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ABSTRACT 
 

Although deep learning-based object detectors have achieved great success in general object detection in 
recent years, detecting of objects like car in aerial images is still a challenge. The main difficulty of car 
detection in aerial images comes from the relatively small size with multiple orientations of car in images. In 
addition, due to the high resolution of aerial images, the inference time of current approaches is still high. To 
solve these problems, this paper proposes an enhanced framework for fast and efficient car detection in aerial 
images. In the proposed approach, ResNet-34 architecture is adopted to create the base convolution layers. 
Compared with ResNet-50 and ResNet-101, ResNet-34 achieves comparable performance while being faster 
and simple. Then, an enhanced feature map generation module is designed to generate enhanced feature maps 
from input feature maps. To speed up the detection process, the detection network based on region proposal 
network is used to exactly locate cars in original aerial images. The detection network included region 
proposal networks is applied at different enhanced feature maps with different scales to detect multi-scale car 
in input image. Experimental results on public dataset show that the proposed approach achieves comparable 
performance compared with other state-of-the-art approaches. 

Keywords: Car Detection, Convolutional Neural Network, Intelligent Transportation System, Object 
Detection, Pyramid Network 

 
 
 
1. INTRODUCTION  
 

Vision-based car detection plays an important 
role for a wide range of applications and is receiving 
significant attention in recent years. However, car 
detection in aerial images is still a challenging 
problem due to difficult environments such as the 
relatively small size, varying types, and variable 
orientation of cars. In addition, the presence of many 
structures such as plane, ship, and so on which 
appear visually similar to car, can cause false 
detections. Furthermore, due to the high resolution 
of aerial images, the processing time is limited for 
real-time applications, which also increases the 
difficulties of car detection in aerial images. 

In previous studies, various algorithms had 
been proposed for car detection in aerial images. The 
most common method is based on a sliding-window 
search in which each image is scanned in all 
positions with different scales. Then, multiple 
handcrafted features or shallow-learning-based 
features associated with AdaBoost classifiers, or 
support vector machine classifiers, are used to 

examine each window for the presence of a car. 
These methods showed a good performance. 
However, these methods suffer from several 
limitations. First, models were trained in clumsy and 
slow multistage pipelines. Second, handcraft 
features or shallow-learning-based features 
influenced the representational power, as well as the 
effectiveness of car detection. Third, the sliding-
window technique led to heavy computational costs.  

In recent years, vision-based object detection 
methods are driven by the success of region-based 
convolutional neural networks (CNNs). These 
methods first generate object-like regions and 
extract highly discriminative features from each 
region using CNN, and then classify each region 
with category-specific classifiers. In addition, deeper 
CNN features are more powerful in representation 
than low-level features, which can significantly 
improve the performance of object detection. On the 
other hand, CNN-based model is faster than sliding-
window-based detectors as it uses hundreds of 
proposed object-like regions to reduce the search 
space for the whole image. Enhanced network based 
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on region-based network such as Spatial Pyramid 
Pooling network (SPPnet) [11] and Fast R-CNN [12] 
have reduced the running time with impressive 
performance results. Nevertheless, the main issue of 
the above-mentioned models is that the human-
designed region proposal generator is extremely 
time consuming. The recently proposed Faster R-
CNN [3] presents region proposal network (RPN) 
and combines the RPN and Fast R-CNN into a 
unified network, which achieves state-of-the-art 
detection performance and further speed 
improvement. Although the Faster R-CNN model 
has achieved great success in general object 
detection, several challenges in aerial images limit 
its applications in car detection. First, cars in large-
scale aerial images are relatively small in size with 
multiple orientations while Faster R-CNN has poor 
localization performance with small objects as the 
CNN feature used for classification and regression is 
pooled from the last convolutional feature map with 
lower resolution. Second, Faster R-CNN is 
particularly designed for extracting the bounding 
box of the targets without considering annotation of 
multiple attributes for targets. Sometimes, the 
attributes of a car are important for intelligent traffic 
management systems. Third, manual annotation is 
generally expensive and the available manual 
annotation of cars for training faster RCNN are not 
sufficient in number. 

To tackle the above problems, this paper 
proposes an enhanced network based on feature 
pyramid networks (FPN) [1] for fast and efficient car 
detection in aerial images. In the proposed 
framework, ResNet-34 architecture is adopted to 
create the base convolution layers from input image. 
RestNet-34 is a simple and fast CNN architecture. 
Compared with ResNet-50 and ResNet-101, 
ResNet-34 achieves comparable performance while 
being faster and simple. Then, an enhanced feature 
map generation module is then designed to create 
enhanced feature maps from input feature maps. 
Each enhanced feature map is fed to the detection 
network, which is based on region proposal network, 
to exactly locate car in original aerial images. The 
detection network is applied at different enhanced 
feature maps at different scales to detect multi-scale 
object in input image. Experimental results on public 
dataset show that the proposed approach achieves 
comparable performance compared with other state-
of-the-art approaches, while being faster. 

This paper is organized as follows: an overview 
of previous methods is presented in Section 2. 
Section 3 describes detail the proposed method. 
Section 4 demonstrates experimental results. Finally, 
the conclusion is made in Section 5. 

2. RELATED WORK 
 
2.1 Deep Learning-Based Object Detection 

Recently, with fast development of deep 
learning, many deep learning-based object detection 
approaches have been proposed with impressive 
performance [8], [9]. The most successful object 
detectors are region-based convolutional neural 
networks (CNNs), which employ region proposal 
algorithms to guide the search for objects, thereby 
avoiding a sliding window search across the whole 
image. Girshick et al. [10] first presented an R-CNN 
detector, which consists of four parts: First, object-
like regions are generated by human-designed region 
proposal algorithms. Then, regions are resized, and 
highly discriminative features are extracted from 
each region using CNN. Finally, regions are 
classified by SVM and bounding boxes are refined 
by regression. He et al. [11] proposed SPP-net in 
which a spatial pyramid-based pooling layer was 
employed to deal with different region sizes. In order 
to increase the speed and accuracy of detection 
further, Fast R-CNN [12] trained classifiers and 
bounding-box regression with an end-to-end 
solution. However, this approach depends on time-
consuming human-designed region proposal 
algorithms. To solve this problem, Ren et al. [3] 
proposed Faster R-CNN, which consists of an RPN 
for predicting candidate regions, and a R-CNN 
classifier, which achieves near real-time rates and 
state-of-the-art performance. To increase the 
inference speed and maintain the detection accuracy, 
SSD [13] proposed a one-stage deep learning 
framework for fast object detection. In SSD, the 
network combines predictions from multiple feature 
maps with different resolutions to naturally handle 
objects of various sizes. SSD is simple because it 
completely eliminates proposal generation and 
subsequent pixel or feature resampling stages and 
encapsulates all computation in a single network. 
This makes SSD easy to train and straightforward to 
integrate into systems that require a detection 
component. You Only Look Once (YOLO) [14] 
solves object detection as a regression problem to 
spatially separated bounding boxes and associated 
class probabilities. A single neural network predicts 
bounding boxes and class probabilities directly from 
full images in one evaluation.  

The above deep learning-based object detectors 
were successful in general object detection in natural 
scene images, but they have not been carefully 
explored in object detection in aerial images. 
Compared with object detection in natural scene 
images, detection of targets in aerial images is a 
more challenging task. 
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2.2 Object Detection in Aerial Images 

Objects in aerial image are usually in difficult 
conditions for locating such as small, heavy 
occlusion, numerous, and so on. To detect object in 
aerial images, Zhang [15] proposed an aircraft 
detection method based on coupled CNNs, which 
combines a candidate RPN to extract the image-level 
proposals of an aircraft and a localization network to 
locate the aircraft. This weakly supervised learning-
based method is a promising way to alleviate the 
human labor cost of annotation. However, it may be 
problematic for direct use in vehicle detection as 
multiple categories of vehicles may increase the 
intraclass differences and many structures appearing 
visually similar to vehicles in the background may 
reduce interclass differences. Moreover, it is not a 
real-time approach for detection. The proposed 
method in [16] starts with a screening step of 
asphalted zones in order to restrict the areas where to 
detect cars and thus to reduce false alarms. Then, a 
feature extraction process is performed based on 
scalar invariant feature transform thanks to which a 
set of keypoints is identified in the considered image 
and opportunely described. In [17], filtering 
operations in the horizontal and vertical directions 
were performed to extract histogram-of-gradient 
features and to yield a preliminary detection of cars 
after the computation of a similarity measure with a 
catalog of cars used as reference. Chen et al. [18] 
presented an algorithm for vehicle detection in high-
resolution aerial images through a fast-sparse 
representation classification method and a 
multiorder feature descriptor that contains 
information of texture, color, and high-order context. 
To speed up computation of sparse representation, a 
set of small dictionaries, instead of a large dictionary 
containing all training items, is used for 
classification. In [19], a superpixel segmentation 
method designed for aerial images was proposed to 
control the segmentation with a low breakage rate. 
Zhang et al. [20], a method based on the two-layer 
visual saliency analysis model and support vector 
machines was proposed for high-resolution broad-
area remote-sensing images. In the first layer 
saliency model, a spatial-frequency visual saliency 
analysis algorithm based on a CIE Lab color space is 
introduced to reduce the interference of backgrounds 
and efficiently detect well-defined airport regions in 
broad-area remote-sensing images. In the second 
layer saliency model, a saliency analysis strategy 
based on an edge feature preserving wavelet 
transform and high-frequency wavelet coefficient 
reconstruction is proposed to complete the pre-
extraction of aircraft candidates from airport regions. 

Konstantinidis et al. [21] proposed a building 
detection method that consists of two modules. The 
first module is a feature detector that extracts 
histograms of oriented gradients (HOG) and local 
binary patterns (LBP) from image regions. The 
second module consists of a set of region refinement 
processes that employs the output of the HOG-LBP 
detector in the form of detected rectangular image 
regions. 
 
3. METHODOLOGY 
 

Figure 1 illustrates the overall architecture of 
the proposed method. As shown in Figure 1, ResNet 
architecture is adopted to create convolution layers 
from input image. An enhanced feature map 
generation module is then designed to create 
enhanced feature map from input feature map. Each 
enhanced feature map is fed to the detection 
network, which is based on region proposal network, 
to exactly locate car in original image. The detection 
network is applied at different enhanced feature map 
at different scales to detect multi-scale object in 
input image. Details of each module will be 
explained in the following sections. 
 
3.1 Feature Extraction Subnet 

The feature extraction subnet is responsible for 
computing a convolutional feature map over an 
entire input image. This paper adopts the Feature 
Pyramid Network (FPN) [1] as the feature extraction 
network. FPN uses ResNets [2] as the base 
convolution layers. FPN augments a standard 
convolutional network with a top-down pathway and 
lateral connections so the network efficiently 
constructs a rich, multi-scale feature pyramid from a 
single resolution input image. Each level of the 
pyramid can be used for detecting objects at a 
different scale. 
 
3.1.1 ResNet 

ResNet is an efficient network proposed by 
Kaiming He which adopted residual learning to 
every few stacked layers such that the training of 
networks can be eased and substantially deeper than 
others. ResNet-50 and ResNet-101 have high 
precision, but they are slower than ResNet-34. For 
fast and efficient license plate detection, this paper 
adopts ResNet-34 as the based convolution layers of 
the FPN. Table 1 shows the architecture of the 
ResNet-34. The FPN chooses the output of the last 
layer of each stage as reference set of feature maps, 
which will be enriched to create the feature pyramid. 
The choice of last layer is natural since the deepest 
layer of each stage should have the strongest 
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features. More specific, let {C2, C3, C4, C5} denote 
the output feature map of last residual blocks for 
conv2, conv3, conv4, and conv5. These feature maps 
have strides of {4, 8, 16, 32} pixels respectively with 
respect to the input image. The feature map 
outputted by conv1 stage is not included into the 
pyramid due to its large memory footprint. 
 
3.1.2 Enhanced Feature Map Generation 
 The FPN augments another top-down pathway 
besides the backbone through combining the low-
resolution, semantically strong features from the top 
with the high-resolution, semantically weak features 
from the bottom. Thus, the multi-scale feature 
pyramid is simple and efficient to build, with rich 
semantic representation at all levels. Figure 2 shows 
the architecture of enhanced feature map generation 
module. As shown in Figure 2, the high-level feature 
(low resolution) is upsampled by the factor of 2 
using the nearest neighbor upsampling method, and 
then it is combined with the corresponding previous 
feature map in the backbone by using element-wise 
addition. The previous feature map in the backbone 
would be subjected to a 1 x 1 convolution kernel to 
change the dimensions, which should be the same as 
the dimensions in the next layer. This process is 
repeated iteratively until the finest feature map is 
generated. At the beginning of the iteration, a 1 x 1 
convolutional kernel is added after C5 layer to 
produce the coarsest feature map. Finally, a 3 x 3 
convolution kernel is used on each merged map to 
generate the last required feature map in order to 
eliminate the aliasing effect of upsampling. The 
corresponding feature layers {C2; C3; C4; C5} are 
{P2; P3; P4; P5}, and the corresponding layer space 
dimensions are the same. 
 
3.2 The Detection Network 

Region Proposal Network (RPN) [3] is a 
popular sliding-window object detector. In RPN, a 
small subnetwork is evaluated on dense 3×3 sliding 
windows, on top of a single-scale convolutional 
feature map, performing object/background 
classification and bounding box regression. This is 
realized by a 3×3 convolutional layer followed by 
two sibling 1×1 convolutions for classification and 
regression as shown in Figure 3. The 
object/background criterion and bounding box 
regression target are defined with respect to a set of 
reference boxes called anchor boxes. The anchor 
boxes are of multiple pre-defined scales and aspect 
ratios in order to cover objects of different shapes. 
This paper attaches each RPN to each level on the 
feature pyramid. Because the RPN slides densely 
over all locations in all pyramid levels, it is not 

necessary to have multi-scale anchors on a specific 
level. Instead, this paper assigns anchors of a single 
scale to each level. More specific, this paper defines 
the anchors to have areas of {322, 642, 1282, 2562} 
pixels on {P2, P3, P4, P5} respectively. As in [3], 
this paper also uses anchors of multiple aspect ratios 
{1:2, 1:1, 2:1} at each level. So, there are 12 anchors 
over the pyramid in total. 

For training samples, this paper assigns 
training labels to the anchors based on their 
Intersection-over-Union (IoU) ratios with ground 
truth bounding boxes. More specific, an anchor is 
assigned as positive label if the IoU is over 0.7 with 
any ground truth box, and an anchor is assigned as 
negative label if the IoU is lower than 0.3 for all 
ground truth boxes. Moreover, scales of ground truth 
boxes are not explicitly used to assign them to the 
levels of the pyramid. Ground truth boxes are 
associated with anchors, which have been assigned 
to pyramid levels. Thus, no extra rules are 
introduced in addition to those in [3]. Notably, the 
parameters of the RPNs are shared across all feature 
pyramid levels. 
 
3.3 Loss Function 

The cross-entropy loss is a common choice to 
classify the foreground and background classes, 
which is defined as follow: 

 
𝐿஼ாሺ𝑝, 𝑞ሻ ൌ െሺ𝑞logሺ𝑝ሻ ൅ ሺ1 െ 𝑞ሻlog ሺ1 െ 𝑝ሻሻ (1) 

 
where 𝑞 ∈ ሼ1, െ1ሽ specifies the ground truth class 
and 𝑞 ∈ ሾ0,1ሿ  represents for the estimated 
probability of the class with label 𝑞 = 1. For 
convenience, this paper defines 𝑝௧ as follow: 
 

𝑝௧ ൌ ൜
𝑝           if 𝑞 ൌ 1

1 െ 𝑝       otherwise    (2) 

 
Thus, the cross-entropy loss can be rewritten as 
follow: 

𝐿஼ாሺ𝑝௧ሻ ൌ െlog ሺ𝑝௧ሻ    (3) 
 

The traditional cross-entropy loss function leads to 
extreme imbalance of the positive and negative 
sample ratio, and most of the negative samples are 
easy example. Although these easy examples are 
insignificant in loss, they still make a great 
contribution to loss because of their large number, 
resulting in convergence to a result that is not good 
enough. Focal loss [4] achieves great success on 
solving the problem of class imbalance during 
training. The focal loss is defined as follow: 
 

𝐿ி௅ሺ𝑝௧ሻ ൌ െ𝛼௧ሺ1 െ 𝑝௧ሻఊlog ሺ𝑝௧ሻ   (4) 
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where 𝛾 ൒ 0 is tunable focusing parameter. 
With focal loss, the gradient from easy examples can 
be automatically filtered out. In other words, the 
focal loss focuses training on a sparse set of hard 
examples and effectively discounts the effect of easy 
examples. Naturally, to solve this problem, this 
paper uses focal loss to train the proposed network. 
 
4. EXPERIMENTAL RESULTS 
 
 In order to compare the effectiveness of the 
proposed method with other methods on car 
detection in aerial images, this paper conducts 
experiments on the DLR Munich dataset [5]. The 
proposed method is implemented on a Window 
system machine with Intel Core i7 8700 CPU, 
NVIDIA GTX 1080 GPU and 8 GB of RAM. 
TensorFlow is adopted for implementing deep CNN 
frameworks. 
 
4.1 Dataset 

DLR Munich dataset [5] a publicly available 
car in aerial image dataset, which was collected over 
the city of Munich, Germany. It contains 20 aerial 
images that were captured from an airplane by a 
Canon Eos 1Ds Mark III camera with a resolution of 
5616 × 3744 pixels, 50 mm focal length. All images 
are in JPEG format. The optical image was taken at 
a height of 1000 m above ground, the ground 
sampling distance is approximately 13 cm. As in [5], 
the first ten images were used for training and the 
other ten images for testing. Positive training 
samples come from 3418 cars annotated in the 
training images, while the negatives are randomly 
picked from the background, i.e. areas without cars. 
 
4.2 Metrics 

This paper adopts widely used measures to 
quantitatively evaluate the performance of the 
proposed method on car detection in aerial image, 
including Precision (P), Recall (R), Average 
Precision (AP), and F1-score. These criteria are 
defined as follows: 
 

𝑃 ൌ  
்௉

ሺ்௉ ା ி௉ሻ
      (5) 

 

𝑅 ൌ  
்௉

ሺ்௉ ା ிேሻ
      (6) 

 

F1 െ score ൌ  2 ൈ
ሺ௉ ൈ ோሻ

ሺ௉ ା ோሻ
    (7) 

 
where TP (True Positive) represents the correct 
detections; FP (False Positive) represents the wrong 

detections; FN (False Negative) represents the 
number of missed detections. 

Both the precision and recall metrics measure 
the fraction of true positive detections and correctly 
identified positive detections. The AP metric is 
measured by the area under the precision-recall 
curve. The higher the AP value, the better the 
performance, and vice versa. The F1-score combines 
the precision and recall metrics to a single measure 
to comprehensively evaluate the quality of an object 
detection method. Generally, a detection result is 
considered to be a true positive if the IoU between a 
detected bounding box and ground truth bounding 
box is greater than 0.5. Otherwise the detection is 
considered as a false positive. Furthermore, if 
several detections overlap with the same ground 
truth, only one detection with the highest overlap 
ratio is considered a true positive, and others are 
considered false positives. 
 
4.3 Implementation Details 
 The base ResNet-34 is pre-trained on 
ImageNet1k. This paper uses the models released by 
[2]. The proposed network is trained end-to-end with 
stochastic gradient descent (SGD). The network is 
trained for 90k iterations with an initial learning rate 
of 0.01, which is then divided by 10 at 60k and again 
at 80k iterations. This paper uses horizontal image 
flipping as the only form of data augmentation 
unless otherwise noted. Weight decay of 0.0001 and 
momentum of 0.9 are used. As in [1], this paper 
includes the anchor boxes that are outside the image 
for training. For training loss, this paper sets 𝛾 = 2 
and 𝛼௧ = 0.25, which have been proved effectively 
in practice. 
 
4.4 Results 
 To show the effectiveness of the proposed 
method, this paper compares the detection results of 
the proposed method with the results of other state-
of-the-art methods on DLR Munich dataset, 
including AVPN [6], Faster R-CNN [3], H-RPN [7], 
and the method proposed by Liu et al. [5]. AVPN 
developed an accurate-vehicle proposal-network 
(AVPN) based on hyper feature map which 
combines hierarchical feature maps that are more 
accurate for small object detection. For detection 
network, AVPN proposed a coupled R-CNN 
method, which combines an AVPN and a vehicle 
attribute learning network to extract the vehicle’s 
location and attributes simultaneously. Faster R-
CNN proposed a combination of RPN and fast 
RCNN. H-RPN employed a hyper region proposal 
network (HRPN) to extract vehicle-like targets with 
a combination of hierarchical feature maps. Table 2 
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shows the comparison of the detection results. In 
Table 2, it can be observed that the proposed 
approach achieved the best performance in terms of 
recall rate. More specific, in terms of recall rate, the 
performance of the proposed method is improved by 
9.3%, 1.58%, 9.86%, 0.3% compared with Liu [5], 
AVPN_large [6], Faster R-CNN [3], and H-RPN [7] 
respectively. This result demonstrates the 
effectiveness of the proposed enhanced feature map 
generation module for generating proposals at high 
recall. In terms of precision, the proposed method 
achieves nearly as performance as other methods. 
This paper proposed a simple and fast detection 
network, resulting in a weak precision. In future 
work, this paper will consider improving the 
precision by designing a better detection network. 
For the inference time, by adopting a simple and fast 
detection network, the proposed method achieves the 
best inference time. More specific, the proposed 
framework takes only 1.12 second to process a high-
resolution image, while Faster R-CNN takes up to 
3.84 seconds. This result demonstrates that the 
proposed method meets the requirements of real-
time processing and can be applied to real-time 
system. Figure 4 shows examples of detection results 
of the proposed method on DLR Munich dataset. 
Figure 5 illustrates some failed detection results. As 
shown in Figure 4 and Figure 5, despite cars located 
in the shade or near the image block boundaries, the 
proposed approach had successfully detected most 
of the cars. The missing detected cars are mostly 
located near the boundaries with darker in color. 
This is because the cars located near the boundaries 
are easy to lose part of the information in the small-
size hyper feature maps. 
 
5. CONCLUSIONS 
 

This paper proposes an enhanced network based 
on feature pyramid networks for fast and efficient car 
detection in aerial images. In the proposed 
framework, ResNet-34 architecture is adopted to 
create the base convolution layers from input image. 
Then, an enhanced feature map generation module is 
then designed to create enhanced feature maps from 
input feature maps. Each enhanced feature map is 
fed to the detection network, which is based on 
region proposal network, to exactly locate car in 
original aerial images. The detection network is 
applied at different enhanced feature maps at 
different scales to detect multi-scale object in input 
image. Experimental results on DLR Munich dataset 
show that the proposed approach achieves 
comparable performance compared with other state-
of-the-art approaches, while being simpler and 

faster. However, the proposed method still produces 
some false, as well as missing detection. Extracting 
good car-like regions is still a critical task for 
accurate car detection. Hence, in future study, this 
paper will focus on mining hard negative samples by 
a bootstrapping strategy. 
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Figure 1: The Overall Framework of The Proposed Approach. 

 
 

Table 1: The Architecture of ResNet-34. 

Layer name Kernel size Output size 

Conv1 7 × 7 × 64 112 × 112 

Conv2 
൤
3 ൈ 3 ൈ 64
3 ൈ 3 ൈ 64

൨ ൈ 3 
56 × 56 

Conv3 
൤
3 ൈ 3 ൈ 128
3 ൈ 3 ൈ 128

൨ ൈ 4 
28 × 28 

Conv4 
൤
3 ൈ 3 ൈ 256
3 ൈ 3 ൈ 256

൨ ൈ 6 
14 × 14 

Conv5 
൤
3 ൈ 3 ൈ 512
3 ൈ 3 ൈ 512

൨ ൈ 3 
7 × 7 

 
 

 
Figure 2: The Architecture of The Enhanced Feature Map Generation Module.
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Figure 3: The Detection Network. 

 
Table 2: Performance Comparison of Different Methods. 

Methods Recall (%) Precision (%) F1-score (%) Inference Time 
(s) 

Liu et al. [5] 69.3 86.8 77 4.4 
AVPN_basic [6] 75.59 85.93 80 3.65 
AVPN_large [6] 77.02 87.81 82 3.65 

AVPN_basic+fast R-CNN [6] 74.73 91.98 82 4.05 
Faster R-CNN [3] 68.74 88.95 78 3.84 

H-RPN [7] 78.3 89.2 83 - 
Proposed Method 78.6 85.3 81.8 1.12 
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Figure 4: Detection Results on DLR Munich Dataset. 
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Figure 5: Undetected Cars Due to Difficult Conditions.

 


