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ABSTRACT 
 

This scientific report illustrates the performance evaluation of the well-known, recently popular neural 
network Connectionist Temporal Classifier (CTC) for speech recognition. The CTC contains LSTM layers 
with 256 cells and Momentum Optimizer with learning rate 0.005 and momentum 0.9. Dataset that we have 
used has 35 native speakers with 360 utterances. For expanding the size of our dataset with overall 
performance augmentation techniques has been applied using Adobe Audition software, which output 20 
more speakers to our original dataset. The result of our experiment has been evaluated with LER (Label 
error rate). LER measures the inaccuracy between predicted an actual texts. The output of the experiment 
reported training LER 0.000 and validation LER 0.5.   

Keywords: Recurrent Neural Network, Language Model, Acoustic Model, CTC, Data Augmentation, Time 
Warping.  

 
1. INTRODUCTION  
 

Today’s speech-recognition system always has 
been developed based on statistical requirements. A 
generative statistical model (source channel model) 
results in problems in speech recognition area.  As 
shown in Figure 1, the speaker first thinks of a 
word sequence W in the mind, after which this 
sequence passes through speaker’s text generator. 
This sequence enters to communication channel 
component through his speech generator and signal 
processing component before passing through a 
decoder. After, the decoder decodes the created 
acoustic wave signal to the word sequence. 

Decoder 
The RNN encoder-decoder is a neural network 
model that directly computes the conditional 
probability of the output sequence given the input 
sequence without assuming a fixed alignment, i.e. 
P(y1, . . . , yO|x1, . . . , xT) where the lengths of the 
output and the input, O and T respectively, may be 
different. For speech recognition, the input is 
usually a sequence of acoustic feature vectors, 
while the output is usually a sequence of class 

indices corresponding to units such as phonemes, 
letters, HMM states, or words. The idea of the 
encoder-decoder approach is that for each output 
yo, the encoder maps the input sequence into a 
fixed-length hidden representation co, which is 
referred as context vector. From the previous output 
symbols and the context vector, the decoder 
computes 
 
P൫yଵ,…,yหxଵ,…,xሻ = ∏ Pሺy୭|yଵ, … , y୭ିଵ, c୭ሻ

୭ୀଵ . 
 
Since the probability P൫yଵ,…,yหxଵ,…,xሻ is 
conditioned on the previous outputs as well as the 
context vector, an RNN can be used to compute this 
probability which implicitly remembers the history 
using a recurrent layer. 
 

Let yo be a vector representation of the 
output symbol yo, where yo is a one-hot vector 
indicating one of the words in the vocabulary 
followed by a neural projection layer for dimension 
reduction. The posterior probability of yo is 
computed as 
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Pሺy୭|yଵ, … , y୭ିଵ, c୭ሻ ൌ gሺy୭ିଵ, s୭, c୭ሻ 
s୭ ൌ fሺy୭ିଵ, s୭ିଵ, c୭ሻ, 

 
where so denotes the output of a recurrent hidden 
layer f(ꞏ) with inputs yo−1, so−1, and co. g(ꞏ) is a 
softmax function with inputs yo−1, so and co. We 
condition both f(ꞏ) and g(ꞏ) on the context vector to 
encourage the decoder to be heavily reliant on the 
context from the encoder. The previous output 
yo−1 is also fed to the softmax function g(ꞏ) to 
capture the bigram dependency between 
consecutive words. We have also investigated a 
simpler output function without the dependence on 
the previous output yo−1, i.e. P(yo|y1, . . . , yo−1, 
co) = g(so, co). 
 
Encoder.As discussed above, the computation of 
the conditional probability relies on the availability 
of the context vector co for each output yo. The 
context vector is obtained from the encoder which 
reads the input sequence and generates a continuous 
space representation. The context vector co is 
obtained by the weighted average of all the hidden 
representations of a bidirectional RNN (BiRNN): 

 

c୭ ൌ  α୭୲h୲

୲

 

 

where αot ∈ [0, 1] and ∑ α୭୲୲ ൌ 1; h୲ ൌ ൫h୲
ሬሬሬ⃗ , h୲

ሬሬሬ⃗ ൯ 

and h୲
ሬሬሬ⃗ , h୲

ሬሬሬ⃗  denote the hidden representations of xt 
from the forward and backward RNNs respectively. 
The context vector co is global, for instance, co = 
hT. This means the context vector does not depend 

on the index o, meaning that the whole input 
sequence is encoded into a fixed vector 
representation. This approach has produced state-
of-the-art results in machine translation when the 
dimension of the vector is relatively large[9]. When 
the model size is relatively small, however, the use 
of a dynamic context vector has been found to be 
superior, especially for long input sequences. 
 

The weight αot is computed by a learned 
alignment model for each co, which is implemented 
as a neural network such that 
 

α୭୲ ൌ
exp ሺe୭୲ሻ

∑ exp ሺe୭୲ᇲሻ୲ᇲ
 

 
e୭୲ ൌ aሺs୭ିଵ, h୲ሻ 

 
where a(ꞏ) is a feedforward neural network that 
computes the relevance of each hidden 
representation ht with respect to the previous 
hidden state of RNN decoder so−1. The alignment 
model is a single-hidden-layer neural network: 
 

aሺs୭ିଵ, h୲ሻ ൌ V tanhሺWs୭ିଵ  Uh୲ሻ 
 
where W and U are weight matrices, and v is a 
vector so that the output of a(ꞏ) is a scalar. More 
hidden layers can be used in the alignment model. 

In the case of using a fixed context vector using 
an RNN to map the whole input sequence into the 
context vector is necessary because this vector must 
represent all the relevant information in the input 
sequence. 

 

 
Figure 1. The basic structure of an ASR system 

 

Typical speech recognition system 
contains the basic elements illustrated in the Figure 
2. Applications interact with decoder to get the 
prediction result that will be adapted to later 

components. Information about speaker’s gender, 
accents dialects and phonetics are represented by an 
acoustic model. 
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Figure 2. ASR system’s architecture

Language models are statistical models 
that can verify what word is more possible will 
occur in the given context and what is the 
probability of the sequence. 

Many not fully solved problems in this 
area related with speaker’s attributes, style of 
speech, the basic speech segments recognition, 
possible words, unknown words, noise 
involvement, accents, etc.  Well-working ASR 
system takes over all these problems. The language 
model represents lexical, grammatical complexity 
and spoken language variations that defines the 
acoustic instability of different accents and 
individual speaker’s style of speech. 

The recognition process starts with feature 
extraction of speech signal (audio waveform) 
taking it to the decoder.  

For the given input feature vectors decoder 
using acoustic and language models generates the 
words sequence with maximum probability. 

 All of the described above can be written 
down by following fundamental equation: 

 

𝑊 ൌ arg max
௪

𝑃ሺ𝑊/𝐴ሻ ൌ arg max
௪

𝑃ሺ𝑊ሻ𝑃ሺ𝐴/𝑊ሻ
𝑃ሺ𝐴ሻ

 

 

where for the feature vector X, the aim of ASR 
system is to generate the word sequence 𝑊  with a 
max probability P(W/X). Therefore, the above 
equation is equivalent to the following: 

 

𝑊 ൌ arg max
௪

𝑃ሺ𝑊ሻ 𝑃ሺ𝑋/𝑊ሻ 

where an acoustic model calculates P(X/W) and the 
language model computes P(W). Main challenge is 
to build a perfect acoustic and language model, 
which can give the accurate reflection of spoken 
language. For speech recognition with big 
vocabulary, we should break  word into a sub-word 
sequence, since the number of words is quite large. 
P(X/W) should consider speaker voice difference, 
pronouncing difference, difference of 
environments, and context-dependent phonetic 
coarticulation differences. 

The nature of this process is as follows: in 
the process of auditory perception by an individual 
of a speech signal, sub-phonemic units are 
recognized as separate acoustic elements or 
phonemes. Taking into account the influence of 
contextual factors, variations of an individual 
phoneme in different cases may differ in the 
specificity of the vibrational parameters due to the 
coarticulation effect, which determines the effect on 
the phoneme of the characteristics of other 
phonemes surrounding it in the speech stream. As a 
result, the vibrational parameters of the phoneme 
are dynamic and vary in a given interval, taking 
into account the peculiarities of the contextual 
environment of the speech flow. These contextual 
variations of phonemes are called allophones. 
In the hierarchical structure of the speech signal, 
the phonemic level prevails in relation to the 
allophone level.  

This is due to the fact that the phoneme 
represents a higher level of classification of 
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acoustic signal parameters, characterized by a 
grouping of contextual variations of the 
corresponding allophones with subsequent leveling 
of their noise components and focusing on the unity 
of vibrational and perceptual qualities. 

The highest levels of the hierarchy of the 
structure of the speech signal are due to 
transformations of elements in the system 
“phoneme - syllable - morpheme - word - 
sentence", which ultimately allow you to create and 
study semantic relationships between lexical units 
of speech. 

There have been many techniques for 
recognizing speech. Considering the fact that 
speech data is complicated in terms of 
segmentation, it is difficult to build a model with a 
simple structure. The state-of-the-art technique for 
ASR (Automatic speech recognition) is always 
been HMM model [1], which involves other pre-
trained models like acoustic model, language model 
etc. However, recent researches have shown that by 
using recurrent neural networks [2], we can build 
such architecture of neural network, which will 
require only speech data (.wav) and transcription 
(.txt) to train the model completely, whereas 
traditional models (HMM) [1] would require data 
for training language model and acoustic model. 
This advanced algorithm called Connectionist-
Temporal-Classifier [3], the heart of which is RNN. 
One of the most common and crucial steps in neural 
network is training. It is important that the model 
will train fast and at the same time does not over fit 
or under fit, especially with speech data. 

Labeling an unsegmented data is very 
common and often difficult problem in the 
sequence-to-sequence models. Straightforward 
method to solve this is to label each segment of a 
sequence (for example wave file) manually. 
However, considering that there are so many words 
in speech, not counting the sentences, which brings 
a certain transformations time-consuming, boring 
and hard to do. To avoid this kind of issues 
traditional ASR system uses Language model like 
in [4], which predicts the probability of last word 
given the sentence and Acoustic model using a 
progresses like in [5], which gives the phoneme 
representation of the given speech. 

Connectionist temporal classifier [3] 
requires only a speech data (raw audio) and 
transcription (txt file) in order to train only one 
model without involving the Language model. 
Instead of Language model, it uses dynamic 

programming method, which called Beam search in 
[6]. For training the model, any neural network 
structure uses an optimizer that helps to achieve the 
good accuracy fast and with no issues (over fitting, 
under fitting). 

The paper is constructed as follows: 
Section 2 explains how dataset for speech 
recognition network has been collected and created. 
Also, it contains how data augmentation techniques 
and language model have been created from scratch 
and applied for in our ASR system. Section 3 
contains the information about CTC algorithm, 
Beam search and optimization algorithms, which 
will be considered in the experiment. Section 4 
contains the experiment itself, which is about 
building a neural network, used optimization 
algorithms and dataset with a language model. 
Section 5 illustrates the outcomes of the experiment 
that shows a result of optimization algorithms 
comparing with each other (Adagrad, Adam, and 
Momentum). Section 6 concludes the whole 
experiment.  

 

2. DATA PREPARATION 

Our data for the network has been 
collected in the base of Suleyman Demirel 
University. The team consist of 35 people have 
given the 350 sentences, which have been collected 
from the famous Kazakh books and news portal. 
Each person has recorded using Adobe Audition 
program the utterances and saved it with 
corresponding transcription file. Since the size of 
collected dataset is extremely low, we have applied 
some of the augmentation techniques to extend the 
size of the current audio data. Instead of increasing 
the size of dataset using simple augmentation such 
as changing the pitch, changing the speed, we have 
applied the modern technique called SpecAugment, 
which has been presented recently by Google AI 
team. 

2.1. Data Augmentation 
 

There are many important problems and 
tasks in developing ASR systems based on neural 
networks. One of such challenges is that these 
models, having a lot of parameters tend to have 
over fitting problem. This happens when the model 
is over-trained on training dataset, but is failing on 
unseen data. The cause of this problem usually 
happens when there is not enough data. 
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In the lack of enough training dataset, it is 
effective to apply data augmentation to increase the 
size of original dataset, which has an effective 
influence on improving the performance of your 
model. This technique recently often applied on 
image classification problems. In speech 
recognition problems, data augmentation method 
usually involves changing and deformation of an 
audio wave by adding speed or adding noise to the 
background. This also helps the network to be 
much robust and learn relevant features by taking 
multiple versions of original input. However, 
existing traditional methods of audio augmentation 
input takes a bit long time in terms of computation 
and may require external data. 

Instead of applying an augmentation of 
data as a traditional method, there is a way to apply 
this technique directly to spectrogram and it’s 
called SpecAugment. This method is simple, 
computationally cheap and doesn’t need any extra 
additional data. It showed the latest performance on 
SwitchBoard and LibriSpeech data in Automatic 
speech recognition tasks. 

2.2. Specaugment 

In ASR, the given audio is normally 
represented as spectrogram (Figure-3), before going 
into the network as an input. Training data 
augmentation is typically applied before an audio is 
converted to spectrogram, so that new spectrograms 
must be generated after each iteration step. In this 
approach [12], they investigate the way of applying 
an augmentation to the spectrogram, not to the 
waveform. Therefore this method can be applied 
during training stage, without affecting on speech 
of training. 

SpecAugment changes the spectrogram by 
deforming it in the time direction, modifying the 
frequency channels. These augmentation techniques 
have been selected in order to make the network 
effective against deformations and frequency 
losses. 

 

 

 

 

 

 

 

 

Figure 3. Visual representation of an audio waveform. 
 

2.3. External Language Modeling 

 

The prime job of the language model is to 
find out whether if particular sequence of words is 
appropriate or not in some context. It often used in 
fields like machine translation, handwriting 
recognition [13], spelling correction [14], 
augmentative communication [15] and Natural 
Language Processing tasks (natural language 
generation, word similarity) [16, 17, 18]. For 
speech recognition, to improve the accuracy and 
overall performance of your model independently 
trained language can be applied. 

Recent researchers in Natural Language 
processing area have been using neural 
probabilistic language models instead of rule-based 
language models, because it can handle dataset with 
a large vocabulary, whereas rule-based language 
models very prone to errors when it comes to large 
datasets.  

A quite big amount of word sequences are 
required to create the language models. Therefore, 
language model should be able to assign 
probabilities not only for small amounts of words, 
but also for the whole sentence. Nowadays there are 
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a lot of preprocessed large dataset corpuses for 
creating language models. Even if there is a lack of 
data for some languages, it is possible to create 
datasets for language model, since the text data is 
easily available. Preprocessing step only requires 
removing words, that don’t influence the whole 
context at all. Dataset can be collected from various 
sources like news portals, articles, books, which are 
mostly close to everyday used words. 

For this particular ASR model we have 
collected the dataset from famous Kazakh books 
like “Abay zholy”, “Kara sozder” etc. After 
collecting the raw text from these sources, we have 
applied simple preprocessing step, removing and 
replacing most of the unnecessary characters with 
space, removing all the punctuations, normalizing 
all words with lower case. We have transformed the 
sequence of words to a sequence of tokens. After 
that, we organized list of tokens into sequence of 50 
words and 1 output, which gives us 51 words in 1 
sequence. Overall, we have gotten 200 000 
sequences. Later we have encoded each word with 
a unique number, because we have used an 
embedding layer, which expects input represented 
as an integers. To do the encoding, we have used 
Tokenizer class in the Keras API. Later, when we 
make predictions we can look up predicted 
number’s associated word. 

We have tried to train two similar models. 
To train these models we have used google 
colaboratory and overall training time was 7 hours. 
Performance of each model displayed in Figure 4. 
First model has of following structure: 

1) Embedding layer with the vocabulary 
size 50. 

2) LSTM layer with 50 neurons with L2 
regularization. 

3) Dropout regularization technique with 
0.5 value. 

4) LSTM layer with 50 neurons with L2 
regularization. 

5) Dropout regularization technique with 

0.5 value. 
6) Dense layer with 100 neurons and relu 

activation function for feature extraction. 
7) Output layer which predicts the next 

word as a single vector. 
 

 
Figure 3. LSTM and BiLSTM models comparison 

 
Second model has a BiLSTM model 

instead of LSTM: 
1) Embedding layer with the vocabulary 

size 50. 
2) BiLSTM layer with 50 neurons with L2 

regularization. 
3) Dropout regularization technique with 

0.5 value. 
4) BiLSTM layer with 50 neurons with L2 

regularization. 
5) Dropout regularization technique with 

0.5 value. 
6) Dense layer with 100 neurons and relu 

activation function for feature extraction. 
7) Output layer which predicts the next 

word as a single vector. 
Comparing the performance of two 

different models, we have chosen the second model 
with BiLSTM layer, since it showed very 
promising results comparing to model with LSTM 
layer in Table 1. Figure 4 demonstrates that LSTM 
model at some point started drastically increasing 
the loss. This unusual behavior can lead to 
problems like overfit, which is not observed in 
BiLSTM model. 

 
Table 1. LSTM and BiLSTM performance 
comparison 

 

3. CONNECTIONIST TEMPORAL 
CLASSIFIER 

The CTC algorithm considers the order of 
the output labels of RNNs with ignoring the 
alignments by introducing a blank label, b. If the 
target labels are defined as L, then L′ is an extended 
version of L with an extra blank symbol. The 
sequences over L′ is defined as π, where π∈ L′T, in 
which T represents the size if an input. The output 
sequence is labeled as z, where z ∈ L ≤T. It has a 
function F that maps the input sequence to output 

Name Loss Accuracy Epochs 

LSTM 1.70 59.43 100 

BiLSTM 1.32 73.71 100 
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sequence z = F (π). Basically, path π with its T can 
be mapped to a much shorter sequence z, by 
combining consecutive symbols into one symbol 
and by removing blank symbols. By having a input 
sequence and corresponding targets our RNN 
(recurrent neural network) can train and learn 
sequence mapping. 

The CTC uses the forward-backward algorithm 
to compute the gradient of the loss function, L(x, z). 
z′ is the sequence over L′. Then, the variables, α and 
β, are initialized by 

 

𝛼ሺ1, 𝑢ሻ ൌ  ቐ
𝑦

ଵ if u ൌ 1
𝑦௭భ

ଵ       𝑖𝑓 𝑢 ൌ 2
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   , 

 

𝛽ሺ𝑇, 𝑢ሻ ൌ  ቄ1      𝑖𝑓 𝑢 ൌ |𝑧ᇱ|, |𝑧ᇱ| െ 1 
0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
 

where 𝑦
௧  is the softmax output of the label k∈L′. 

The forward and backward propagation is done as 
 

𝛼ሺ𝑡, 𝑢ሻ ൌ  𝑦௭ೠ
ᇲ 

௧  𝛼ሺ𝑡 െ 1, 𝑖ሻ
௨

ୀሺ௨ሻ

 ,

𝛽ሺ𝑡, 𝑢ሻ ൌ  𝛽ሺ𝑡  1, 𝑖ሻ𝑦௭
ᇲ

௧ା

ሺ௨ሻ

ୀ௨

, 

where 
 

𝑓ሺ𝑢ሻ ൌ ቄ𝑢 െ 1        𝑖𝑓 𝑧௨
ᇱ ൌ 𝑏 𝑜𝑟 𝑧௨ିଶ

ᇱ ൌ 𝑧௨
ᇱ

𝑢 െ 2                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,   𝑔ሺ𝑢ሻ

ൌ ൜𝑢  1        𝑖𝑓 𝑧௨
ᇱ ൌ 𝑏 𝑜𝑟 𝑧௨ାଶ

ᇱ ൌ 𝑧௨
ᇱ

𝑢  2                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
with boundary conditions: 
 

𝛼ሺ𝑡, 0ሻ ൌ 0, ∀𝑡,     
𝛽ሺ𝑡, |𝑧ᇱ|  1ሻ ൌ 0, ∀𝑡 

 
then, the error gradient at time 𝑡, 𝑎

௧ , is computed as 
 

𝜕ℶሺ𝑥, 𝑦ሻ
𝜕𝑎

௧ ൌ 𝑦
௧ െ

1

𝑝 ቀ
𝑧
𝑥ቁ

 𝛼ሺ𝑡, 𝑢ሻ
௨ఢሺ௭,ሻ

𝛽ሺ𝑡, 𝑢ሻ,  

 
where 𝐵ሺ𝑧, 𝑘ሻ ൌ ሼ𝑢: 𝑧௨

ᇱ ൌ 𝑘ሽ and 𝑝ሺ𝑧|𝑥ሻ ൌ
𝛼ሺ𝑇, |𝑧ᇱ| െ 1ሻ. 
 
3.1. Beam search 
 

This searching algorithm goes through the 
network output creating beams, which have a 
corresponding score. Figure 5 shows the beam’s 

evolution: starting with an empty beam, we add all 
possible characters (there are only “a” and “b” in 
our case) on first iteration and we keep the ones 
with the best scores. This process is repeated until 
the whole NN output is processed. 

 

 
 

Figure 4. Beam seach 

 
3.2. Optimization algorithms 

Gradient descent [7] is well know and 
probably the most popular way to optimize deep 
neural networks. However, every well-known 
neural network frameworks contain 
implementations of various types of methods to 
optimize gradient descent. 

Gradient descent is applied in order to 
minimize a cost function 𝐽ሺ𝜃ሻ. It does this by 
updating every time the parameters in the negative 
direction of the function’s gradient ∇ఏ𝐽ሺ𝜃ሻ. The 
learning rate η is a parameter that defines the step 
size in order to reach local minimum. Simply, we 
follow the direction of the slope downhill until we 
get to the minimum point. 

Stochastic gradient descent 

SGD in [8] does the same thing like simple 
gradient descent. However, it updates the 
parameters of the model taking original dataset’s 
(m) part (mini-batch): 

 
 

𝑔 ൌ
1
𝑚

∇ఏ  𝐿൫𝑓൫𝑥ሺሻ; 𝜃൯, 𝑦ሺሻ൯


   , 

 
     𝜃 ൌ  𝜃 െ 𝜖 ൈ 𝑔          

Adagrad 

This method simply makes an adaptive 
learning rate െη to depending on parameters. For 
example, infrequent parameters make a big update 
and frequent parameters make a small. Therefore, it 
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is more suitable for working with rare data (sparse 
data). 

In [11] Adagrad applies different learning rate 
at each time t for every parameter 𝜃ሺ𝑖ሻ. Briefly, we 
set 𝑔ሺ𝑡, 𝑖ሻ as the gradient of loss function: 
 

𝜃௧ାଵ, ൌ 𝜃௧, െ
η

ඥ𝐺௧,  𝜖
∙ 𝑔௧, 

 
Momentum 

SGD has a hard time navigating areas 
where the curves a lot sharper in one depth 
comparing to another, which are around local 
optima. In these scenarios, SGD hesitates through 
the slopes while making slow progress through the 
bottom to the local minimum. 

Momentum in [10] is a method that 
accelerates SGD in the appropriate direction. It is 
achieved by adding a fraction 𝛾 to the update 
vector. 
 

𝜗௧ ൌ 𝛾𝜗௧ିଵ   η∇ఏ𝐽ሺ𝜃ሻ 
𝜃 ൌ 𝜃 െ 𝜗௧ 

 
The γ value is almost any case is equals to 

0.9 or a somewhere around this value. Basically, 
when we are using momentum, we are pushing the 
ball down a hill. The momentum accumulates as the 
ball goes downhill, becoming faster. Identically, for 
parameter updates: The momentum increases if 
gradients go in the same direction and decreases 
updates if gradients directions change. As an 
outcome, we’ll get more faster convergence with 
less oscillation. 
 
Adam 

Adam is the method that also computes the 
learning rate for the parameters that is adaptive [9]. 
Adam exponentially keeps decomposing average of 
past gradients Mሺtሻ, like momentum: 

 
𝑚௧ ൌ 𝛽ଵ𝑚௧ିଵ  ሺ1 െ 𝛽ଵሻ𝑔௧ 
𝑣௧ ൌ 𝛽ଶ𝑣௧ିଵ  ሺ1 െ 𝛽ଶሻ𝑔௧

ଶ 
 
 
𝑚௧ and 𝑣௧ are calculations of the first moment and 
the second moment of the gradients. When 𝑚௧ and 
𝑣௧ are initialized as 0 vectors, it has been observed 
and stated that they are biased to zero, especially in 
the beginning of the time step and when the β1 and 
β2 are small. 
 

𝑚௧ෞ ൌ


ଵିఉభ
  ,  𝑣௧ෝ ൌ

௩

ଵିఉమ
 

 
 
These later used to update parameters: 
 

𝜃௧ାଵ ൌ 𝜃௧ െ
η

ඥ𝑣௧ෝ  𝜖
𝑚௧ෞ  

 
The proposed values for β1, β2 and 𝜖 are 

0.9, 0.999 and 10−8, respectively. 

 

4. Experiment 

To train the CTC model, there has been 
used a python library Tensorflow. Actually, there 
are quite a lot of frameworks for building ASR 
systems like Kaldi, Sphinx. However, the 
advantage of Tensorflow is that, it allows us to use 
GPU of the computer and parallelize the tasks into 
tensors. As a speech data for a training a model, 
SDU corpus data has been used. It is a data, which 
has been collected in the base of university of 
Suleyman Demirel, which contains 70 native 
speakers with 360 sentences. It weighs about 5GB, 
but for illustration purposes, only part of it was 
used in this experiment. 

The structure of the Neural Network is 
using a RNN (Recurrent Neural Network) with 100 
hidden layers. Specifically, LSTM (Long-Short 
Term Memory) type of RNN has been used, for 
capturing all information in the sequence. As for 
optimization part, three algorithms have been 
considered (Adam, Momentum, Adagrad), which 
were discussed earlier. Each of them has 
advantages over the other two, but specifically for 
speech data, these algorithms were evaluated by 
LER (label error rate) and CTC loss. 

Before feeding into neural network dataset 
has gone through data augmentation process with 
time warping technique. Number of epochs to train 
the model is 100. Output of the CTC model is 
actually sequence of characters including blanks 
(encoding part). Decoding part is done by using 
dynamic programming method, which is in this 
case greedy search. Greedy search was preferred 
instead of beam search, because it decodes faster, 
although beam search performs better. In order to 
avoid the overfitting problem we have taken the 
learning rate as 0.005. Network uses pre-trained 
language model while training and decoding in 
order to improve overall performance. 
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5. RESULTS AND DISCUSSIONS 

After training the model three times with 
different optimization algorithms, we see the 
following outcomes (Table 2). 

Table 2. Results of each optimizer 

 

5.1. Adagrad 
 

 

 

 

Figure 5. CTC loss and LER of Adagrad 

 

After that, the loss value starts to hesitate 
drastically between 500 and 50 (approximately). At 
the same time, LER right from the beginning start 
to hesitate between 1 and 0.9(approximately), 
which does not allow the model to learn. 

 

 

 

 

 

5.2. Momentum 
 

 

 

Figure 6. CTC loss and LER of Momentum 

The visualization we see in Figure 7 shows 
that Momentum works a lot better than Adagrad. 
LER and CTC loss are continuously decreasing for 
training and validation sets. After the gradient steps 
reach the 900 epochs CTC loss goes down to 
almost 1, where LER shows the 0. This is may be 
prone to over fit because there is a quite big gap 
between training set and validation set. Applying 
other optimizing techniques like dropout and 
feeding even more data this problem can be 
avoided in the future. 

Because of learning rate is equal to 0.005 
decreasing process slows down little bit. Learning 
process is much better than Adagradoptimizer. 

5.3. Adam 

 

Name Training 
cost 

Validation 
cost 

Training 
LER 

Validation 
LER 

Adagrad 166.774 242.164 0.970 0.980 

Momentum 2.405 71.289 0.000 0.500 

Adam 166.774 242.164 0.970 0.980 
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Figure 7. CTC loss and LER of Adam 

As shown in Figure 5 CTC loss decreases 
at the beginning of the gradient steps and once 
again as in Adagrad optimizer starts to hesitate 
between two numbers with a big difference. LER 
on the other hand decreases to 1 after few iterations 
and after that does not change for a long gradient 
steps. Right after it reaches about 750 iteration LER 
starts to hesitate between 1 and 0.5(approximately), 
which is not a well performance. 

 
CONCLUSION AND FUTURE WORKS 
 

This paper shows a clear benefit of 
Momentum optimizer over Adam and Adagrad for 
CTC algorithm for speech recognition. The 
experiment showed that model with Momentum 
optimizer learns faster decreasing the CTC loss and 
LER after each gradient step, whereas Adagrad and 
Adam optimizers performed very poorly, showing a 
hesitation of errors from big number to small. Other 
than that, this paper shows the advanced algorithm 
called Connectionist Temporal Class for speech 
recognition in action. It also describes the clear 
benefits of this algorithm over the traditional 
method, which is HMM based model, which is the 
simplicity and effectiveness. 

For the future work we are planning to add 
other regularization algorithms to make out CTC 
algorithm work a lot faster and accurate. To avoid 
the problems like overfit and exploding gradients, 
we are planning to add techniques like dropout, 
residual blocks and collect more data. 

Funding: This work is supported by a grant from 
the Ministry of Education and Science of the 
Republic of Kazakhstan within the framework of 
the Project “AP05132648- Creating verbal and 
interactive robots based on advanced voice and 
mobile technologies” 

Conflicts of Interest: The authors declare 
no conflict of interest. 

 
 

REFERENCE LIST  

[1] Mark G., Steve Y., The Application of Hidden 
Markov Models in Speech Recognition, 
Foundations and Trends in Signal Processing, 
Vol. 1, No. 3 (2007) 195–304 

[2] Alex Graves, NavdeepJaitly. Towards End-to-
End Speech Recognition with Recurrent 
Neural Networks, Proceedings of the 31st 
International Conference on Machine 
Learning (2014), Volume 32 Pages II-1764-II-
1772 

[3] Alex G., Santiago F., Faustino G., J¨urgen S., 
Connectionist Temporal Classification: 
Labelling Unsegmented Sequence Data with 
Recurrent Neural Networks, Proceedings of 
the 23rd International Conference on Machine 
Learning, Pittsburgh, PA, 2006, Pages 369-
376 

[4] YoshuaBengio, RéjeanDucharme Pascal 
Vincent, Christian Jauvin, A Neural 
Probabilistic Language Model, Journal of 
Machine Learning Research 3 (2003) 1137–
1155 

[5] Dong Yu, Jinyu Li, Recent Progresses in Deep 
Learning based Acoustic Models, IEEE/CAA 
Journal of AutomaticaSinica(2017), Volume 
4, Pages 396 – 409 

[6] Sam W., Alexander M. Rush. Sequence-to-
Sequence Learning as Beam-Search 
Optimization, Proceedings of the 2016 
Conference on Empirical Methods in Natural 
Language Processing, pages 1296–
1306,November 1-5 (2016) 

[7] Marcin Andrychowicz, MishaDenil, Sergio 
Gómez Colmenarejo, Matthew W. Hoffman, 
David Pfau, Tom Schaul, Brendan 
Shillingford, Nando de Freitas. Learning to 
learn by gradient descent by gradient descent, 
30th Conference on Neural Information 
Processing Systems (NIPS 2016) 

[8] Leon B., Large-Scale Machine Learning with 
Stochastic Gradient Descent, NEC Labs 
America, Princeton NJ 08542, USA 

[9] Diederik P. Kingma, Jimmy Lei Ba. ADAM: 
A METHOD FOR STOCHASTIC 
OPTIMIZATION, arXiv:1412.6980v9 
[cs.LG] 30 Jan 2017 

[10] Nicolas L., Peter Richt´arik. Momentum and 
Stochastic Momentum for Stochastic 
Gradient, Newton, Proximal Point and 
Subspace Descent Methods, School of 
Mathematics, The University of Edinburgh 
(2017) 

[11] John Duchi, EladHazan, Yoram Singer. 
Adaptive Subgradient Methods for Online 



Journal of Theoretical and Applied Information Technology 
29th February 2020. Vol.98. No 04 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
713 

 

Learning and Stochastic Optimization, 
Journal of Machine Learning Research 12 
(2011) 2121-2159 

[12] Daniel S. Park, William Chan, Yu 
Zhang, Chung-Cheng Chiu, BarretZoph, Ekin 
D. Cubuk, Quoc V. Le, SpecAugment: A 
Simple Data Augmentation Method for 
Automatic Speech Recognition, 
arXiv:1904.08779 

[13] Russell S. and Norvig P. Artificial 
Intelligence: A Modern Approach (2nd Ed.). 
Pretice Hall. 2002. 

[14] Kukich Karen, Techniques for automatically 
correcting words in text. ACM Computing 
Surveys.1992. 24(4), pp. 377-439. 

[15] Alan Newell, Stefan Langer, Marianne 
Hickey, The role of natural language 
processing in alternative and augmentative 
communication. Natural Language 
Engineering. 1998. pp. 1-16 

[16] Kenneth Ward Church, A Stochastic Parts 
Program and Noun Phrase Parser for 
Unrestricted Text. Second Conference on 
Applied Natural Language Processing. 1988. 
pp. 136–143 

[17] Peter F. Brown, John Cocke, Stephen Andrew 
Della Pietra, Vincent joseph DellaPietra, A 
Statistical Approach To Machine Translation, 
Computational Linguistics, Volume 16, pp. 
79-85 

 
[18] Jonathan J. Hull, Combining syntactic 

knowledge and visual text recognition: A 
hidden Markov model for part of speech 
tagging in a word recognition algorithm. AAAI 
Symposium: Probabilistic Approaches to 
Natural Language. 1992. pp. 77–83. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


