 100. 
As in cases of synthetic info, end members 
recovered by VCA are bad because of the 
shadows area of images; with a corresponded 
abundance do not make sense. Same of the info is 
projecting on the lines closest to the cone mater, 
which represents vegetations. On the other hand, 

the use of k-means makes it possible to 
distinguish conifers from hardwoods. Turf and 
shadows are also characterized by small and large 
scale factor values, respectively (scale factors are 
not see here due to space constraint). An 
abundances of SCLSU with MMLE is rather like 
that, slight more parsimonious for the MMLE, 
because it's able to best capture the effect of 
variability than SCSLU (as shown in Figure 4 (c). 
Since RMMLE is able to adjust reference, it is 
possible to obtain more parsimonious abundance 
map that correspond closely to a ground truths of 
Figure 3 (B). We See That The Identify Lines Embrace 
An Info Set Good Well And Is A Closest To A Field 
Truth Pixel Of Fig. 3 (C). Fig. 4. 

 

(Green). (C) Dispersion Of Info, And Pixels Of Field 
Truth (Same Color Code). 

 

Figure 4 - Dispersion Of Data (Red) And Extracted 
End Members (Blue) For (A) Vca + Sclsu (B) Sclsu 

(C) Mmle (D) Rmmle. 
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FIGURE 5 - Abundance Maps Obtained By The 
Tested Algorithms. 

4.  CONCLUSIONS 

         We proposed the modren algorithm in this 
paper for interchanging hyperspectral data, takes 
into accounts both a variability induced by 
illumination with a intrinsic variability of end 
members. the proposed algorithm is able to obtain 
best reference end members' estimate than VCA 
take advantage of a factor that end member is well 
modeled by direct info. The references signature 
is constrain to be on a level sphere since all points 
on the latter corresponds complete to the straight 
lines in the spaces of characteristics. Robust 
estimate of convex cone edge are obtained as part 
of the Extended Linear Blend model. The result 
on the synthetic info sees the relevance of the 
approaches and the best performances are also 
proved on a complex truth data set. Related works 
will include the bath to automatically estimate 
hardware-dependent parameter (like that 
Gaussian a priori variance), and tests on a 
different ways of representing end members in 
using directional data. 
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