
Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1019

SOFTWARE ARCHITECTURE USING A DECOUPLING,
LAYERED AND WEB RESTFUL SERVICES APPROACH

1SALAS-PARTIDA RUBEN, 2RODRIGUEZ-AVILA EDUARDO, 3RAMIREZ-ARELLANO ALDO,
4ACOSTA-GONZAGA ELIZABETH

Instituto Politécnico Nacional

Av. Té 950, Granjas México, 08500, Ciudad de México, México

E-mail: 1partida0001@gmail.com, 2errodriguez@ipn.mx, 3aramirezar@ipn.mx, 4eacostag@ipn.mx	

ABSTRACT

The development of information systems has forced the software industry to create architectures, techniques,
and tools for building applications more efficiently. This work shows the design of information systems using
code decoupling, layered development, and RESTful services. Two information systems were developed,
one using coupled methods and the other using decoupled methods. To test both methods, two experiments
were performed for each system, one using a reduced data model for accessing four database tables, and the
other experiment allowing only the execution of basic mathematical operations. The results show that a
decoupled architecture offers advantages in response time, network traffic, and user concurrency, compared
to those built without these techniques. This work is limited to the Java programming language and the
specification Java Enterprise Edition.

Keywords: Software Architecture, Coupling Software, Decoupling Software, Web Restful Services,

Software Metrics.

1. INTRODUCTION

Designing a software architecture for
information systems is complex work. A system can
be built on a single layer (standalone), two layers
(on-line, client-database) or three layers (web model,
client-server-database), still its design and
development will require an analysis of the
functional context and the requirements to be
satisfied [1].

The design starts from defining the layers that the

information system will use, including the degree of
software coupling with purpose of reuse and
maintenance. Programming the system once and
using it many times is the goal of modern software
engineering practices, which also will reduce the
cost of developing complex information systems and
other future developments from these [2].

The objective of this work is to show that

information systems development using a
decoupling code, layered architecture, and RESTful
services approach offers greater benefits compared
to software development approaches without these.

To verify the objective, two experiments were
designed to compare two software systems
developed in Java; both had the same data source and
were developed with the same hardware and
software platform. One application was developed
using a coupling code approach, and the other using
a decoupling code approach.

The results show that the development of

software applications using decoupling software
design offers more benefits in performance and
maintainability, compare to software development
that does not use these approaches.

The article has been organized as follows.

Firstly, the related work is presented. Next, the
theoretical framework defines key concepts on
which the work is based. Finally, the experimental
design, results, and conclusions are presented.

2. RELATED WORK

In the earliest days of computing, when
programmers directly loaded instructions on the
computer memory, the appearance of certain
patterns and structures was noticed. The presence of
these patterns and structures promoted the usage of

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1020

high-level assemblers and languages. Since then, the
idea of developing an efficient structure or structures
that would facilitate the development, maintenance
or extension of the programs was already shared
between analysts and programmers. The idea was
transformed into theories and so the research on
software architecture, which concept was developed
in the late 1960s, with Edsger Dijkstra’s research [3]
and the early 1970s, with David Parnas’s works [4].
Since then, the need to adopt design principles or
formal methods for software development has grown
and these activities have increased their complexity.
In fact, in every information system there is an
intentional design of software architecture, or not
[5].

The literature review of previous contributions

suggests three areas of work related to software
architecture and information systems. The first is
related to applications [6–12]. The second area refers
to the state of art and discussions [13–15]. The third
area deals with proposals for model development
[16–21].

The design of modern software architecture does

not only include aspects of software costs,
maintenance, and reuse, it must be technologically
independent [22]. Recent works have put
architectural considerations on coupling as an
important metric of the software architecture quality
[23, 24] and modularization [25]. Other researchers
have focused on studies about coupling metrics [26,
27]. In particular, Gui and Scott [26, 27] proposed a
set of coupling and cohesion metrics to assess the
reusability of Java components. Bidve and Sarasu
[28] investigated a correlation between the values of
coupling metrics and the number of classes in the
multimedia Java code.

Researchers such as Zhe and Kerong [29]

proposed a software partition decoupling method
based on an interactive genetic algorithm. Bidve and
Sarasu [28] presented a tool that analyses the Java
source code to measure coupling among various Java
software modules.

Recent research has been focused on decoupling

code approaches [30], the use of RESTful services
[31], the decoupling degree as a measure of
architecture [23], and the emphasis on decoupled
architectures [32].

3. THEORETICAL FRAMEWORK

The following subsections define some concepts
related to information systems software

development. A common issue in software
development is the adoption of technological trends
or fashionable designs [33]. However, an efficient
approach allows not only to understand why certain
decisions are made but also guarantees that these
decisions will offer greater stability to the system
when changes occur.

3.1. Software architecture

Fielding [33] proposes a software architecture
considering three key elements to define a set of
architectural properties. The first key element is the
software component, which is seen as instruction
units and states that work can be isolated without
depending on the data from other components, but
also providing data transference. The second
element is the connector, which is an abstract
mechanism that coordinate communication between
components. Finally, the third element is the data
flowing between components via the connectors.

Thus, from this perspective, the software

architecture for information systems is the result of
the abstraction at runtime of its elements at some
point in its operation [33]. The purpose for
implementing an architectural design is not only that
information systems operate with the best
performance and distribute the processes
appropriately in the layers, but also that it facilitates
its development, integration, and maintenance.

3.2. Abstraction at Runtime

The basis of the abstraction at runtime is to hide
details of the operation of several software
components, understanding that each component
performs a specific function and exposes its interface
with other components [33, 34].

3.3. Software Architectural Patterns

A software architecture pattern is an already
proven solution that works to solve a given problem
[35]. Architectural patterns and frameworks are
proven techniques and tools that allow the agile
development of an application [1].

3.4. Layered Or Multilayered Development

The information systems development is divided
into three main layers: the data access layer, the
business layer, and the presentation layer [36]. Each
of these layers currently uses different frameworks,
depending on the platform used to execute the
application [1].

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1021

3.5. Systems Integration

Systems integration refers to interconnecting two
or more information systems, that, while they are
independent, still require access to data or processes
from one system by another. These systems may be
running within the Intranet, or they may be running
external to it. The communication between two
systems can be synchronous or asynchronous. In the
following, some systems integration technologies
are described.

The Java Message Service (JMS) serves to

communicate two or more systems asynchronously.
Among the systems, two types of destination occur:
(1) queues that send messages from a producer to a
consumer, queuing them with a first in, first out
(FIFO) technique; (2) topic, which is the subscriber
producer pattern and in which the producer sends a
message to several subscribers.

A web service is a communication mechanism

between systems, processes or applications, that uses
the HTTP protocol to transfer information. This
mechanism uses a Simple Object Access Protocol
(SOAP), which defines how two objects belonging
to different processes can communicate with one
another by means of message exchange in Extensible
Markup Language (XML) format.

The REpresentational State Transfer (REST)

defines a software architecture design that relies on
the transfer of messages without saving any state or
information between the requests of messages.

The RESTful Web is based on the REST

architecture. It is a stateless model, in which the
client makes a request and obtains a response from
the server. It accesses to Uniform Resource Identifier
(URI), and uses the HTTP protocol and its
operations POST, PUT, DELETE, HEAD,
OPTIONS, TRACE, and CONNECT. Information
can be represented in multiple formats, such as
JavaScript Object Notation (JSON) and XML.

Figure 1 graphically depicts the general

functioning of a software architecture and the
interrelationship between its components.

4. COUPLING SOFTWARE METRICS

A coupling software design is defined as the level
of dependence between components; the more
dependence an architecture has, the worse the design
is.

An application that is built with strong coupling
components raises the complexity of maintenance
and does not allow scaling, thus its extension can be
very costly in time and money.

Software coupling metrics are divided into two
major groups: metrics for procedural programming
and metrics for object-oriented programming [37–
39]. Several metrics have been proposed by several
researchers, such as Stevens, Myers, and
Constantine [40] who introduce the concept of
coupling in procedural programming and Dhama
[42] proposes a metric that is focused on measuring
the coupling of components individually. Martin
Hitz and Behzad Montazeri [43] define coupling
levels for object-oriented programming.

4.1. Fenton and Melton Metrics

Baker, Fenton, Gustafson, Melton and Whitty
[41] propose to measure the degree of coupling
between two components of the system x and y, by
Eq. (1).

𝐶ሺ𝑥, 𝑦ሻ ൌ 𝑖 ൅
௡

ሺ௡ାଵሻ
 , (1)

where: n is the number of interconnections between
x and y, and i is the level of the highest (worst)
coupling type found between x and y.

Table 1. Coupling Types Defined By Baker, Fenton,
Gustafson, Melton And Whitty [41]

Coupling
Type

Coupling
level

Definition of coupling

Content 5 The x component refers to
internal data or modifies a
statement in the component y.

Common 4 The x and y components refer to
the same global data area.

Control 3 The x component passes a
control parameter to the
component y.

Stamp 2 The x component passes a record
type as variable to the
component y.

Data 1 The x component passes a
parameter with simple data or a
homogeneous data structure and
does not incorporate a control
element.

The level of coupling is based on Stevens, Myers,
and Constantine’s classification [40].

On the basis of the abovementioned metrics, the
following observations can be made:

i. Baker, Fenton, Gustafson, Melton and Whitty’s
metric [41] is a quantification of Stevens, Myers, and
Constantine’s coupling levels [40], whereas

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1022

Dhama’s metric [42] considers the number of
variables or parameters belonging to categories that
are less directly influenced by Stevens, Myers, and
Constantine’s classification [40].

ii. The highest coupling level between two
components is the principal determinant of the
coupling value in Baker, Fenton, Gustafson, Melton
and Whitty’s [41] metric. The coupling value
increases as the number of interconnections between
the two components increases.

iii. Baker, Fenton, Gustafson, Melton and Whitty’s
metric [41] considers all types of interconnections
between components. It considers the same
complexities and the same effects on the coupling.

iv. Dhama’s metric [42] considers the coupling
effect of a parameter that is the same as the effect of
a global variable, which is based on Stevens, Myers,
and Constantine’s classification scheme [40].

In this work, the Baker, Fenton, Gustafson, Melton,
and Whitty [41] coupling measure has been adopted.

5. SOFTWARE DEVELOPMENT USING A

DECOUPLING, LAYERED AND WEB
RESTFUL SERVICES APPROACH

An information system is a software system that
helps to perform a specific function. Its main
objective is to capture, process, and obtain
information from a business. Generally, it is tailored
to the needs of a company.

These systems are dynamic in time, that is why it

is suggested to develop them with software
decoupling techniques, in layers and using web
services; so that the maintenance cost is minimal,
and the system can be scalable and extensible.

Layered development can be physical or logical.
The physical layered development refers to the
server layer, while the logical layered development
refers to software. However, the physical layered
development depends on the logical layered
development, which is the fundamental part to be
able to decouple physical servers. Hereafter is the
logical layered development will be discussed. The
main idea of developing applications in layers is to
decouple the data access layer, the business layer,
and the presentation layer.

Layered development is a form of software

decoupling. However, another form of decoupling is
inherent in programming languages, such as C# y
JAVA.

Mainly, two major types of decoupling exist: (1)

decoupling the code through interfaces, specifying
only the signatures of the methods that are called
contracts, but not their implementation. This helps to
abstract how it is programmed internally, that is, it is
necessary to know only what data come in and what
result can be expected. (2) the inversion of control of
dependency injection, which consists in creating
objects of classes at runtime without being
instantiated inside the code. This mechanism
provides an application server instance with an
object and injects it in the code at runtime, without
needing to know which class is instantiated, but until
the moment it is required at runtime.

Finally, the Service Oriented Architecture (SOA)

is another form of software decoupling. It currently
uses several systems integration technologies, such
as the JMS, Web Services, and the Web RESTful.
The advantage of using the Web RESTful is that it is
a stateless technology and is lighter in the network
transport layer, which makes it a very efficient
technology for data access in information systems.

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1023

Figure 1: Software Architecture For Information Systems Using Software Decoupling, Layered, And Web Restful
Services. Horizontally, The Frameworks That Help To Develop A Software Application Are Represented. Vertically, An
Organization’s Areas, Which Consist In The Data Layer, The Business Layer, And The Presentation Layer, Are Listed.

5.1. Layered Approach In Software

Development

In the literature, it is common to find the
definition of layer as physical layer and the
definition of tier as logical layer. In a layered
approach in software development, the expression
‘logical layers’ is used. The first division of layers
that must be done in a web application includes data
access and business logic, also called the backend. In
addition, the user interface (visual part) is called the
frontend. As the first layer, the backend includes the
data layer that can come from several sources, such
as a database server, a file system, a web service, or
a combination of these data sources.

The second layer contains Data Transfer Objects

(DTOs) that are generally Plain Old Java Objects
(POJOs), which are logical representations in Java
objects of database tables. Data Access Objects
(DAOs) are methods that contain data and convert
them into more complex objects, such as beans or
lists of objects.

Finally, the third layer is the presentation layer,

is where the user utilises a system’s interface, as a
browser or a mobile application to display
information. In this layer, different technologies are
available, for example, JSF or Java Server Pages
(JSP) can be used.

5.2. Web Services

A web service is a software component that is
identified by a URI, its interface, parameters or
attributes, and can be described by the XML
standard format. Web services can be accessible
from the Internet or Intranet and may need or not a
browser. This means that a web service can be called
from an information system without human
intervention. Web Services are developed in a wide
variety of programming languages, such as C++,
Java, Visual Basic, and others. They are independent
of the platforms and the languages, and use protocols
like HTTP, FTP, SOAP, CORBA, COM, DCOM,
IIOP, SMTP, and RPC; they are oriented to the
services architecture [44].

5.3. RESTful Web Service

Roy Thomas Fielding et al. [45] created the
REST architecture in 1999, he later coined the term
in 2000 in his doctoral thesis on the web. The REST
uses the HTTP protocol to obtain data using a URI.
The REST contains the principles of software
architecture. The RESTful consists of web services
that follow the REST principles. The advantages of
the REST [45] are separation of resources,
representation, visibility, security, scalability, and
performance.

5.4. JavaScript Object Notation

JSON is a text-mode data exchange format
derived from the JavaScript language [46].
Depending on the data type to be transferred, it may

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1024

be more appropriate to use XML or JSON. Both
serve to the same purpose; the difference is that
JSON uses less metadata in the HTTP header than
XML, which is carried over SOAP and HTTP. JSON
supports only two types of data, objects, and arrays
[46].

6. METHOD AND MATERIALS

This section details the experimental design, the
methodology for evaluating information systems,
and the hardware and the software that were used.

6.1. Designing Two Information Systems Using
Coupling And Decoupling Techniques

The objective of this experiment was to
demonstrate that the use of decoupling techniques
and tools for the design of information systems helps
to optimise its functionality and maintenance,
compared to the development of information
systems that do not use these techniques. For the
development of these information systems, the same
hardware and software tools were used, so that both
systems had the same test conditions.

6.2. Experimental Design

Once all the software for the systems
development was installed (see annexe), a data
model was created for both systems. The data model
was executed in Oracle Database. The same data
model was also executed in PostgreSQL. For this
experiment, it was chosen to reduce the data model
in four tables: Employee, Salary, Department, and
Payroll. Subsequently, a coupling code was
developed including the reading of the Employee
table in a single class. Using a connection string to
the database statically, the native query is injected to
the database engine, which obtains the data as a
response and is displayed by out.println in HTML.

Then, the same reading of the Employee table for

the decoupled system was developed by using the
Java Persistence API (JPA) framework to data
access, the Enterprise JavaBeans (EJB) framework
to the business layer, and the Java Server Faces (JSF)
framework to visualize the data. All code was
written on Eclipse Neon IDE for Java; both systems
were deployed and executed on the application
server WildFly 10 which implements the JEE
specification.

For this experiment, quantitative tests were done

to collect measurements. The quantitative measures
for both systems included: (1) the time to execute a
single query; (2) the response time simulating user

load by making requests repeatedly to the system in
a synchronous way; (3) the size of the traffic
generated in the network. The validity of recorded
data is made for both applications with load and
without load.

Measurements of response time, concurrence

simulating load, and network traffic are directly
obtained from the systems execution. The weighting
for each of the characteristics to be measured is a
range of integer values from 0 to 2. 0 means that the
application does not have this characteristic or that is
deficient. 1 means that the characteristic is sufficient.
2 means the characteristic is excellent. In the end,
measures from both systems were added. The system
that obtains the highest score is the one that shows
the best characteristics and, therefore, the one that
will be recommended to design information systems
in this work.

6.3. Methodology

The methodology included the design of two
systems, one system was developed with coupling
techniques and the other with decoupling techniques.
Both systems accessed to the same data source. The
methodology included:

• Using Java programming language to build both
systems.

• Collecting measures of the behaviour of both
systems.

• Comparing and presenting the results of the two
systems.

• Plotting results.

Figure 2 shows the proposed server schema for
this research.

Figure 2: Server schema

7. TESTING AND RESULTS

Using a decoupling approach for information
systems, with techniques such as the creation of

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1025

software components in layers, their connection at
runtime, and the use of RESTful services on
networks, optimises the system’s functionality and
maintenance.

 To verify this, two systems were developed in

Java, with the same hardware and software platform,
and had the same data source. One application was
created without code decoupling techniques and the
other with code decoupling techniques. Eight tests
were designed to evaluate:

1. Coupling code vs. decoupling code using
frameworks.

2. Using a database connection with a static string
vs. a decoupled connection using a Java Naming
and Directory Interface (JNDI) component.

3. Calling a coupled method without using an
interface vs. calling decoupling code by creating
an interface.

4. Calling a method by coupled code vs. calling a
method using dependency injection.

5. Coupling code test vs. using a web RESTful
service.

6. Creating a coupled code vs. creating a native
query with Java Persistence Query Language
(JPQL) from JPA.

7. Test execution using threads, for both, the
coupled code, and the native query with JPA
JPQL, removing injection of EJB, in the
business layer.

8. Testing without decoupled physical servers.

The quantitative characteristics were the
response time to execute each application (taking the
response time from the request is made until the
result is returned to the user), concurrence simulating
load (users making reading requests to the database),
and network traffic.

To obtain the execution time measures for each

test, only one file was written to disk, recording the
start time and the end time, as presented in Table 2.

Table 2: Runtime Without Load

Time and
Start Date

Time and
End Date

Total time
in seconds,
millisecond

s
Coupling

application

First
register

13:37:28.48
5

08/01/2017

13:37:29.37
9

08/01/2017

0.894

Second
register

13:59:13.00
8

08/01/2017

13:59:13.73
7

08/01/2017

0.729

Third
register

14:06:39.47
1

08/01/2017

14:06:40.26
0

08/01/2017

0.789

Average
execution

time in
millisecond

s

 0.804

Decoupling
application

First
register

13:52:48.13
9

08/01/2017

13:52:49.00
2

08/01/2017

0.863

Second
register

14:11:08.52
3

08/01/2017

14:11:09.28
5

08/01/2017

0.762

Third
register

14:24:59.83
8

08/01/2017

14:25:00.52
8

08/01/2017

0.690

Average
execution

time in
millisecond

s

 0.771

7.1. Coupling Calculations Using Fenton And
Melton’s Metrics
Table 3 shows coupling calculations based on

Baker, Fenton, Gustafson, Melton and Whitty’s
work [41], as Eq. (1) indicates.

Table 3. Coupling Calculations Based On Baker,
Fenton, Gustafson, Melton And Whitty’s Work [41].

Coupling Type Value
Content 5
Common 4
Control 3
Stamp 2
Data 1
No coupling 0

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1026

For the coupled code, n = 1, because it is only
one module that does not make calls to other
modules in different layers. i = 5, since it is a
coupling code by content. The result of computing
Eq. (1) with the above values is 5.5

Coupling C (x, y) = 5 + 1/ (1+1) = 5.5

For the decoupled code, n = 3, because the data
call is made from the presentation layer, passes
through the business layer, and finally reaches the
data layer. The value of i = 1, because only the entity
name is passed, which is Employees table to bring
information from the method where it is called. This
results in Eq. (1) is

Decoupling C (x, y) = 1 + 3/ (3+1) = 1.75

Therefore, the coupling measurement between
the two codes is:

Coupling C (x, y) = 5 + 1/ (1+1) = 5.5 > Decoupling

C (x, y) = 1 + 3/ (3+1) = 1.75

7.2. Recording Runtime Test Simulating Load

Table 4 shows the descriptive statistics and t-test
results after reading 100 times the table Employee,
which represents load simulation.

Table 4. Descriptive Statistics And T-test Results

Application Media
(seconds)

SD T Sig.

Coupling 0.5246 0.238 -
45.90

4.21E-
68*

Decoupling 2.842 0.264

*p<0.001

 The measures were collected by registering the
HTTPRequest and HTTPResponse byte sizes; the
NetTraffic application (a free tool) was used. The
transfer rate of the coupled application has a
minimum average value of 70 Kb/s and a maximum
average value of 80 Kb/s as it is recorded by
NetTraffic, since the native query that is injected into
the database only extracts the data from the
Employee table of the database relational model. The
transfer rate in the decoupled system, there is a

minimum average value of 120 Kb/s and a maximum
average value of 200 Kb/s, that is, the object-
oriented model of Java entities is declared on
FetchType.EAGER persistence mode. This means
that, although the operator only asks to retrieve data
from the Employee table, it must also retrieve data
from the Salary table and the Department table to
meet its object-oriented model or mapping
referential integrity in the database tables. Figure 3
compares the network transfer rate for the two
systems.

Figure 3: Number Of Bytes Of Httprequest In Kb/S.

The following experiment was conducted

without accessing the database; only methods
containing mathematical operations of addition,
subtraction, multiplication and division were
allowed. Figure 4 presents the results of this
experiment; the horizontal axis shows the number of
executions of the methods.

When the application server was started

(executions 6, 11, 16, and 21), the coupled methods
that were contained in a single class run faster than
the decoupled methods that were declared in the
classes that are created after the main class, which
calls them (see Fig. 4). Once the objects have been
created, in the following trials the execution time of
the decoupled methods increases, and it even equals
the time of the coupled methods.

However, as soon as the memory is used by other

functions, the objects are lost, therefore the coupling
method again surpasses the execution time of the
decoupled method. This is related to memory usage.
In general, the decoupling methods exceeded the
execution time of the coupled methods.

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1027

Figure 4: Execution Time Of Both Systems

Figure 5: Comparing Characteristics Of Coupling Vs. Decoupling Software

 Summarizing and adding the results of the three
evaluated characteristics (i.e., execution time, load
simulation, and network traffic), except test number
6 (i.e., creation of coupling by code vs. a native
query with JPQL from JPA), the results are shown in
Table 5.

Table 5. Summary Of Quantitative Values Between
Systems E=Excellent, S=Sufficient, D=Deficient

Characteristic Coupling Software System Decoupling Software System

E
(2) S

(1) D
(0) Subtotal E

(2) S
(1) D

(0) Subtotal

Execution time
* 2 * 1

Network
traffic * 2 * 1

Concurrency
simulating * 2 * 1

Total points
6 3

 The final results show that the coupled application

gains in execution time and the network traffic is

lower than the decoupled software application.
Figure 5 shows the results of this research.

8. CONCLUSIONS

The results of the study suggest that a coupling
approach gives a higher speed of execution than a
decoupling approach, since the latter goes through a
large number of layers (frameworks), which use
intermediate languages, and it consumes time in
creating the necessary objects for its execution. The
first time they are instantiated (in some cases
injected) in the memory of the containers of objects
and they are created, the speed improves, but it does
not surpass the speed of the coupled approach. Only
when native queries of each database handler are
executed, the speed is exceeded, but the reuse of
software components is lost. The size in network
bytes is much greater, as a result of the number of
objects that are created in the frameworks, because
they generate the entire object model of tables in the
database, respecting its referential integrity of the

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1028

data model. In spite of this, it is worth sacrificing a
little speed and size in the network for the versatility
offered by the decoupled software components, their
collaboration of group development, and its
maintenance by the abstraction of the parts that
integrate a software application

The use of RESTful services produces the

maximum decoupling degree for a software
application. RESTful services allow to create access
to data in a distributed way, removing transaction
loads to the main application servers, offering high
scalability and extensibility, and complying with the
SOA architecture.

RESTful services, by their design, are services

based on stateless communications without any
persistence. Therefore, it is necessary to implement
methods of security and authentication of users in the
system; tokens are used on the server side of
applications. They travel over the HTTP protocol for
both, the HttpRequest and HttpResponse for each
user authenticated in the system.

In software systems, the JPA framework helps to

control user data transactions in a simpler way,
guaranteeing the integrity and security of the
information. The contrary occurs in the coupled
systems, where is responsibility of the programmer
ensures the integrity and security of the company’s
database.

Likewise, the EJB framework implements the

security of its own objects within the containers of
JEE application servers. At the presentation level,
the JSF framework implements the objects that can
be accessed by some users’ roles in the applications.
Therefore, in the applications that are developed
with frameworks, these provide the security, in a
simple way.

Software decoupling, layers development-based

frameworks and RESTful services proved to be very
useful and valuable for developing information
systems, specifically where the response time is not
critical. Whereas software coupling, is convenient
for applications where the response time is critical.

ACKNOWLEDGEMENTS

This work was supported by Instituto Politécnico
Nacional (Grant SIP20201101 and SIP2020169).

REFERENCES

[1] Acosta-Gonzaga, E., Alvarez-Cedillo, J., and
Gordillo-Mejía, A., Arquitecturas en n-Capas:
Un sistema adaptivo, Polibits, 2006, vol. 34,
pp.34–37. DOI: 10.17562/PB-34-7.

[2] Rojas-Rodríguez, M., Acosta-Gonzaga, E., and
Gordillo-Mejía, A., Propuesta de un patrón
arquitectónico para programación distribuida,
Revista Internacional de Sistemas
Computacionales y Electrónico, 2011, vol. 3,
no. 5, pp. 40–50 Escuela Superior de Cómputo.

[3] Dijkstra, E.W., The Structure of the ‘T.H.E.’
mulitprogramming system, Communications of
the ACM, 1968, vol. 18, no. 8, pp. 453–457.

[4] Parnas, D., On a ’Buzzword’: Hierarchical
structure, Proc. Information Processing 74,
IPIP Congress 74, 1974, pp. 336–339. North
Holland Publishing Company.

[5] Bass, L., Clements, P., and Kazman, R.,
Software Architecture in Practice, 3rd ed.,
Upper Saddle River, NJ, USA: Addison-
Wesley, 2013.

[6] Yang, QL., Li, JL., Xing, JC., Wang, P., and
Wang, RH., Design of Software Architecture of
Intelligent Information System of Protective
Engineering, Proc. 3rd International
Conference on Computational Intelligence and
Industrial Application (PACIIA2010), Wuhan,
Peoples R. China, 2010, vol. VIII, pp. 224-228.

[7] Ryoo, I., Na, W. and Kim, S, Information
exchange architecture based on software
defined networking for cooperative intelligent
transportation systems, Cluster computing-the
journal of networks software tools and
applications, 2015, vol. 18, no.2, pp. 771-782.

[8] Yang, QL., Li, JL., Xing, JC., Wang, P., and
Wang, RH., Design of Software Architecture of
Intelligent Information System of Protective
Engineering, Proc. International Conference on
Intelligent Computation and Industrial
Application (ICIA2011), Hong Kong, Peoples
R. China, Jun. 18-19, 2011, ICIA2011, vol. III,
pp. 224-228.

[9] Nikkila, R., Seilonen, I., and Koskinen, K.,
Software architecture for farm management
information systems in precision agriculture,
Computers and Electronics in Agriculture,2010,
vol. 70, no. 2, pp. 328-336.

[10] Dennis, E.H., and Mugisa, E.K., Reusable
software architecture for an accounting

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1029

information system, Proc. IASTED
International Conference on Software
Engineering, Innsbruck, Austria, Feb. 17-19,
2004, pp. 275–280.

[11] He, G., Feng, C., Yuxin, W., and Yuanyuan,
S. A reusable software architecture model for
manufactory management information system,
Proc. 26th Annual International Computer
Software and Applications Conference, Oxford,
England, August. 26-29, 2002, pp. 469–471.

[12] Singh, G. B. and Gobrogge, S., Information
system architecture for developing reusable
testplans for embedded software,
Microprocessors and Microsystems, 2001, vol.
24, no. 9 pp. 453-461.

[13] Vogel-Heuser, B., Feldmann, S., Folmer, J.,
Rösch, S., Heinrich, R., Rostami, K., and
Reussner, R., Architecture-based Assessment
and Planning of Software Changes in
Information and Automated Production
Systems State of the Art and Open Issues, IEEE
International Conference On Systems, Man,
And Cybernetics (SMC 2015): Big Data
Analytics For Human-Centric Systems, Book
Series: IEEE International Conference on
Systems Man and Cybernetics Conference
Proceedings, 2015, pp. 687-694.

[14] Brunie, L., Coquil, D., and Simon, S., Software
architectures for collaborative proxies in wide
area information systems, Proc. 12th
International Conference on Database and
Expert Systems Applications (DEXA), Tech.
Univ. Munich, Munich, Germany, September 3-
7, 2001, pp. 146–150.

[15] Tarver, B., Christensen, E. and Miller, A., The
Wireless Information Transfer System (WITS)
architecture for the Digital Modular Radio
(DMR) Software Defined Radio (SDR), Proc.
IEEE 21st Century Military Communications
Conference (MILCOM 2000), Los Angeles, CA,
Oct. 22-25, 2000, pp. 226-230.

[16] Dorn, C., and Taylor, R.N., Coupling software
architecture and human architecture for
collaboration-aware system adaptation, Proc.
35th International Conference on Software
Engineering (ICSE, 2013), San Francisco, CA,
May 18-26, 2013, pp. 53–62.

[17] Guetat, S.B.A., and Dakhli, S.B.D., Building
software solutions in an urbanized information
system: The 5+1 software architecture model,
Procedia Technology, 4th Conference on
Enterprise Information Systems/Int Conference

on Health and Social Care Information Systems
and Technologies, Portugal, October 3-5, 2012,
, vol. 5, pp. 481–490.

[18] Guetat, S., and Dakhli, S.B.D., Software
solutions construction according to information
systems architecture principles, Proc.
Communications in Computer and Information
Science, International Conference on
Enterprise Information Systems, Vilamoura,
Portugal, 2011, pp. 408–417.

[19] Wessel, M. & Moeller, R. Flexible software
architectures for ontology-based information
systems, Journal of Applied Logic, 2009, vol. 7
no. 1, pp: 75-99.

[20] Kondo, Y. & Matsuo, M, Software defined
architecture concept - a network system model
for information networking architecture, IEICE
Transactions on Communications Electronics
Information and Systems, 1991, vol. 74, no. 11,
pp. 3683-3693.

[21] Isenegger, D., Price, B., Wu, Y., Fischlin, A.,
Frei, U., Weibel R., and Allgöwer, B.,
IPODLAS - A Software Architecture for
Coupling Temporal Simulation Systems, VR,
and GIS, ISPRS Journal of Photogrammetry
and Remote Sensing, 2005, vol. 60, no. 1, pp.
34-47. DOI:10.1016/j.isprsjprs.2005.10.003

[22] Newman, S., Building Microservices:
Designing Fine-Grained Systems, USA:
O'Reilly, 2015. 282 pages. ISBN-10:
1491950358, ISBN-13: 978-1491950357.

[23] Cai, Y., Feng, Q., Kazman, R., Mo, R., and
Xiao, L., Decoupling level: A new metric for
architectural maintenance complexity, Proc.
IEEE/ACM 38th International Conference on
Software Engineering (ICSE), 2016, pp. 499–
510.

[24] Chowdhury, I., and Zulkernine, M., Using
complexity, coupling, and cohesion metrics as
early indicators of vulnerabilities, Journal of
Systems Architecture, 2011, vol. 57, pp. 294–
313.

[25] Candela, I., Bavota, G., Russo, B., and Oliveto,
R., Using cohesion and coupling for software
remodularization: Is it enough?, ACM
Transactions on Software Engineering and
Methodology, 2016, vol. 25, no. 3, pp. 1-28.
DOI: 10.1145/2928268

[26] Gui, G., and Scott, P.D., New coupling and
cohesion metrics for evaluation of software
component reusability, Proc. 9th IEEE

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1030

International Conference for Young Computer
Scientists, 2008, pp. 1181-1186. DOI:
10.1109/ICYCS.2008.270.

[27] Gui, G., and Scott, P.D., Measuring software
component reusability by coupling and
cohesion metrics, Journal of Computers, 2009,
vol. 4, no. 9, pp. 797-805

[28] Bidve, V.S., and Sarasu, P., Tool for measuring
coupling in object-oriented Java software,
International Journal of Interactive
Multimedia and Artificial Intelligence, 2016,
vol. 4, no. 1, pp. 812-820

[29] Zhe, M., and Kerong, B., A Software
Decoupling Partition Method Based on
Interactive Genetic Algorithm, Procedia
Engineering, 2011, vol. 15, pp. 2875–2879.
DOI: /10.1016/j.proeng.2011.08.541.

[30] Leymann, F., Loose coupling and architectural
implications, Multiagent System Technologies,
15th German Conference, MATES 2017,
Leipzig, Germany, August 23-26, 2017,
Proceedings. ISSN 0302-9743. Lecture Notes
in Artificial Intelligence, ISBN 978-3-319-
64797-5, DOI: /101007/978-3-319-64798-2.

[31] Boissier, O., Ciortea, A., Florea, A.M., and
Zimmermann, A., Give agents some REST: A
resource-oriented abstraction layer for Internet-
scale agent environments, Proc. Conference on
Autonomous Agents and MultiAgent Systems
AAMAS, Sao Pablo Brazil, 2017.pp. 1502-
1504

[32] Casado, M., Ghodsi, A., Koponen, T.,
Raghavan, B., Ratnasamy, S., and Shenker, S.,
Software-defined internet architecture:
Decoupling architecture from infrastructure,
Proc. HotNets. ACM Workshop on Hot Topics
in Networks, Redmond, Washington, 2012,
pp.43-48.

[33] Fielding, R.T., Architectural styles and the
design of network-based software
architectures, Doctoral (Philosophy in
Information and Computer Science)
Dissertation, California: University of
California, Irvine, 2000.

[34] Reyes, A.M., and Acosta-Gonzaga, E., Análisis
de Modelos de Componentes, Polibits, 2002,
vol. 28, pp. 9–17.

[35] Sznajdleder, P., Java a Fondo, Curso de
Programación, México: Alfaomega Grupo
Editor Argentino, 2016.

[36] Gallus, J., and Williams, G., OracleAs 10g R3:
Build Java EE Applications (Vol. I, Student
Guide), USA: Oracle, 2007.

[37] O’Regan, G., Introduction to Software Quality,
Ireland: Springer, 2014.

[38] Lee, R.Y., Software Engineering: A Hands-On
Approach, USA: Atlantis Press, 2013.

[39] Chhabra, J.K., and Gupta, V. A., Survey of
dynamic software metrics, Journal of
Computer Science and Technology, 2010, vol.
25, no. 5, pp. 1016–1029. DOI:
10.1007/s11390-010-1080-9.

[40] Stevens, W. P., Myers, G. J., & Constantine, L.
L., Structure design, IBM Systems Journal,
1974, vol. 13, pp. 115–139.

[41] Baker, A. L., Bieman, J. M., Fenton, N.,
Gustafson, D. A., Melton, A., & Whitty, R., A
philosophy for software measurement. Journal
of Systems and Software, 1990, vol. 4, no. 1, pp.
277-281

[42] Dhama, H., Quantitative models of cohesion
and coupling in software, Journal of Systems
and Software, 1995, vol. 29, no. 1, pp. 65–74.

[43] Hitz, M., and Montazeri, B., Measuring
Coupling and Cohesion in Object-Oriented
Systems, In Proceedings of International
Symposium on Applied Corporate Computing.
1995, pp. 25-27.

[44] Munsinger, L., Patel, S., Stokol, G., and
Williams, G., Oracle University, Learn Oracle
From Oracle. Oracle 10g: Build J2EE
Applications (Vol. II Student Guide), USA:
Oracle, 2005.

[45] Fielding, R.T., Gettys, J., Mogul, J., Frystyk,
H., Masinter, L., Leach, P., and Berners-Lee,
T., Hypertext Transfer Protocol -- HTTP/1.1,
(1999, January 09). Retrieved from
https://www.ietf.org/rfc/rfc2616.txt

[46] Sznajdleder, P., JEE 7 a Fondo, Diseño y
Desarrollo de Aplicaciones Java Enterprise,
Argentina: Alfaomega Grupo Editor
Argentino, 2015.

Journal of Theoretical and Applied Information Technology
15th April 2020. Vol.98. No 07

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1031

ANNEXE

Hardware Tools
The hardware components were:
1. Personal computer Dell Inspiron 3647 with

technical features:
• Processor: Intel Celeron CPU G1820 at

2.7GHz, 2 cores.
• Memory RAM: 4 GB.
• Network Card: Ethernet 1000Base-T

10/100/1000 Mbps.
• Operating System: Windows 8.1

Simple Language 64 bits.
2. Personal computer HP SlimLine 260-002-

LA with the following features:
• Processor: Intel Celeron CPU J3060 at

1.6 GHz, 2 cores.
• Memory RAM: 4 GB.
• Network Card: Ethernet 1000Base-T

10/100/1000 Mbps.
• Operating System: Windows 10 Home

Simple Language 64-bit.
3. HG532e TELMEX residential modem,

HCP protocol dynamic IP mapping.
4. LAN and WLAN (Ethernet and WIFI),

twisted pair network cables with RJ-45
connectors.

Software Tools and Network Configuration

The software used for the development of the
systems was:

• Database Manager:
- PostgreSQL-9.6.1-1-win64-bigsql.
- Oracle XE112 win64.

• Application Server:
- WildFly-10.1.0. Final.

• Integrated Development Environment
(IDE):
- Eclipse-jee-neon-1a-win32-x86_64.
- Sqldeveloper-4.1.3.20.78-x64.

• Java Project Management:
- Apache-Maven-3.1.1.
- Drivers such as Java libraries to connect

databases.
- Postgresql-9.3-1100.jdbc41.jar to

connect WildFly to PostgreSQL.
- Postgresql-9.3-1100.jdbc41.jar to

connect Oracle SQL Developer to
PostgresSQL.

- Ojdbc7.jar to connect WildFly to
Oracle supporting JDK 6, 7 y 8.

• Virtual machine and Java Development Kit:
- jre-8u111-windows-x64.
- jdk-7u40-windows-x64.

PostgreSQL is a PostgreSQL License. WildFly is
a GNU Lesser General Public License (GNU
LGPL). Eclipse Neon is an Eclipse Public License
(EPL). Apache Maven is an Apache License. All of
them are Software Open Source. Oracle and Oracle
SQL Developer are an Oracle License. For this
experiment, Oracle tools were used for didactic
purposes.

On computer 1 the following tools were
installed:

• PostgreSQL-9.6.1-1-win64-bigsql and
Oracle XE112 win64 databases.

• Java Runtime Environment jre-8u111-
windows-x64, which is Java Virtual
Machine and JDK Java Development Kit
jdk-7u40-windows-x64, which are Java
libraries.

• A WildFly-10.1.0 application server.
• Final win64 to run RESTful services.

On computer 2 the following tools were nstalled:
• Java Runtime Environment jre-8u111-

windows-x64, which includes Java Virtual
Machine and JDK Java Development Kit
jdk-7u40-windows-x64, which are Java
libraries.

• A WildFly-10.1.0 application server. End
to run the main applications.

• IDE’s Eclipse-jee-neon-1a-win32-x86_64
y Sqldeveloper-4.1.3.20.78-x64.

• Apache-maven-3.1.1.
Both databases were installed on computer 1 due

to their technical requirements.

