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ABSTRACT 
 

With the recent wave of data analytics accessing every domain, there is a growing interest in handling an 
imbalanced classification problem. In many datasets, the positive class size is extra smaller compared 
with the major class (negative class), as in the case of disease detection, cyber-attacks, and many data 
mining applications. Among the different algorithms that addressed this problem, Random Forest (RF) 
attracted many researchers because of its general robustness. But, RSs and other cost-sensitive algorithms 
are suffering from low sensitivity and low precision according to positive class when dealing with 
imbalanced dataset problem. In this paper, we propose and develop an Entropy-based Fuzzy Random 
Forest (EFRF) algorithm to deal with imbalanced classification problem. Fuzzy membership is applied to 
the training instances such that different instances offer different contributions to the classifiers. Samples 
that have a higher class certainty are assigned to larger fuzzy memberships. EFRF uses the entropy to pay 
more attention to the samples with higher class certainty to result in more robust decision making to avoid 
losing information like other undersampling algorithms. The proposed algorithm showed promising 
results compared to other imbalanced classification techniques including Entropy-based Fuzzy Support 
Vector Machine (EFSVM) technique. It featured both high precision and high recall which makes it an 
excellent choice for security-wise application. 
 
Keywords: Imbalanced Dataset, Random Forest, Cost-Sensitive Learning, Sampling, Information 

Entropy 
 
1. INTRODUCTION  
 

   Many important real-world applications are 
characterized by highly imbalanced data 
including medical diagnosis [1], cyber-attacks 
detections [2], face recognition[3], credit card 
fraud detection [4], etc. The main challenge with 
this machine learning problem is the intrinsic 
tendency of classic classifiers to recommend the 
major class labels much over the minor class 
labels. However, some machine learning 
algorithms have been modified to handle the 
imbalanced classification problem as Random 
Forest (RF) [5], Adaptive Boosting (Adaboost) [6, 
7], Gradient Boosting [8], and Entropy-based 
fuzzy support vector machine [9]. 
 
   The different approaches to face the imbalanced 
data issue in the literature can be divided into 
three groups: data level, algorithm level and cost-

sensitive approaches [10]. At data level 
approaches, data is modified by resampling the 
main training data space for better balancing of 
the two classes [11-13]. At algorithm level 
approaches, the algorithm is modified and 
adapted to handle the imbalanced data. At cost-
sensitive learning solutions, the problem is 
addressed by assigning higher misclassification 
costs for instances belonging to the minority 
(positive) class [14].However, data-level 
approaches have some drawbacks caused by 
resampling. The best distribution of the training 
samples is sometimes unknown. Under-sampling 
may cause loss of the class information, while 
oversampling may cause overfitting. Algorithm 
level approaches also have some drawbacks such 
as sensitivity to noisy data and outliers, and 
sometimes harder to fit. 
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   RF classifier is characterized by its noise 
resistance. It is known for its high performance 
and speed in both training and prediction stages. 
Using a standard top-down induction process, we 
can construct a number of unique decision trees. 
Each decision tree is constructed using a different 
sample of the training data recursively until it 
reaches to the maximum depth. Then, a pruning 
process is applied after the tree is completely 
constructed. The predicted class of a testing 
sample is calculated by aggregating the outcomes 
of the decision trees ensemble using majority 
voting. Adaboost [6, 7] is an ensemble algorithm 
that combines several weak learners into a 
stronger one. It is very simple to implement and 
suits any kind of classification problem. Gradient 
Boosting [8] is an ensemble algorithm that 
combines several decision trees into a stronger 
classifier sequentially. It gives a nice strategy to 
deal with unbalanced datasets. 
   
   Using Entropy-based Fuzzy Membership 
(EbFM) [9] yields ensuring the significance of the 
(minor) positive samples through high sensitivity 
and high precision. Support Vector Machine 
(SVM) tries to solve the imbalanced dataset 
problem. But its performance is not sufficient 
enough causes it ignores the difference between 
the negative and positive classes and deals with 
all samples as the same importance. 
 
  To solve the drawback of SVM, Fan et al. [9] 
proposed EFSVM approach which stratifies fuzzy 
membership to every input and recasts SVM. Its 
performance becomes more sufficient according 
to imbalanced dataset problem. The results show 
that the performance of RF is better than SVM 
concerning data size and mixed type of the 
features. But, RF suffers from the imbalanced 
dataset problem. In this work, we propose an 
Entropy-based Fuzzy Random Forest algorithm 
(EFRF) adopted from EFSVM. 
 
   The remainder of the research is formed as 
follows: Section 2 discusses the background. The 
EbFM estimation approach based on EFSVM 
algorithm [1] is discussed in Section 3. A detailed 
description of EFRF is presented. Section 4 
summarizes the experimental design and shows 
and evaluating its results using real-world 
unbalanced examples. Section 5 summarizes and 
concludes this study. Section 6 presents the future 
work. 
 

2. BACKGROUND 
 
        Because the imbalanced data problem has 
become a serious snag, researchers had been 
proposed various solutions to deal this it. This 
include: data level techniques [15], algorithm 
level techniques [16] and an integration of 
algorithm and data level techniques that are called 
as cost-sensitive techniques. Regarding of the 
data level techniques, the main training data is 
modified to obtain suitable data to develop the 
performance of the standard classification 
algorithms during facing the imbalanced data. 
There are two ways for applying the data level 
techniques: over-sampling approaches, and under-
sampling approaches.  
Over-sampling approaches [17] modify the 
samples to obtain balanced data by providing 
them with new positive instances. The simplest 
oversampling approaches are called Random 
Over-Sampling (ROS) [11] that copies positive 
instances from the original data set in a random 
way till the number of positive instances becomes 
close to the number of negative instances.one of 
the most public over-sampling approach Synthetic 
Minority Over-sampling Technique (SMOTE) 
that synthesis new minority instances between the 
original minority instances.  
Under-sampling approaches delete various 
instances from the negative class to balance the 
dataset. The most popular under-sampling 
approach is Random Under-Sampling (RUS) [11] 
that deletes the negative instances from the main 
dataset in a random way to balance the data set. 
Regarding of the algorithm level techniques, the 
standard learning algorithms are adjusted to focus 
on a decision threshold biased towards the 
positive class.  
Cost-sensitive techniques merge both of the data 
level and algorithm level techniques by giving 
higher misclassification costs to positive instances 
and reducing the cost in a comprehensive way. 
The misclassification costs are commonly 
represented by a cost matrix C in which C(i, j) 
indicates the costs of classifying a sample 
belonging class i to class j ]18 [. The popular Cost-
sensitive methods are Gradientboost [8] and 
Adaboost (Adaptive Boosting) [6, 7], which 
allocate weight to the samples through training. In 
each iteration, weight of the misclassified samples 
is increasing while correctly classified is 
decreasing. Contained weights correction imposes 
on the learning process to be attending more on 
misclassified in subsequent iterations. In the case 
of imbalanced data, the minority class is 
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incorrectly classified, and hence the boosting 
increases the accuracy of the results. 
 
2.1 Random Forest 
    Random Forest (RF) [5] is a group of decision 
trees which is generally used in classification. Its 
structure is shown in Fig. 1 [19] while Fig. 2 
shows the classification process [19]. RF is used 
in many works because of its high performance 
compared with other classification algorithms 
[20]. Breiman [19, 21, 22] suggested RF that 
includes a special randomness layer to bagging. In 
standard common trees, every node is slit by 
choosing the best split among all variables. This 
planning performs very well rather than many 
other classifiers, including SVM. Also, it is 
shown that it achieved good performance against 
overfitting. 
 
 

 
Fig.1 Random Forest structure. 

 
 

 
 

Fig.2 Random Forest classification process [19]. 

2.1.1 Training process 
    In RF training, bagging has been utilized to 
generate sample subsets by sampling in a random 
way that comes from the training data. One set of 
samples is utilized to structure one decision tree. 
At each slitting node n, sample set 𝑆௡ is slit into 
𝑆௟ 𝑎𝑛𝑑 𝑆௥ by matching the feature quantity value 
𝑋௜ with a value of threshold 𝜏.The method of the 
splitting node selects specific collections that can 
divide the most samples from among selected 
features ሼ𝑓௞ሽ௞ୀଵ

௄ and threshold ሼ𝜏௛ሽ௛ୀଵ
ு  in a 

random way for every class. The suitable number 
selections feature is the feature square root 
dimensionality. The estimation function applied 
to select the perfect collection is the information 
Gain, ∆𝐺. The splitting process is repeated until 
either reaching its maximum depth or the 
information gain is equal to zero. Then, a leaf 
node is generated, and the probability of the class 
𝑃ሺ𝑐|𝑙ሻ is calculated. 
2.1.2 Classification process 
    In regression, RF uses the average prediction of 
each tree, 𝑝௧ሺ𝑐|xሻ and predicts with this instance 
using Eq. (1) [19]. 
 

𝑃ሺ𝑐|xሻ ൌ ଵ

்
∑ 𝑝௧ሺ𝑐|xሻ்

௧ୀଵ                           (1)                    
   In classification, a test instance is computed to 
get the predicted class by collecting the 
predictions of the decision trees set using majority 
voting, 𝑝௧ሺ𝑐|𝑥ሻ, according to Eq. (2) [19]. 
𝑃ሺ𝑐|xሻ ൌ arg 𝑀𝑎𝑥௏௢௧௜௡௚𝑝௧ሺ𝑐|𝑥ሻ         (2)          
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       The entropy has been utilized to gauge the 
class certainty. We use a fuzzy membership 
evaluation [9] in this paper to give the fuzzy 
membership of every instance depending on the 
class certainty of each sample. The certainty of 
class proves the certainty of the instances which 
has been classified to a corresponding class. 
        Because of the entropy has been a suitable 
approach for calculating the degree of certainty, 
we use it to evaluate each instance certainty. To 
achieve this, the fuzzy membership valuation 
using the entropy has been presented by locating 
the training samples fuzzy membership. With the 
help of the EbFM, our proposed EFRF algorithm 
has the ability for dealing with imbalanced 
datasets trouble. Because of the significance of 
the negative class is lower than the positive class 
in unbalanced datasets problem, the algorithm 
ought to make the classifier to be more attentive 
to the positive instances. 
    So, we assigned the large fuzzy memberships 
which are calculated by the EbFM evaluation, 
which is based on the standard which the 
instances with low-class certainty will easily 
mislead the decision surface, so we ought to make 
their importance weak during the learning stage.   
 
2.2. Evaluation Metrics 
   The quality measures of classification have 
been structured from a confusion matrix that 
arranges every class samples with regard to their 
correct or incorrect identification. Eight metrics 
will be used which are known with unbalanced 
datasets problem. Geometric Mean (GM) [23, 24] 
is able to avert the problems unlike standard 
accuracy metric and is calculated as: 

𝐺𝑀 ൌ ඥ𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦. 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦        (3) 

where  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ
்௉

்௉ାிே
 and 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ

்ே

ி௉ା்ே
 This measurement seeks to make the 

precision of one of the two classes as large as 
possible.  

 

Table1: Confusion matrix. 

 Positive 
prediction 

 Negative 
prediction 

Positive class True Positive 
(TP) 

False Negative 
(FN) 

Negative class False Positive 
(FP) 

True Negative 
(TN) 

   

   Another metric which is utilized in an unbalanced 
class snag is called β-f-measure (β-f-m) that is 
calculated as [25]: 

β െ f െ measure ൌ

ൌ
ሺ1 ൅ βଶሻሺ𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒. sensitivityሻ

ሺβଶ. 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒ሻ ൅ sensitivity
      ሺ4ሻ   

where  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 ൌ
்௉

்௉ାி௉
. 

The sensitivity and positive predictive value values 
have been commonly used as recall and precision, 
respectively. In these troubles, the β parameter 
value is equal to one assigning the same 
significance to the sensitivity and the positive 
predictive value. But, assigning β a value of one is 
not appropriate in an unbalanced snag during facing 
this class unbalance in the training and test samples 
together [26]. So, we need to use β with larger for 
increasing the sensitivity than in increasing the 
positive predictive value.  

Kappa statistics: The value for finding the matching 
degree among intervals [0:1] is Cohen's kappa. The 
value of  Cohen's kappa is characterized if [0:0.2], 
as weak, [0.2:0.4] as fair, [0.4:0.6] as moderate, 
[0.6:0.8] as good performance, and [0.8:1.0] as 
exemplary agreement [27]. 
 While traditional accuracy is not a good method of 
evaluating the classifiers performance which deals 
with the imbalanced dataset, another alternative is 
balanced accuracy which is calculated as: 

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ ்௉

ଶሺ்௉ାிேሻ
൅

்ே

ଶሺ்ேାி௉ሻ
              (5) 

 
 

   Through computing the average of the percentage 
of positive class instances correctly classified and 
the percentage of negative class instances correctly 
classified ]28 [. 
MCC  [29] is a measure that collects all the 
confusion matrix values, bearing in mind errors and 
correct classification in overall classes, as shown in 
Eq.(6). 

𝑀𝐶𝐶 ൌ
்௉ ・ ்ே ା ி௉ ・ ிே

√௉ைௌ ・ ோீ ・ ௉௉ைௌ ・ ௉ோீ
             ሺ6ሻ                                       

 
 

    Using the confusion matrix is not enough when 
dealing with the imbalanced data trouble. 
Consequently, researchers prefer to graphically 
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evaluate the performance through a set of cases by 
using the demonstrative valuation tools, like 
Receiver Operating Characteristic (ROC) curve. 
 ROC curve is a popular valuation method, taken 
from radio signal analysis [30]. ROC curve shows 
the tradeoff between FP rate and the TP rate. It will 
misclassify more negative instances as positive 
instances. It can be planned to use different 
probability threshold, from 0 until 1, for predicting 

positive instances. FP= 
ி௉

்ேାி௉
 while the true 

positive rate and recall are the same thing. A ROC 

curve is considered to be efficient when the curve is 
approaching to the top left corner. 

3. ENTROPY-BASED FUZZY RANDOM 
FOREST (EFRF)  

       
 Because the calculating of fuzzy membership is 
the main stage of` FRF, we primarily present an 
EbFM estimation approach based on EFSVM 
algorithm [1]. Thereafter, our EFRF algorithm is 
proposed by adapting EbFM in which its 
architecture of EFRF is shown in Fig. 3 
 

+ii -

1i+

Fig. 3 Main architecture of EFRF 
 
 
 

 

Positive class:  
Negative class:  
Negative sample 
entropy: H 
Weights for each 
sample: W 
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3.1. Entropy-Based Fuzzy Membership 
In EbFM evaluation approach, a positive 
instances is assigned to a larger fuzzy 
membership because the minority class (positive 
 
 
class) is additional significant than the majority 
class (negative class) when facing unbalanced 
troubles. Here, we assign "1.0" value to positive 
instances for ensuring the positive class 
significance and fuzzify negative instances 
according to their class certainty. The training 
instances take the fuzzy membership according to 
their class certainty. So, entropy is used since it is 
the certainty about the information source. 
Suppose that the training samples {𝑥௜, 𝑦௜ሽ௜ୀଵ

ே , 𝑦௜ ∈ 
{+1, −1}, 𝑦௜ = +1 refers to the sample 𝑥௜ belongs 
to the positive class, else it belongs to the 
negative one. The 𝑥௜  probabilities belonging to 
the positive and negative class are 𝑝ା௜ and 𝑝ି௜, 
respectively.  The entropy of 𝑥௜ is defined as [9]: 

 
𝐻 ௜ ൌ  െ𝑝ା௜ 𝑙𝑛 ሺ𝑝ା௜ሻ  െ 𝑝ି௜ 𝑙𝑛 ሺ𝑝ି௜ሻ                (7) 

  
where 𝑝ା௜  refers to the sample probability 
belonging to positive class while 𝑝ି௜  refers to the 
sample probability belonging to negative class. The 
probability computation is depending on its knn. 
Figures 4 and 5 show how we calculate k nearest 
neighbors for each negative sample 𝑥ି௜ .. 
Suppose that there are two classes: one refers to 
positive class and the other to a negative class.  
Assume that 𝑥ଵ is the negative sample which we 
want to calculate its nearest neighbors where 

neighbors, K=7. First, k closest instances to 𝑥ଵ are 
determined through using Euclidean distance for 
calculating the distance between each negative and 
positive instances. Second, the seven instances are 
selected which have the smallest distance. So, these 
instances will be used for calculating the 
probabilities of 𝑥ି௜. 

Next stage is to select knn{ 𝑥௜ଵ,..., 𝑥௜௄ }; assume 
it is 𝑥௜ as we mentioned above. The number of 
positive 𝑛𝑢𝑚ା௜ and negative instances 𝑛𝑢𝑚ି௜ are 
enumerated in these k chosen samples. 
Ultimately, the probabilities of 𝑥௜ are calculated 
as [9]: 
    𝑝ା௜ =

௡௨௠శ೔ 

௞
                            (8) 

𝑝ି௜ =
௡௨௠ష೔ 

௞
                                   (9)  

Using Eq. (7) [9], the negative samples entropy 
becomes H = { 𝐻ିଵ,𝐻ିଶ,..., 𝐻ି௡_}, where n_ is 
the negative samples number, 𝐻௠௔௫, and 𝐻௠௜௡, 
refer to the maximum and minimum entropy 
respectively. 
 

The negative samples are separated into subsets (m), 
with an increasing entropy order depends on their 
entropy as appeared in the negative samples 
algorithm separation [9]. So, 𝐻௦௨௕భ, < 𝐻௦௨௕మ <... < 
𝐻௦௨௕೘, where 𝐻௦௨௕భ indicates the entropy of subset 
𝑠𝑢𝑏ଵ. 
 
Fig. 4 shows calculating Euclidean Distance of X1, 
while Fig. 5 illustrated detecting k nearest neighbors 
of X1. 

 
Algorithm 1:The Negative Samples Algorithm Separation 

1 Begin 
2 Input: m = number of subset m 
3 Variables: m = number of subset m, 𝑁_  = number of negative samples and 
4 𝐻௠௜௡= negative sample minimum  entropy, 

 𝐻௠௔௫=negative sample maximum entropy,  
𝐻ି௜ =negative sample entropy 

5. Output:  subsets which each subset contains a number of negative samples 
6. Steps: 
7. FOR l = 1 to m  
8. 

         𝑡ℎ𝑟𝑈𝑝 ൌ  𝐻௠௜௡ ൅
𝑙

𝑚
  ሺ𝐻௠௔௫ െ 𝐻௠௜௡ሻ 

9. 
         𝑡ℎ𝑟𝐿𝑜𝑤 ൌ  𝐻௠௜௡ ൅

𝑙 െ 1
𝑚 

𝑚 ሺ𝐻௠௔௫ െ 𝐻௠௜௡ሻ 

10. FOR i= 1 to N_  
11.          IF thrLow ≤ H-i < thrUp  
12.                     the negative sample xi is distributed into the subset subl

13.         End FOR 
14. End FOR 
15. End 



Journal of Theoretical and Applied Information Technology 
29th February 2020. Vol.98. No 04 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
602 

 

 

  
   Fig. 4 Calculating Euclidean Distance of X1 

    
Next, the fuzzy memberships of samples in every 
subset are set as: 

  
 𝐹𝑀௟ ൌ 1.0 െ ሺ 𝛽 ∗ ሺ𝑙 െ 1ሻ ሻ,

𝑙 ൌ 1,2 … … … . . , 𝑚          ሺ10ሻ 
 where 𝐹𝑀௟ is the fuzzy membership distributed 
in𝑠𝑢𝑏௟ the fuzzy membership parameter β ∈ 
(0,

ଵ

ሺ௠ ିଵሻ 
]. The fuzzy membership of instances 𝐹𝑀௟ 

in every subset is computed by Eq. (10) [9]. β 
should be greater than zero; if β =0, the fuzzy 
membership of the whole negative instances is 
equal to one. The whole negative instances 
contribute the same significance for training. 

Hence, β ∈ (0, 
ଵ

ሺ௠ ିଵሻ 
 ].  

 
Fig. 5 Selecting k nearest neighbors of X1 

 
                     

  From the previous equation, we find that β 
controls in the 𝐹𝑀௟ range: 
1 – (β ∗ (m − 1)) ≤ 𝐹𝑀௟ ≤ 1.                               (11) 
It is discovered that a larger β value leads to a 
larger 𝐹𝑀௟ range.  Finally, the fuzzy membership is 
assigned as [33]: 

wi= ቐ
1. 0                                               if yi= +1    

      
 FMl                       if yi = -1 and xi ∈ Subl

      

(12) 
where wi is (weights) the fuzzy membership for 
each sample. 
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3.2. Entropy-Based Fuzzy Random Forest  
    Algorithm2 presents our proposed EFRF 
algorithm adopted from EFSVM algorithm [1].   
 

3.2.1 Training process  
Given the training set S ൌ ሼ ሺ𝑥௜, 𝑦௜, 𝑤௜ሻ ሽ ௜ ୀଵ

ே , 
where 𝑥௜ is the n-dimensional sample, 𝑦௜∈ { +1, 
−1 } refers to the predicted class label, and 𝑤௜ is 
the entropy-based fuzzy membership(weights) 

that has been calculated by Eq. (12). Sample sets 
are created by random sampling from the training 
.Decision trees have been structured using the 
sample sets such as RF.  
   EFRF is used to access to the best decision that 
is able to divide the positive and negative class. 
Accessing to the best decision will be 
summarized in the above pseudocode. 

Algorithm 2: The Proposed Algorithm (EFRF)

1. Begin 
2. Input: The training sample S = ሼ 𝑥௜, 𝑦௜ ሽ

௜ ୀଵ
ே ,  k = number of nearest neighbors k, m = number of 

subset m, and β = fuzzy membership parameter 

3. 𝑦௜ ∈ {+1, −1}, 𝑦௜ = +1: the sample 𝑥௜ belongs to the positive class, else belongs to the 
negative class,  

4. Output: Classifier 

5. Steps: 

6. Compute the k nearest neighbor for each negative sample 𝑥ି௜. 
7. Enumerate the negative and positive samples in the k nearest neighbors of 𝑥ିଵ 𝑛𝑢𝑚ା௜ and 

𝑛𝑢𝑚ି௜ of 𝑥ି௜. 
8.    Compute the class probability of 𝑥ି௜: 𝑝ା௜ =

௡௨௠శ೔

௞
 ,  and   𝑝ି௜ =

௡௨௠ష೔

௞
                                    

9. Calculate the entropy for each negative sample, 𝑥ି௜ , as:                           𝐻 ௜= −𝑝ା௜ ln (𝑝ା௜) 
− 𝑝ି௜ ln (𝑝ି௜)       

10. Divide the negative sample into m subset 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1. 
11. Assign (Weights) the fuzzy membership to each sample. 

w୧ ൌ ൜
1.0, if y୧ ൌ ൅1

 FM୪, if y୧ ൌ െ1 and x୧ ∈ Sub୪
         

12. Function RandomForest(S,F) 
13.  H   

14.    FOR i  1...B do 

15.  
← A bootstrap Sample from S, W  (i)S  

16.   hi ← RandomizedTreeLearn (S(i), F) 

17.  
}ih{ H   ←H    

18.  
END FOR  

 
19. 

  return H 

20. End Function 
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21. 
Function RandomizedTreeLearn (S,F)  

 
22.  At each node:  
23.     f ← very small subset of F,   ST ← S(f) 

 
24. 

 
 𝐺𝑟𝑜𝑤஽் ሺௌ೅,௪೔ሻClassifier ←    

25.     Test for leaf node; 

26.     IF all cases in ST  the same class, then return leaf with this class 

   
27.     If Attributes is empty, then return leaf node with majority class 

28.  
 Otherwise decision node:  

29.    Search for the best decision attribute based on information gain  

∆G ൌ EሺS୬ሻ െ
|ୗౢ|

|ୗ౤|
EሺS୪ሻ െ

|ୗ౨|

|ୗ౤|
EሺS୰ሻ         

30.   Select this single attribute ai ,with outcomes { o1,o2…..}. 

31.  
} according to outcomes.2,S1into {ST Partition S  

32.   Apply recursively to: Growୈ୘ሺSଵሻ, Growୈ୘ሺSଶሻ, … 

33.  
return classifier  

34. End Function 

35. 
 Estimating class label:  𝑦ො ൌ arg 𝑀𝑎𝑥௏௢௧௜௡௚ሺ𝐻, 𝑥௜ሻ 

 
36. 

Compute error rate of classifier Ɛi:: 𝜀௧ ൌ ∑ 𝑊௜
ሺ௧ሻே

௜:௒௜ஷ௬ഢෞ / ∑ 𝑊௜
ሺ௧ሻே

௜ୀଵ                      

37.  Compute Weight of classifier αT : ∝௧ൌ
ଵ

ଶ
log

ሺெିଵሻሺଵିఌ೟ሻ

ఌ೟
                                 

38. 

IF α > 0 then  𝑊௜
ሺ௧ାଵሻ ൌ ൝

𝑊௜
ሺ௧ሻ expሺ∝௧ሻ , 𝑖𝑓 𝑌𝑖 ് 𝑦పෝ

𝑊௜
ሺ௧ሻ expሺെ∝௧ሻ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

      

       Else reject a classifier       
 
 
39. 

End 

 
3.2.1.1 Node splitting 
Suggested technique training process is shown in 
Fig. 6 [19]. The slitting function chooses 

collections of features and thresholds in a random 
way that contain the best information gain. The 
information gain ∆𝐺 is figured by [9]. 
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∆𝐺 ൌ 𝐸ሺ𝑆௡ሻ െ
|ௌ೗|

|ௌ೙|
𝐸ሺ𝑆௟ሻ െ

|ௌೝ|

|ௌ೙|
𝐸ሺ𝑆௥ሻ        (13)  

   where 𝑆௡ is set of instances at node n, 𝑆௟ and 𝑆௥ 
is sample set at left child node and sample set at 
right child node respectively, and E(S) is entropy 
calculated by [9]. 

𝐸ሺ𝑆ሻ ൌ െ ∑ 𝑝൫𝑐௝൯ log 𝑝ሺ𝑐௝ሻெ
௝ୀଵ        (14)  

  
   The samples are prioritized in calculating the 
information gain by highest weight and the class 
probability 𝑐௝, 𝑝൫𝑐௝൯ which is figured using the 
sample weight i, 𝑊௜ is presented using Eq. (15). 
 

𝑝൫𝑐௝൯ ൌ ∑ 𝑊௜௜ఢௌ⋀௒೔ୀ௖ೕ
/ ∑ 𝑊௜௜ఢௌ      (15) 

  
 where the set of instances which reached to node 
has been assigned to S. A leaf node is generated 
when repetitive splitting develops the decision 
tree to a specific depth or till the information gain 
of a sample set that reaches a node is zero. The 
leaf node saves the probability of class P(c) 
calculated by Eq. (15) [19]. 
 

  
 

Fig. 6 Training Process Of The EFRF Method 
 

3.2.1.2 Decision tree weighting 
  

The decision tree weight, ∝௧, is computed by 
 

      ∝௧ൌ ଵ

ଶ
log ሺெିଵሻሺଵିఌ೟ሻ

ఌ೟
                     (16)  

  
 

   Where M is the class number and 𝜀௧  is the error 
rate of the decision tree. the error rate is 
calculated from the weights of the misclassified 
samples as[19] 

 

𝜀௧ ൌ ∑ 𝑊௜
ሺ௧ሻே

௜:௒௜ஷ௬ഢෝ / ∑ 𝑊௜
ሺ௧ሻே

௜ୀଵ            (17) 
  
 

3.2.1.3 Updating training sample weights 
    Decision trees that facilely correct 
classification of the samples that are incorrectly 
classified in the next stage have been figured by 
making the weights of incorrectly classified 
samples large as [19]:  

   𝑊௜
ሺ௧ାଵሻ ൌ ൝

𝑊௜
ሺ௧ሻ expሺ∝௧ሻ ,    𝑖𝑓     𝑌𝑖 ് 𝑦పෝ

𝑊௜
ሺ௧ሻ expሺെ∝௧ሻ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

    (18)    

   Where 𝑦పෝ  is predicted class label using 

   𝑦పෝ ൌ arg max 𝑝௧ሺ𝑐|𝑙ሻ                        (19)  
  

After updating the weights of the training sample, 
the weights have been normalized to N. Updating 
the weights of the training sample is repeated 
until obtaining T weighted decision trees. After 
the whole decision trees are built, the weights 
have been normalized. 

3.2.2Classification process 
      The samples which are used for testing are 
inputs to the whole of the decision trees, as 
displayed in Fig. 7 [19], and the probabilities of 
class which are arrived-at leaf nodes are output.  
Thereafter, the decision trees outputs,𝑝௧ሺ𝑐|xሻ, 
are weight-averaged using the weights of decision 
tree as 

                                                                   

𝑃ሺ𝑐|xሻ ൌ  ଵ

்
∑ ∝௧ 𝑝௧ሺ𝑐|xሻ்

௧ୀଵ                      (20) 

  
       

   The class which has the largest probability 𝑦పෝ  is 
output as the classification result by[19]  

  
 𝑦పෝ ൌ arg max 𝑝௧ሺ𝑐|𝑥ሻ                               (21) 
     



Journal of Theoretical and Applied Information Technology 
29th February 2020. Vol.98. No 04 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
606 

 

  
Fig. 7 Classification process of the EFRF method. 

 

4. EXPERIMENTATIONS AND RESULTS 
   
  To analyze the accuracy of our solutions for the 
unbalanced dataset, three datasets are taken from 
UCI Machine Learning Repository [48] and KEEL 
repository[31]. The first one is CMC, which 
consists of 1473 examples and 9 features. The 
second is Haberman dataset, and it consists of 306 
examples and 3 features. Glass5 is the last dataset 
used and it consists of 214 examples and 9 features. 
Table 2 describes the characteristics of each dataset, 
where min and maj refer to the instances belong to 
minor class and major class in data respectively, 
CL refers to the class label of minor class, and IR 
refers to the imbalanced ration. 
 
      

 
Table2. UCI and KEEL Datasets Summary 

Dataset A S Min/Maj CL IR 
Cmc 9 1473 333/1140 2 3.4234 
Haberman 3 306 81/225 2 2.7778 
Glass5 9 214 9/205 Positive 22.7777 
 
 
   We use a 5-fold stratified cross-validation 
partitioning scheme. For example: 5 random 
elements of instances with a 20% and a 
combination of 4 of them (80%) as a training set 
and the remaining as a test set. The results provided 
for each dataset have been the average results 
obtained by computing the mean of all partitions. 
 
EFRF is implemented using python language based 
on the original RF. It is running on Intel Core(TM) 
i7-4800MQ CPU @2.70GHZ and 8.00G memory 
with Microsoft Windows 10. The experimentations 
parameters are as follows: max depth=11, 
subset=10, and numtrees=1000. The max depth, 
subset and num trees parameters present how the 
forest is structured. The num trees parameter 
defines how many trees compose the forest. Max 
depth defines the depth of each tree generated. The 
subset parameter indicates the number of subsets 
which the negative samples are separated into it.    

 
   Table 3 shows comparisons between our 
proposed EFRF algorithm and resampling 
techniques using precision, recall, β െ f െ
measure, GM, AUC, Cohen’s kappa, balanced 
accuracy and MCC metrics. The bold font refers to 
the best result of each dataset. The results achieved 
by EFRF are stable according to the rest of the 
methods. From these results, we can clearly observe 
that for all the datasets, the proposed algorithm 
yielded the highest results on β െ f െ measure, 
GM , recall , precision , Cohen's kappa , and 
balanced accuracy. AUC and MCC , for haberman, 
RF yielded the highest results, while for other 
datasets, cmc and glass 5, our proposed algorithm 
yielded the highest results. 

The roc curves show approximate results for 
resampling approaches compared with our 
proposed algorithm which are illustrated in 
Figures.8 ,9, and 10. 

Table3: Classification Results For UCI And KEEL Datasets Using Resampling Classifiers 

EFRFSmote+ RF RUS+RF ROS+RF Original Rf   
0.657 0.470 0.573 0.538 0.35 Β—f—measure  
0.685 0.625 0.658 0.661 0.545 GM Cmc 
0.661 0.484 0.646 0.590 0.318 Recall  
0.860 0.421 0.351 0.397 0.583 Precision  
0.316 0.276 0.238 0.283 0.300 Cohen’s kappa  
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    EFRF and cost-sensitive techniques performance 
are shown in Table 4 using precision, recall, β െ
f െ measure, GM, AUC, Cohen’s kappa, balanced 
accuracy, and MCC. The bold font points to the 
best result of each dataset. The results which are 
achieved by EFRF are stable according to the rest 
of the methods. Our approach achieves the best 
result on 2 datasets on β െ f െ measure, on 3 
datasets on GM, on 3 datasets on recall, on 3 
datasets on precision, on 3 datasets on Cohen's 
kappa, on 3 datasets on AUC, on 3 datasets on 
balanced accuracy, and on 2 datasets on MCC. The 
roc curves show approximate results for cost-
sensitive approaches compared with our proposed 
algorithm which are illustrated in Figures 11, 12, 
and 13. 

 
Fig.5. ROC For Cmc Dataset. 

 

 
Fig.6. ROC For Haberman Dataset 

 
Fig.7. ROC For Glass5 Dataset 

0.737 0.720 0.714 0.715 0.709 AUC  
0.689 0.645 0.658 0.666 0.626 Accuracy  
0.325 0.278 0.267 0.293 0.321 MCC  
0.778 0.333 0.588 0.389 0.277 Β—f—measure  
0.718 0.520 0.278 0.562 0.477 GM  
0.738 0.312 0.295 0.375 0.25 Recall Haberman 
0.915 0.454 0.254 0.461 0.5 Precision  
0.332 0.199  -0.020  0.233 0.192 Cohen’s kappa  
0.703 0.732 0.513 0.752 0.747 AUC  
0.718 0.589 0.481 0.609 0.580 Accuracy  
0.161 0.204  -0.053  0.235 0.209 MCC  
1.0 0.238 0.178 0.238 0.238 Β—f—measure  
1.0 0.780 0.662 0.780 0.780 GM  
1.0 1.0 0.452 1.0 1.0 Recall  
1.0 0.058 0.041 0.058 0.058 Precision  
1.0 0.069 0.035 0.069 0.069 Cohen’s kappa  
1.0 0.719 1.0 1.0 0.658 AUC Glass5 
1.0 0.804 0.719 0.804 0.804 Accuracy  
1.0 0.189 0.135 0.189 0.274 MCC  



Journal of Theoretical and Applied Information Technology 
29th February 2020. Vol.98. No 04 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
608 

 

Table 4: Classification Results For UCI And KEEL Datasets Using Cost-Sensitive Classifiers 

 

 
Fig.8. ROC for Cmc dataset 

  
Fig.9. ROC for Haberman dataset 

 

EFRF EFSVM SmoteBoost RUSBoostGradientBoostingAdaboost   
0.657 0.652 0.339 0.371 0.386 0.220 Β—f—

measure 
 

0.685 0.0 0.527 0.554 0.567 0.425 GM Cmc 
0.661 0.224 0.333 0.363 0.378 0.196 Recall  
0.860 0.706 0.366 0.406 0.423 0.419 Precision  
0.316 0.0 0.172 0.218 0.238 0.145 Cohen’s 

kappa 
 

0.737 0.689 0.691 0.641 0.669 0.691 AUC  
0.689 0.593 0.583 0.605 0.614 0.559 Accurac

y 
 

0.325 0.190 0.172 0.218 0.239 0.160 MCC  
0.778 0.783 0.214 0.328 0.384 0.217 Β—f—

measure 
Haberman 

0.718 0.0 0.418 0.513 0.555 0.423 GM 

0.738 0.262 0.187 0.312 0.375 0.187 Recall 

0.915 0.818 0.5 0.416 0.428 0.6 Precision 

0.332 0.0 0.151 0.170 0.205 0.183 Cohen’s 
kappa 

0.703 0.679 0.402 0.576 0.686 0.416 AUC 

0.718 0.531 0.560 0.578 0.598 0.571 Accurac
y 

0.161 0.063 0.178 0.173 0.206 0.229 MCC  
1.0 0.317 0.227 0.208 0.25 0.238 Β—f—

measure 
 

1.0 0.0 0.765 0.732 0.796 0.780 GM  
1.0 0.023 1.0 1.0 1.0 1.0 Recall  
1.0 0.409 0.055 0.05 0.062 0.058 Precision  
1.0 0.0 0.062 0.052 0.076 0.069 Cohen’s 

kappa 
 

1.0 0.170 0.658 1.0 0.817 0.682 AUC Glass5 
1.0 1.0 0.792 0.768 0.817 0.804 Accurac

y 
 

1.0 1.0 0.180 0.163 0.199 0.189 MCC  
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Fig.10. ROC for Glass5 dataset 

 
5. CONCLUSION 
 
   Many standard classification techniques are 
leading to a weak performance on unbalanced 
trouble because they have been designed to deal 
only with balanced cases. Even though, RF has a 
strong performance on unbalanced datasets, it 
attaches the same significance to each training 
instance.  
Computing the fuzzy membership to suits 
imbalanced classification problem is the key to 
robust classification algorithm that leverages the 
advantages of the ensemble of decision trees 
with the flexibility of fuzziness. To solve the 
inherent trouble of RF, many researchers applied 
fuzzy memberships to the training instances to 
show the various important of them. The base 
point is how to locate the fuzzy membership. 
For addressing this challenge, we proposed 
EFRF algorithm that uses an EbFM valuation for 
unbalanced datasets. Virtually, it foremost 
computes the entropy of the negative samples in 
consideration of the corresponding nearest 
neighbors. Hence, the negative class is separated 
into various subsets based on the entropy. 
Eventually, assign a fuzzy membership (weights) 
to the samples in each subset. 
For the positive class, a large fuzzy membership 
is assigned to each positive instance (for 
example: 1.0), to ensure the significance of the 
positive class. So, EFRF produces flexible 

decision surfaces than RF on the unbalanced 
datasets. 
EFRF is tested on 3 UCI and KEEL datasets with 
using real diabetes mellitus clinical datasets. The 
experiments results on unbalanced datasets 
confirm that EFRF performs better than the 
compared algorithms. EFEF algorithm uses 
entropy to pay more attention to the samples with 
higher class certainty to result in more robust 
decision making to avoid losing information like 
other under sampling algorithms. It guarantees 
the importance of the positive samples through 
making the weight of all positive samples are 
equal to 1.0 which leads to iteration reduction. 
 
The proposed algorithm is better than the 
compared algorithms which are depending on 
SMOTE. This is because SMOTE calculates knn 
based on positive samples only, while our 
proposed algorithm calculates it based on 
positive and negative samples together. Also, our 
proposed algorithm reduces the overfitting 
compared with other algorithms which depend 
on oversampling technique. Also, EFRF is better 
than EFSVM because EFRF uses RF which 
depends on bagging technique. Bagging idea is 
to create several subsets of data from training 
sample chosen randomly with replacement and 
each collection of subset data is used to train 
each decision trees. So, EFRF allows appearance 
of positive samples more than EFSVM. 
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Overall, the proposed algorithm showed 
promising results compared to other imbalanced 
classification techniques including EFSVM 
technique [9] that we adopted our proposed 
algorithm from it. It featured both high precision 
and high recall which makes it a perfect choice 
for security-wise application. 
 
6. FUTURE WORK 
 
In the future , we will use the map reduce 
technique for "classification the imbalanced Big 
Data" using our proposed classifier. 
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