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ABSTRACT 

The key contribution in this research work is introducing a technique that can be used to avoid unknown 
objects to a mobile robot. Most vision-based obstacle avoidance systems tend to have high computational 
complexity in order to compensate for accuracy. The proposed method tries to overcome that using pattern 
recognition of two laser pointers in the view of a single camera. This vision combination along with the 
program that runs on a base station is designed as a module that detects objects around the robot. Such 
obstacles are detected by calculating the intensity of the red laser points found on each frame being 
captured by the camera in real-time. Distance and angle to the objects is measured using Lagrange 
interpolation formula applied separately to each laser projection in the framed image. A map is created to 
show the robot’s actual distances versus estimated ones as the robot keeps track of objects which are in the 
camera’s view. The algorithm successfully manages to avoid obstacles as shown in the experiments. The 
effectiveness of the proposed system is evaluated by deploying the robot and performing a simple 
navigation task. The results show that the concept algorithm along with the hardware module is able to 
utilize the monocular vision with classification error of 3.63%. 
Keywords: Monocular Camera, Obstacle Avoidance, Distance Measure, Lagrange Formula, Mobile 

Robots 
 
1. INTRODUCTION 

 
A very important aspect in the problem 

of navigation is obstacle avoidance. Sensor-
based approaches are typical research solutions 
to robotic obstacle avoidance and are well-
investigated [1, 2]. In the sensor-based 
navigation work carried out in the literature, 
most obstacle avoidance applications are 
accomplished using ultrasonic, infrared, or laser 
sensors. The overall sensing system is 
responsible to scan and detect obstacles. Once an 
obstacle is detected in the robot’s path, the 
control is taken by the vision system at which 
some calculations have to be performed. The 
control is then given back to the robot’s vision-
based processing when the obstacles are no 
longer in sight. Despite that fact it is more 
common to use ultrasonic sensors in such case, it 
is interesting to have a backup vision-based 
avoidance should such sensors fail to operate. 
Also, humanoid robots definitely rely in their 
vision and navigation system on stereo cameras 
rather than regular ultrasonic or sonar sensing 
units. Humanoids and advanced robotics focus 
on imitating human behavior where humans use 

vision for obstacle avoidance when navigating. 
Therefore applying such capabilities in a robotic 
system is worthy. 
 
When it comes to vision-based depth perception, 
there are three categories of approaches that can 
be used to extract features and depth perception 
from a two-dimensional frame. They can be 
categorized as monocular vision [3, 4], stereo 
cameras [5], and motion parallax [6]. Many 
researchers have studied stereo vision and this 
category is considered the most common area. 
However, in order to have simplified hardware 
configuration, mono cameras has caught 
researchers’ attention especially when designing 
decentralized robotic systems. Depth obtained 
from motion or optical flow in buffered images 
is called motion parallax [7]. This approach 
basically works by discovering correspondence 
between specific pixels in several buffered 
frames divided over Cartesian space or time 
which is called optical flow of images. When an 
accurate correspondence of a particular pattern is 
found, this method successfully obtains depth 
estimates very precisely. However, it is 
computationally expensive to search for such 
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pixel patterns, this process can dramatically slow 
down the robot’s overall vision performance. 

 
In this paper, we present an integrated 

vision-based algorithm that runs on a mobile 
robot to allow it to simultaneously navigate and 
avoid stationary as well as moving obstacles 
using monocular camera images. Despite the fact 
that simultaneous localization and mapping 
(SLAM) is partially implemented in the 
proposed system, the key contribution of this 
work is to develop a robotic vision-based 
obstacle system that uses simpler and lower cost 
hardware components. The vital components are 
basically, a single camera and a couple of laser 
emitting devices mounted in the front so that 
their emitted light can be seen by the camera. In 
the experiment, the obstacle-avoidance capability 
successfully detects and avoids objects even if 
they are moving, despite the computational 
limitations of hardware mounted on the robot. 
The robot communicates with a central station 
that runs a pattern recognition program. 
 
2. LITERATURE REVIEW AND 

CONTRIBUTION 
 

Many research articles have been 
introduced in machine vision for mobile robotic 
systems. Scott Lenser el. al.[8] designed a vision 
algorithm to detect obstacles which allows 
partial identification of objects. The objective is 
to enable the robot to selectively avoid unknown 
obstacles while recognizing the desired objects. 
However, their main contribution is the 
introduction of a vision hardware mounted on 
the robot that can adapt to different background 
colors. The designated electronics allowed the 
robot to follow white lines on the floor while 
avoiding a white wall. However, unlike our 
approach, their technique requires that the floor 
must have a uniform color. 

  
Other approaches such as [9, 10] require 
additional vision onboard equipment that are 
dedicated to depth perception. Such application 
can be found in automobiles, more specifically; 
head-up displays which can be used in automatic 
driving (auto-pilot) and the overall awareness of 
the surroundings[11]. Some other systems 
require a wireless communication to a 
centralized computer. In robotic systems, 
however, many of the related vision approaches 
are based on detecting objects according to their 
heights in the surrounding environment. 

 
An omni-directional camera is used in the OMNI 
RoboCup [12] which is a team of mall-size 
robots. Each robot sees its surroundings by 
segmenting the image based on background 
color to find an open way to go. However, their 
algorithm may get confused with big obstacles 
and sometimes is not able to handle areas 
consisting of multiple or overlapping colors. 
Ulrich and Nourbakhsh [13] use a gray scale 
histogram to segment images captured by an 
omni camera into partitioned floor and obstacle 
regions. They also use transformation operation 
per pixel which consequently increases the 
complexity of the algorithm. 
 
Reactive approaches can also be used to 
visualize objects. For example, the optical flow 
method used in [14] can estimate the relative 
distance to an object in a quadrotor robot by 
detecting changes in the size of the object in the 
image. However, this method is limited to side-
view cameras, because the optical flow of size 
changes of obstacles which appear in the sides is 
much slower than that of frontal ones. Next to 
optical flow approaches, many researchers 
introduced fusion algorithms as an attempt to 
enhance the obstacle detection accuracy. For 
example, C.S. Dima et al.[15] introduced a 
fusion algorithm to classify objects in images by 
developing a technique that combines color and 
infrared images along with relative 
measurements from proximity rangefinder 
sensors. Their experiment has been depicted in 
images and was conducted outdoors in 
autonomous off-road navigation [16]. The results 
showed a high success rate, however their 
algorithm is highly dependable on supervised 
learning and labeling data.  On the other hand, A. 
Vatavu et al. [17] proposed a method that take 
advantage of objects associations in order to 
detect obstacles using multiple sensors. The 
results showed a high detection rate with 
minimal errors. Other types of fusion algorithms 
have also been implemented to detect obstacles 
within another type of sensors [18, 19]. In some 
other proposals, GP Stein et. al. [20] introduced 
a technique to detect relative size change in the 
image frame of approaching objects. Lin and 
Song [21] proposed a method using an imitation 
learning algorithm, in which multiple optical 
flow cues and visual features are used to detect 
moving objects in the image.  
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When the robot is fitted with two cameras at the 
front, stereo vision methods can be used to 
obtain a depth perception [22]. In [23], a MAV 
(Micro Arial Vehicle) robot is wirelessly 
connected to a laptop which runs a SLAM 
(Simultaneous localizing and Mapping) 
algorithm based on data generated by ultrasonic 
sensors. The same scenario is also presented by 
Blösch et al. [24] however, in their work; authors 
demonstrated visual localization using a single 
camera to perform a SLAM procedure in 
structured environment rather than relatively 
unknown surroundings. Because images are 
inexpensive to acquire, and unlike classical two-
view stereo methods, multiple images of the 
environment can be used to generate more 
accurate depth maps. For instance, Newcombe et 
al. [25] proposed in their DTAM approach, the 
idea of adding up hundreds of images before 
generating a depth map. Their approach 
however, only tried to avoid collisions and does 
not necessary detected the exact distances. The 
collision avoidance technique simply detects the 
differences in object size in the various images  
 
The outdoor MAV robot in [26] is fitted with a 
joint combination of a mono camera for obstacle 
detection and a GPS system for position control. 
When only a single camera is available (as an 
attempt to reduce costs), stereo vision can also be 
generated using several consecutive images 
taken from the same camera at the moment when 
the camera is moving. This is a part of motion 
parallax operation as discussed before. However, 
the challenge of working with cameras is that the 
system has to deal with a high level of noise that 
is typically associated with data obtained from 
stereo vision. Moreover, stereo-vision detection 
usually has a limited and narrow field of view 
which may degrade detection accuracy as the 
distance to the obstacle increases. Indoor MAV 
was investigated in [27], H. Madokoro et al. 
demonstrated an indoor SLAM integrated on a 
MAV using a monocular camera without the use 
of central station; however their system did not 
utilize object detection and classification. In 
general, the use of cameras in detecting obstacles 
may result in substantial increase of computation 
load. Just replying on a mono or stereo cameras 
is not feasible. There will always be a tradeoff 
between the accuracy of distances being detected 
and the computational time. The suggested 
proposal here tries to overcome such drawback 
by utilizing laser pointers that illuminate pixels 
of specific range in the view of the camera. The 

computational load will then be dramatically 
reduced because only smaller amount of pixels 
are analyzed by the software module.  
 
The proposed Module uses a high-level 
environment-independent algorithm for vision-
based navigation. The proposed methodology 
excels on previous obstacle avoidance techniques 
because it is able to handle a different kind of 
environments. Particularly, the technique 
integrates two popular distance measurement 
algorithms namely langrage and approximation 
formulas. Field environments in which the robot 
was tested include spaces in which the ground 
may have variety of visual texture such in 
outdoor scenarios.  
 
This paper is organized as follows; section 3 
brings into discussion the vision system and its 
components. More details on the vision 
algorithms are also introduced. Section 4 
presents the experimental evaluation and a 
sophisticated description on the hardware of the 
designated robot. And finally, section 5 and 6 
draw out a conclusion and future ideas. 
 
3. VISION SYSTEM 
 

The idea is inspired by simplified 
pattern recognition of a particular region of 
pixels. In order to make the robot perceive and 
understand its distance from surroundings, the 
vision problem can be formulated as a depth 
estimation procedure performed over frames of 
the input image.  
 
The algorithm uses the well-known Lagrange 
interpolation formula to predict the distance to an 
obstacle. The prediction is based on the actual 
buffered images from the camera and the 
embedded laser dots. In the proposed system 
there are actually two laser dots that are 
positioned at the right and left center of the 
captured images. Consequently, there are two 
depth perception ways that in turn will read the 
left and right distances. The robot uses these 
distances to decide which way to go. If the two 
distances are equal, the robot simply backs up 
and turns to one side in random. The algorithm 
works by going through all the pixels in the 
buffered image. The robot interacts wirelessly 
with a centralized computer where the algorithm 
is executing.  
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The algorithm begins by going through each 
pixel and a number of steps are repeated 
infinitely as long as the robot is moving. 
Scanning for the X,Y pixels is initialized after 
40% in the Y-coordinate where the special RGB 
pattern is most likely to be, whereas, the initial 
X-coordinate is 0. Within the body of this loop 
the algorithm checks if the current pixel is in the 
filter's range by analyzing the pattern. Once the 
algorithm finds the special RBG pattern 
indicating the left laser dot, then it sets the 
current location’s X (lo_x) value to the current X 
when the left pixel detected is less than the left 
laser dot location. If the right pixel detected is 
more than the right laser dot location set the 
current location’s X (hi_x) value to the current 
X. The current location will be later sent to 
Lagrange procedure in order to determine the 
distance. Algorithm 1 is illustrates the above 
steps    
 
First of all, the distance threshold at which the 
robot should not move any further is set at 0.3 
meters. Hence, the threshold is set at 30 cm. At 
this point the robot turns to a particular direction 
based on calculations as described in the 
following algorithms.  
 
obstacleDistance  0.3 (threshold); 
 
Algorithm_1  processImage(image) 

     

1. w  image_Width; 

2. h  image_Height;  

3. current_loX  ∞ 

4. current_hiX  െ∞ 

 

5. for each y starting from 0.4*h to h  

6. Begin_for 

7. for each x starting from 0 to w     

8. Begin_for 

9. if In_Color_Range(x,y) { 

10. if (current_loX > x) { 

11. if ((x+1 < w) and (y-1 > 0) and(y+1 < 

h) and In_Color_Range( x+1, y) and 

12. In_Color_Range(x+1, y-1) and 

In_Color_Range(x+1, y+1))  

13. { 

14. Current_loX  x; 

15. x  x+1; 

16. }          } 

17. if (current_hiX < x)  

18. if ((x-1 > 0) and (y-1 > 0) and (y+1 < 

h) and In_Color_Range(x-1, y) and 

In_Color_Range(x-1, y-1) 

and In_Color_Range(x-1, y+1))  

 

19. Current_hiX  x;          } 

20. End_for 

21. End_for 

22. Returns current_loX and current_hiX 

23. End procedure 
 
A small microcontroller is responsible to fetch 
images off the camera and together with the 
onboard electronics, the robot’s main chip 
communicates with a program running on a 
central desktop computer. The software is 
embedded with a bunch of routines. The second 
algorithm searches for the laser dots in the image 
after it is converted to frames in a buffer. This is 
accomplished by converting the pixel into its 
RGB composition. This procedure is carried out 
by the function In_Color_Range. Since each Red 
, Green or blue value is in the range of [0 .. 255] , 
the In_Color_Range  function checks  if the 
RGB values lie within a specific range and 
returns “True” if the condition is satisfied. The 
function is shown in algorithm 2 as follows: 
 

   Algorithm 2:  In_Color_Range(x,y) 

 

1. Color  getRGB(x,y) 

2. r  color.red; 

3. g  color.green; 

4. b  color.blue; 

5. if (r > 240) and (120 < g < 230) and 

(120 < b < 230)) 

6. return true 

 
3.1 Lagrange Formula 

 
When the required pixels that indicate 

laser dots on the image are found, Lagrange 
interpolation polynomial can be used to generate 
polynomial functions and to predict the most 
fitted curve of values that thereafter can be used 
for numerical analysis. The interpolating 
polynomial is embedded within the program and 
it is executed in real-time. The integrated 
polynomial should be of the least square degree 
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in order to maximize the accuracy of the fitting 
curve that is exists between the data points. 
Lagrange estimation method is applied 
particularly on pixels of interest indicating the 
laser dots (X-coordinates) in the famed image; 
therefore, Y-values are computed when the 
training data follows a uniform consistent 
arrangement. The interpolation function  𝑓ሺ𝑥ሻ, is 
given in the following equation  

 
𝑓ሺ𝑥ሻ ൌ 𝐿௡,଴ሺ𝑥ሻ 𝑦ሺ𝑥଴ሻ ൅ 𝐿௡,ଵሺ𝑥ሻ 𝑦ሺ𝑥ଵሻ ൅ ⋯ ൅
 𝐿௡,௡ሺ𝑥ሻ 𝑦ሺ𝑥௡ሻ                        

 ൌ ෌ 𝐿௡,௞ሺ𝑥ሻ 𝑦ሺ𝑥௞ሻ௡

௞ୀ଴
    (1) 

 
Where 𝐿௡,௞ሺ𝑥ሻ are the LaGrange basis 
polynomials defined by 𝐿௡,௞ሺ𝑥ሻ ൌ ∏ ௫ି௫೔

௫ೖି௫೔

௡
௜ୀ଴  

and 𝐿௡,௞ሺ𝑥௜ሻ ൌ 0 , 𝐿௡,௞ሺ𝑥௞ሻ ൌ 1 
 

In the LaGrange equation (1), 𝑓ሺ𝑥ሻ represents 
the distance in meters for 𝑛 points. X-coordinate 
is the position of the pixels of interest within the 
frame. The interpolation of X against the reliant 
variable 𝑌 is generated using the formula in real-
time. Algorithm 3 uses these values given in the 
table initially and tries to predict upcoming real 
distances based on the position values of the 
intended pixel in the 2-D world. Some values 
will be similar to the values given in the table. 
The training set is composed of 𝑛 records 
denoted by ሺ𝑥ଵ, 𝑦ଵሻ, … , ሺ𝑥௡, 𝑦௡ሻ. It is supposed 
that 𝑌 is the distance in meters, these values 
specify the vector of points �⃗�௜ by performing the 
mathematical prediction code found in line 6 in 
algorithm (3). The formula tries to predict values 
which form a line that fits the collection of �⃗�௜ 
vectors based on values of 𝑦௜′𝑠 out of the Y 
coordination. Table 1 shows the learning set for 
each pixel’s 𝑋 locations and the corresponding 𝑌 
values which represent distances in meters. The 
pixel position will be fed to Lagrange 
interpolation function and the output will be the 
predicted distances.  

Table 1: learning set (pixel values and corresponding 
distances) 

Position (pos) Value (meters) Val 

0 0.06 

1 0.065 

5 0.067 

10 0.07 

30 0.075 

50 0.08 

70 0.15 

96 0.28 

128 0.56 

135 0.84 

143 1.12 

150 1.4 

The system proceeds to predict the relative 

distances to obstacles using Lagrange formula 

and converts the distance which is initially 

computed as pixel distance to real distance in 

meters. Once the distances of both lasers are 

calculated the algorithm decides which direction 

to turn to depending on those two values, the 

bigger the difference between the two the smaller 

the rotation angle is. Algorithm 3 shows the 

Lagrange interpolating procedure.  
 
Algorithm 3: lagrange_Interpolating 

(desiredPos, matrix pos,val) returns retVal 

1. retVal  0; 

2. for each i  from 0 to pos_length  

3. Begin_for 

4. weight  1; 

for each j from 0 to pos_length 

{ 

5. Begin_for 

if (j ≠ i) { 

weight  weight *(desiredPos 

– pos(j)) / (pos(i) – pos(j)); 

} 

6. j  j +1;   

7. End_for 

 

8. retVal  retval+(weight * val(i)); 

9. i  i + 1       

10. End_for 

11. return retVal   

 
4. EVALUATION 

 
The system is tested on robots that are 

configured with latest hardware devices and 
parts. The following subsections show the 
hardware configuration of one particular robot as 
well as a discussion of a simple task and the 
relative results. The robot is actually controlled 
by commands being sent from the base station 
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whenever it encounters an obstacle. Any other 
simple subtasks are performed by a small routine 
running on the robot’s circuit board. 

 
4.1 .Setup 

A specific program that runs on a small 
robot is designed to tolerate sensor failure by 
adapting redundant obstacle detection schemes. 
From the hardware point of view, the robot is 
controlled by a circuit board, which consists of a 
1000 MIPS 500MHz processor of type PIC33EP 
digital microcontroller, which operates at a clock 
speed of 60.07MHz. The communication module 
attached to the board is an XBee S1802.15.4 1 
serial modem that operates at 1 𝑚𝑤 (mili Watts). 
One of the key requirements in the hardware 
design is to provide a steady clock for the high-
speed serial communications with negligible 
timing errors, a 6.38 MHz clock was chosen, and 
a 7V-24V DC voltage regulator, and 
digital/analogue of headers for peripheral 
ultrasonic and sonar sensors.  
 
The robot is also equipped with a single 
monocular camera of type Omnivision OV9655 
1.3 megapixel 160x128 to 1280x1024 
resolutions [28]. Two laser pointers emit a red 
laser light that reflects on obstacles in front of 
the robot as it wanders around as shown in figure 
1. Therefore, these two laser dots will always be 
in the sight of the robot’s camera. The output of 
the camera along with the reflection of laser 
lights are fed as an input to the higher level 
control algorithm running on a computer. The 
communication is achieved using wireless LAN 
at 30 fps (frames per second). The robot and 
interacts wirelessly within 802.11b/g Wi-Fi 
interface. The robot is also equipped with a 2-
DoF (Degree of freedom) gripper at the front. 
The gripper can be used in some other tasks as 
well. The software module runs on a computer 
powered by Intel Core i7-3122 CPU. The 
wireless communication channel allows multiple 
robots to communicate with each other and the 
base station should there be more than a single 
agent.  
 

 
Figure 1: robot with mono camera and two lasers  

 

 

 
 

Figure 2: Laser dots and Distance being measured 
 
4.2 Obstacle Avoidance Experiments 

Figure 2 shows the real distance being 
calculated and the action being taken by the 
robots as it wanders around the room. The figure 
also shows the laser dots reflected on the wall. In 
terms of number of obstacles avoided, the 
success ratio is 92%. Table 2 shows the 
experimental results. In order to make the robot 
learn estimating distances to obstacles in an 
indoor scene, multiple runs have been conducted. 
The robot has been tested 25 times through this 
experiment course. Theoretically, the proposed 
setup should work fine; however, there are 2 
failure cases where the robot was not able to 
avoid the obstacles. Such rare failures could be 
caused by the high proximity of the camera to 
the ground and bad lighting that does not provide 
enough color separation (contrast) in the 
captured image. The speed of the robot is also 
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vital. Another factor is that the wireless 
communication and sending video frames to the 
main computer has to catch up with the speed of 
the robot. The bad lighting circumstance has 
been exploited to test the performance of the 
image processing technique in these kinds of 
environments.  

Table 2: Results of total 23 runs 
 Total  Success Failure Ratio 
Run 25 23 2 92% 
Objects 14 13 1 92.8% 
 
Figure 3 shows the trajectories of three 
consecutive runs. The system is tested 
thoroughly in an environment which contains 
various different color objects and shapes. The 
robot wanders around and successfully avoids 
obstacles as long as the objects are high enough 
to be seen by the robot. Obstacles that appeared 
suddenly within close range were also avoided 
by the robot. Time delays associated with image 
processing were handled by using relatively fast 
communication provided by the hardware and 
the procedures as discussed in section 2.  
 
The behavior of the robot as can be seen in the 
figure tends to have different paths in each run 
but the overall movement is almost the same. 
While navigating the obstacles that happen not to 
be in the view of the camera are detected and 
avoided using two sonar sensors attached to the 
sides and at the rear. Such situation would occur 
when the robot is backing up.  A set of 
waypoints are generated in real-time as the robot 
wanders around. At each point the distance 
between the robot and the obstacle is measured 
so that the differences and margin of error can be 
calculated and compared with the estimated 
distances calculated by the laser scan along with 
the mounted camera, as depicted in figure 4. The 
waypoints are initially created virtually. To show 
a graphical motion view of the robot within the 
experiment area, a map is generated using the 
LabVIEW [29] virtual platform to display the 
robot’s maneuvers. There has been much 
emphasis in obtaining a uniform and consistent 
behavior from the robot in the multiple runs. The 
primary solution is directly related with the very 
design of the robot.  

 
Figure 3: The navigated path of the robot 

 
A rigid frame is the evident factor which saves a 
lot of effort in maintaining consistent paths and 
the overall structure integrity. The application of 
threads instead of rubber wheels also helped in 
obtaining high level of precision while turning 
and maneuvering. For obstacles that may appear 
in the back or on the sides of the robot, a set of 
ultra-sonic sensors have been used. The onboard 
computer receives data from sensors and 
manages the motion. 
 
As the robot moves, the current Cartesian 
location at which it detects an obstacle is stored. 
At the same moment, the current location of the 
robot is recorded as well. A line is drawn from 
the previous waypoint to the current one in order 
to show the path being travelled. Once the robot 
gets to the goal, the final location is registered on 
the map. Out of the 950 waypoints that have 
appeared in the path where the robot is 
navigating, only 33 were miscalculated as shown 
in figure 4 with red notes (dots). The relationship 
between actual and estimated distances is 
compared using the blue (notes) crosses as seen 
in the figure. Five out of the 33 waypoints appear 
to have been mistaken by unexpected pixel 
position values in the training data shown in 
table 1, while the rest of the errors are resulted 
by bad environment conditions such as bad 
lighting causing a classification error of 4.7%.  
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Figure 4: Actual vs. estimated distances 

 

The 5 values of invalid pixel positions have been 
corrected, resulting in a classification error of 
3.63% where the error is the square root of mean 
differences between the estimated and actual 
values. 

 

Figure 5: Processor usage in run time 
 

Validating the effectiveness of the system has 
been shown and investigated in the figures 
above. Additionally, another important aspect of 
the presented work that should be addressed is 

the analysis which evaluates the efficiency of the 
system from the processor perspective. It is 
important to mention that even though the 
avoidance and recognition program runs on a 
base station, the onboard camera module is 
responsible to capture images in real-time. 
Figure 5 shows the percentage of usage for the 
onboard microcontroller during running time in 
the experiment. 
 
Typically, navigation is not the only task that is 
assigned to the mobile robot. For that reason, 
power saving is of great concern in this scenario. 
Most power is consumed by the servo motors 
attached on the wheels. However, using the 
proposed approach greatly enhances power 
reservation. Having in mind that the mobile 
agent is running using batteries, the system 
should be evaluated in terms of power 
consumption. This is one of the objectives that 
are going to be discussed in future research.  
 
More specifically, the process that utilizes 
LaGrange equation does not require supervised 
learning unlike the fusion-based approaches 
discussed before. Table 3 brings into discussion 
the major limitations concerning the current 
approaches. Consequently, the main contribution 
behind this work will be more understood. The 
table also projects the position of the proposed 
work amongst other approaches. Moreover, the 
proposed approach can be combined with other 
type of cues. As the matter of fact, the given 
approach can be extended using multiple 
cameras so that consecutive images can be used 
to determine the relative object size and shape.  
 
5. CONCLUSION 

 
In this paper, a new approach to 

obstacle avoidance for a robotic agent that has 
only a single monocular camera has been 
introduced. Each of the current proposals in 
vision-based navigation has its own limitations 
in terms of efficiency and adoptability. This 
work brings up a total new concept in robot 
navigation and avoidance context.  
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Table 3: Comparison And Key Features Of Current Approaches. 
    Approach Method Remarks References 
Monocular camera -Partial identification 

(perspective) 
-Segmenting the image 

-Mainly uses size expansion 
cues (not good for frontal 
objects).  
- Works perfectly in known 
environments. 
-cannot detect distances, it is just 
used to detect approaching 
obstacles. 

[3, 4, 8, 9, 11-13] 

Stereo vision Depth perception using two 
images. 

-Need a great amount of 
resolution. 
- can be combined with optical 
flows. Especially in obstacle that 
appear in the front.  

[5, 22-26] 

Optical flow -Buffered frames. 
-Reactive methods 

- Difficult to be used to avoid 
frontal obstacles 
-Mainly relies on motion flow 
that requires high resolution in 
the camera.  
- Sometimes its combined with 
stereo vision in order to 
overcome the problem that 
occurs in frames, where the flow 
is proportional to the angle of 
the obstacle 
- Requires supervised learning  

[6, 14-16, 18-21] 

Proposed approach - A combination of laser 
pointers and pattern 
recognition module. 
- Training set of data of pixel 
intensities and corresponding 
distances. 

-Less computation required. 
- Does not impose particular 
kind of environment. 
- Able to handle fast changes in 
shapes and overlapping colors. 
- Works perfectly indoors. Also 
works outdoors if there is no 
saturation in the image. 

 

 
Despite the fact that the robot is performing a 
simple navigation task, the control program can 
take a big advantage of images captured by the 
camera in real time. These images are used to 
compute a regularized depth perception that can 
help in navigation. Consequently, the system can 
be integrated in any mobile robot regardless to 
what the robot is primarily designed for. As long 
as the robot is equipped with a wireless module, 
the software routine will be able to perform its 
calculations and suggest the best move to the 
robot. The curvy trajectories and path waypoints 
that describes the theoretical maneuver route 
shows that the system can detect various 
distances by applying a prediction formula 
against the 2-D pixel values being read after 
digitizing the image into pixel locations 
(sampling) and values (quantization), The path 
has been divided into several waypoints with 
high rate of precision.  

The distance measurement module integrated in 
the system showed a great amount of accuracy in 
real-time. The module is based on the well-
known Lagrange formula. Specific pixel depth 
and patterns are fed to the module and converted 
to real distances to the upcoming obstacles as the 
robot moves. The results described in the 
evaluation indicate a high performance of the 
proposed approach.  The estimated waypoints 
show that the combined module enhances 
detection which directly influences decisions in 
maneuvering and navigating.  
 
6. OPEN RESEARCH AND FUTURE 

WORK 
 
As for the future work, since the robot 

is equipped with a camera and is communicating 
with a base station, object recognition can be 
used as well in order to identify the surrounding 
objects. Therefore, an object detection routine 
can be added to the module.  
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One of the interesting ideas would be the 
integration of the proposed system in cars. 
Modern technology in automobiles has been 
improved to the point by which cars can drive 
themselves using a group of sensors and 
cameras. The system would definitely benefit 
from the onboard cameras and would work as an 
assist in the function of autopilot. All modern 
cars are equipped with multiple computers each 
with a different functionality. The onboard 
diagnosis system (OBD-II) is the interface that 
can be used to communicate with the car and its 
peripherals/sensors. Therefore, it is possible to 
connect with the car’s vision system. Most vision 
systems in this context are composed of 3 to 4 
cameras on the different sides. Artificial 
autonomous driving is an emerging field that has 
been taken seriously by car manufacturers in past 
couple of years. Hence, communicating with the 
car through OBD-II and interfacing with its 
vision systems is the next step.      
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