
Journal of Theoretical and Applied Information Technology
29th February 2020. Vol.98. No 04

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

703

AUTOMATIC SPEECH RECOGNITION SYSTEM FOR
KAZAKH LANGUAGE USING CONNECTIONIST

TEMPORAL CLASSIFIER

1,2YEDILKHAN AMIRGALIYEV, 1,3DARKHAN KUANYSHBAY, 1,4DIDAR YEDILKHAN,
1,3SHOIYNBEK A

1Institute of Information and Computational Technologies CS MES RK, Kazakhstan
 2Al-Farabi Kazakh National University, Kazakhstan

3Suleyman Demirel University, Kazakhstan

4Astana IT University, Kazakhstan

E-mail: 1amir_ed@mail.ru, ainur79@mail.ru

ABSTRACT

This scientific report illustrates the performance evaluation of the well-known, recently popular neural
network Connectionist Temporal Classifier (CTC) for speech recognition. The CTC contains LSTM layers
with 256 cells and Momentum Optimizer with learning rate 0.005 and momentum 0.9. Dataset that we have
used has 35 native speakers with 360 utterances. For expanding the size of our dataset with overall
performance augmentation techniques has been applied using Adobe Audition software, which output 20
more speakers to our original dataset. The result of our experiment has been evaluated with LER (Label
error rate). LER measures the inaccuracy between predicted an actual texts. The output of the experiment
reported training LER 0.000 and validation LER 0.5.

Keywords: Recurrent Neural Network, Language Model, Acoustic Model, CTC, Data Augmentation, Time
Warping.

1. INTRODUCTION

Today’s speech-recognition system always has
been developed based on statistical requirements. A
generative statistical model (source channel model)
results in problems in speech recognition area. As
shown in Figure 1, the speaker first thinks of a
word sequence W in the mind, after which this
sequence passes through speaker’s text generator.
This sequence enters to communication channel
component through his speech generator and signal
processing component before passing through a
decoder. After, the decoder decodes the created
acoustic wave signal to the word sequence.

Decoder
The RNN encoder-decoder is a neural network
model that directly computes the conditional
probability of the output sequence given the input
sequence without assuming a fixed alignment, i.e.
P(y1, . . . , yO|x1, . . . , xT) where the lengths of the
output and the input, O and T respectively, may be
different. For speech recognition, the input is
usually a sequence of acoustic feature vectors,
while the output is usually a sequence of class

indices corresponding to units such as phonemes,
letters, HMM states, or words. The idea of the
encoder-decoder approach is that for each output
yo, the encoder maps the input sequence into a
fixed-length hidden representation co, which is
referred as context vector. From the previous output
symbols and the context vector, the decoder
computes

P൫yଵ,…,yหxଵ,…,xሻ = ∏ Pሺy୭|yଵ, … , y୭ିଵ, c୭ሻ

୭ୀଵ .

Since the probability P൫yଵ,…,yหxଵ,…,xሻ is
conditioned on the previous outputs as well as the
context vector, an RNN can be used to compute this
probability which implicitly remembers the history
using a recurrent layer.

Let yo be a vector representation of the
output symbol yo, where yo is a one-hot vector
indicating one of the words in the vocabulary
followed by a neural projection layer for dimension
reduction. The posterior probability of yo is
computed as

Journal of Theoretical and Applied Information Technology
29th February 2020. Vol.98. No 04

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

704

Pሺy୭|yଵ, … , y୭ିଵ, c୭ሻ ൌ gሺy୭ିଵ, s୭, c୭ሻ
s୭ ൌ fሺy୭ିଵ, s୭ିଵ, c୭ሻ,

where so denotes the output of a recurrent hidden
layer f(ꞏ) with inputs yo−1, so−1, and co. g(ꞏ) is a
softmax function with inputs yo−1, so and co. We
condition both f(ꞏ) and g(ꞏ) on the context vector to
encourage the decoder to be heavily reliant on the
context from the encoder. The previous output
yo−1 is also fed to the softmax function g(ꞏ) to
capture the bigram dependency between
consecutive words. We have also investigated a
simpler output function without the dependence on
the previous output yo−1, i.e. P(yo|y1, . . . , yo−1,
co) = g(so, co).

Encoder.As discussed above, the computation of
the conditional probability relies on the availability
of the context vector co for each output yo. The
context vector is obtained from the encoder which
reads the input sequence and generates a continuous
space representation. The context vector co is
obtained by the weighted average of all the hidden
representations of a bidirectional RNN (BiRNN):

c୭ ൌ α୭୲h୲

୲

where αot ∈ [0, 1] and ∑ α୭୲୲ ൌ 1; h୲ ൌ ൫h୲
ሬሬሬ⃗ , h୲

ሬሬሬ⃗ ൯

and h୲
ሬሬሬ⃗ , h୲

ሬሬሬ⃗ denote the hidden representations of xt
from the forward and backward RNNs respectively.
The context vector co is global, for instance, co =
hT. This means the context vector does not depend

on the index o, meaning that the whole input
sequence is encoded into a fixed vector
representation. This approach has produced state-
of-the-art results in machine translation when the
dimension of the vector is relatively large[9]. When
the model size is relatively small, however, the use
of a dynamic context vector has been found to be
superior, especially for long input sequences.

The weight αot is computed by a learned
alignment model for each co, which is implemented
as a neural network such that

α୭୲ ൌ
exp ሺe୭୲ሻ

∑ exp ሺe୭୲ᇲሻ୲ᇲ

e୭୲ ൌ aሺs୭ିଵ, h୲ሻ

where a(ꞏ) is a feedforward neural network that
computes the relevance of each hidden
representation ht with respect to the previous
hidden state of RNN decoder so−1. The alignment
model is a single-hidden-layer neural network:

aሺs୭ିଵ, h୲ሻ ൌ V tanhሺWs୭ିଵ Uh୲ሻ

where W and U are weight matrices, and v is a
vector so that the output of a(ꞏ) is a scalar. More
hidden layers can be used in the alignment model.

In the case of using a fixed context vector using
an RNN to map the whole input sequence into the
context vector is necessary because this vector must
represent all the relevant information in the input
sequence.

Figure 1. The basic structure of an ASR system

Typical speech recognition system
contains the basic elements illustrated in the Figure
2. Applications interact with decoder to get the
prediction result that will be adapted to later

components. Information about speaker’s gender,
accents dialects and phonetics are represented by an
acoustic model.

Journal of Theoretical and Applied Information Technology
29th February 2020. Vol.98. No 04

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

705

Figure 2. ASR system’s architecture

Language models are statistical models
that can verify what word is more possible will
occur in the given context and what is the
probability of the sequence.

Many not fully solved problems in this
area related with speaker’s attributes, style of
speech, the basic speech segments recognition,
possible words, unknown words, noise
involvement, accents, etc. Well-working ASR
system takes over all these problems. The language
model represents lexical, grammatical complexity
and spoken language variations that defines the
acoustic instability of different accents and
individual speaker’s style of speech.

The recognition process starts with feature
extraction of speech signal (audio waveform)
taking it to the decoder.

For the given input feature vectors decoder
using acoustic and language models generates the
words sequence with maximum probability.

 All of the described above can be written
down by following fundamental equation:

𝑊 ൌ arg max
௪

𝑃ሺ𝑊/𝐴ሻ ൌ arg max
௪

𝑃ሺ𝑊ሻ𝑃ሺ𝐴/𝑊ሻ
𝑃ሺ𝐴ሻ

where for the feature vector X, the aim of ASR
system is to generate the word sequence 𝑊 with a
max probability P(W/X). Therefore, the above
equation is equivalent to the following:

𝑊 ൌ arg max
௪

𝑃ሺ𝑊ሻ 𝑃ሺ𝑋/𝑊ሻ

where an acoustic model calculates P(X/W) and the
language model computes P(W). Main challenge is
to build a perfect acoustic and language model,
which can give the accurate reflection of spoken
language. For speech recognition with big
vocabulary, we should break word into a sub-word
sequence, since the number of words is quite large.
P(X/W) should consider speaker voice difference,
pronouncing difference, difference of
environments, and context-dependent phonetic
coarticulation differences.

The nature of this process is as follows: in
the process of auditory perception by an individual
of a speech signal, sub-phonemic units are
recognized as separate acoustic elements or
phonemes. Taking into account the influence of
contextual factors, variations of an individual
phoneme in different cases may differ in the
specificity of the vibrational parameters due to the
coarticulation effect, which determines the effect on
the phoneme of the characteristics of other
phonemes surrounding it in the speech stream. As a
result, the vibrational parameters of the phoneme
are dynamic and vary in a given interval, taking
into account the peculiarities of the contextual
environment of the speech flow. These contextual
variations of phonemes are called allophones.
In the hierarchical structure of the speech signal,
the phonemic level prevails in relation to the
allophone level.

This is due to the fact that the phoneme
represents a higher level of classification of

Journal of Theoretical and Applied Information Technology
29th February 2020. Vol.98. No 04

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

706

acoustic signal parameters, characterized by a
grouping of contextual variations of the
corresponding allophones with subsequent leveling
of their noise components and focusing on the unity
of vibrational and perceptual qualities.

The highest levels of the hierarchy of the
structure of the speech signal are due to
transformations of elements in the system
“phoneme - syllable - morpheme - word -
sentence", which ultimately allow you to create and
study semantic relationships between lexical units
of speech.

There have been many techniques for
recognizing speech. Considering the fact that
speech data is complicated in terms of
segmentation, it is difficult to build a model with a
simple structure. The state-of-the-art technique for
ASR (Automatic speech recognition) is always
been HMM model [1], which involves other pre-
trained models like acoustic model, language model
etc. However, recent researches have shown that by
using recurrent neural networks [2], we can build
such architecture of neural network, which will
require only speech data (.wav) and transcription
(.txt) to train the model completely, whereas
traditional models (HMM) [1] would require data
for training language model and acoustic model.
This advanced algorithm called Connectionist-
Temporal-Classifier [3], the heart of which is RNN.
One of the most common and crucial steps in neural
network is training. It is important that the model
will train fast and at the same time does not over fit
or under fit, especially with speech data.

Labeling an unsegmented data is very
common and often difficult problem in the
sequence-to-sequence models. Straightforward
method to solve this is to label each segment of a
sequence (for example wave file) manually.
However, considering that there are so many words
in speech, not counting the sentences, which brings
a certain transformations time-consuming, boring
and hard to do. To avoid this kind of issues
traditional ASR system uses Language model like
in [4], which predicts the probability of last word
given the sentence and Acoustic model using a
progresses like in [5], which gives the phoneme
representation of the given speech.

Connectionist temporal classifier [3]
requires only a speech data (raw audio) and
transcription (txt file) in order to train only one
model without involving the Language model.
Instead of Language model, it uses dynamic

programming method, which called Beam search in
[6]. For training the model, any neural network
structure uses an optimizer that helps to achieve the
good accuracy fast and with no issues (over fitting,
under fitting).

The paper is constructed as follows:
Section 2 explains how dataset for speech
recognition network has been collected and created.
Also, it contains how data augmentation techniques
and language model have been created from scratch
and applied for in our ASR system. Section 3
contains the information about CTC algorithm,
Beam search and optimization algorithms, which
will be considered in the experiment. Section 4
contains the experiment itself, which is about
building a neural network, used optimization
algorithms and dataset with a language model.
Section 5 illustrates the outcomes of the experiment
that shows a result of optimization algorithms
comparing with each other (Adagrad, Adam, and
Momentum). Section 6 concludes the whole
experiment.

2. DATA PREPARATION

Our data for the network has been
collected in the base of Suleyman Demirel
University. The team consist of 35 people have
given the 350 sentences, which have been collected
from the famous Kazakh books and news portal.
Each person has recorded using Adobe Audition
program the utterances and saved it with
corresponding transcription file. Since the size of
collected dataset is extremely low, we have applied
some of the augmentation techniques to extend the
size of the current audio data. Instead of increasing
the size of dataset using simple augmentation such
as changing the pitch, changing the speed, we have
applied the modern technique called SpecAugment,
which has been presented recently by Google AI
team.

2.1. Data Augmentation

There are many important problems and
tasks in developing ASR systems based on neural
networks. One of such challenges is that these
models, having a lot of parameters tend to have
over fitting problem. This happens when the model
is over-trained on training dataset, but is failing on
unseen data. The cause of this problem usually
happens when there is not enough data.

Journal of Theoretical and Applied Information Technology
29th February 2020. Vol.98. No 04

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

707

In the lack of enough training dataset, it is
effective to apply data augmentation to increase the
size of original dataset, which has an effective
influence on improving the performance of your
model. This technique recently often applied on
image classification problems. In speech
recognition problems, data augmentation method
usually involves changing and deformation of an
audio wave by adding speed or adding noise to the
background. This also helps the network to be
much robust and learn relevant features by taking
multiple versions of original input. However,
existing traditional methods of audio augmentation
input takes a bit long time in terms of computation
and may require external data.

Instead of applying an augmentation of
data as a traditional method, there is a way to apply
this technique directly to spectrogram and it’s
called SpecAugment. This method is simple,
computationally cheap and doesn’t need any extra
additional data. It showed the latest performance on
SwitchBoard and LibriSpeech data in Automatic
speech recognition tasks.

2.2. Specaugment

In ASR, the given audio is normally
represented as spectrogram (Figure-3), before going
into the network as an input. Training data
augmentation is typically applied before an audio is
converted to spectrogram, so that new spectrograms
must be generated after each iteration step. In this
approach [12], they investigate the way of applying
an augmentation to the spectrogram, not to the
waveform. Therefore this method can be applied
during training stage, without affecting on speech
of training.

SpecAugment changes the spectrogram by
deforming it in the time direction, modifying the
frequency channels. These augmentation techniques
have been selected in order to make the network
effective against deformations and frequency
losses.

Figure 3. Visual representation of an audio waveform.

2.3. External Language Modeling

The prime job of the language model is to
find out whether if particular sequence of words is
appropriate or not in some context. It often used in
fields like machine translation, handwriting
recognition [13], spelling correction [14],
augmentative communication [15] and Natural
Language Processing tasks (natural language
generation, word similarity) [16, 17, 18]. For
speech recognition, to improve the accuracy and
overall performance of your model independently
trained language can be applied.

Recent researchers in Natural Language
processing area have been using neural
probabilistic language models instead of rule-based
language models, because it can handle dataset with
a large vocabulary, whereas rule-based language
models very prone to errors when it comes to large
datasets.

A quite big amount of word sequences are
required to create the language models. Therefore,
language model should be able to assign
probabilities not only for small amounts of words,
but also for the whole sentence. Nowadays there are

Journal of Theoretical and Applied Information Technology
29th February 2020. Vol.98. No 04

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

708

a lot of preprocessed large dataset corpuses for
creating language models. Even if there is a lack of
data for some languages, it is possible to create
datasets for language model, since the text data is
easily available. Preprocessing step only requires
removing words, that don’t influence the whole
context at all. Dataset can be collected from various
sources like news portals, articles, books, which are
mostly close to everyday used words.

For this particular ASR model we have
collected the dataset from famous Kazakh books
like “Abay zholy”, “Kara sozder” etc. After
collecting the raw text from these sources, we have
applied simple preprocessing step, removing and
replacing most of the unnecessary characters with
space, removing all the punctuations, normalizing
all words with lower case. We have transformed the
sequence of words to a sequence of tokens. After
that, we organized list of tokens into sequence of 50
words and 1 output, which gives us 51 words in 1
sequence. Overall, we have gotten 200 000
sequences. Later we have encoded each word with
a unique number, because we have used an
embedding layer, which expects input represented
as an integers. To do the encoding, we have used
Tokenizer class in the Keras API. Later, when we
make predictions we can look up predicted
number’s associated word.

We have tried to train two similar models.
To train these models we have used google
colaboratory and overall training time was 7 hours.
Performance of each model displayed in Figure 4.
First model has of following structure:

1) Embedding layer with the vocabulary
size 50.

2) LSTM layer with 50 neurons with L2
regularization.

3) Dropout regularization technique with
0.5 value.

4) LSTM layer with 50 neurons with L2
regularization.

5) Dropout regularization technique with

0.5 value.
6) Dense layer with 100 neurons and relu

activation function for feature extraction.
7) Output layer which predicts the next

word as a single vector.

Figure 3. LSTM and BiLSTM models comparison

Second model has a BiLSTM model

instead of LSTM:
1) Embedding layer with the vocabulary

size 50.
2) BiLSTM layer with 50 neurons with L2

regularization.
3) Dropout regularization technique with

0.5 value.
4) BiLSTM layer with 50 neurons with L2

regularization.
5) Dropout regularization technique with

0.5 value.
6) Dense layer with 100 neurons and relu

activation function for feature extraction.
7) Output layer which predicts the next

word as a single vector.
Comparing the performance of two

different models, we have chosen the second model
with BiLSTM layer, since it showed very
promising results comparing to model with LSTM
layer in Table 1. Figure 4 demonstrates that LSTM
model at some point started drastically increasing
the loss. This unusual behavior can lead to
problems like overfit, which is not observed in
BiLSTM model.

Table 1. LSTM and BiLSTM performance
comparison

3. CONNECTIONIST TEMPORAL
CLASSIFIER

The CTC algorithm considers the order of
the output labels of RNNs with ignoring the
alignments by introducing a blank label, b. If the
target labels are defined as L, then L′ is an extended
version of L with an extra blank symbol. The
sequences over L′ is defined as π, where π∈ L′T, in
which T represents the size if an input. The output
sequence is labeled as z, where z ∈ L ≤T. It has a
function F that maps the input sequence to output

Name Loss Accuracy Epochs

LSTM 1.70 59.43 100

BiLSTM 1.32 73.71 100

Journal of Theoretical and Applied Information Technology
29th February 2020. Vol.98. No 04

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

709

sequence z = F (π). Basically, path π with its T can
be mapped to a much shorter sequence z, by
combining consecutive symbols into one symbol
and by removing blank symbols. By having a input
sequence and corresponding targets our RNN
(recurrent neural network) can train and learn
sequence mapping.

The CTC uses the forward-backward algorithm
to compute the gradient of the loss function, L(x, z).
z′ is the sequence over L′. Then, the variables, α and
β, are initialized by

𝛼ሺ1, 𝑢ሻ ൌ ቐ
𝑦

ଵ if u ൌ 1
𝑦௭భ

ଵ 𝑖𝑓 𝑢 ൌ 2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,

𝛽ሺ𝑇, 𝑢ሻ ൌ ቄ1 𝑖𝑓 𝑢 ൌ |𝑧ᇱ|, |𝑧ᇱ| െ 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑦
௧ is the softmax output of the label k∈L′.

The forward and backward propagation is done as

𝛼ሺ𝑡, 𝑢ሻ ൌ 𝑦௭ೠ
ᇲ

௧ 𝛼ሺ𝑡 െ 1, 𝑖ሻ
௨

ୀሺ௨ሻ

 ,

𝛽ሺ𝑡, 𝑢ሻ ൌ 𝛽ሺ𝑡 1, 𝑖ሻ𝑦௭
ᇲ

௧ା

ሺ௨ሻ

ୀ௨

,

where

𝑓ሺ𝑢ሻ ൌ ቄ𝑢 െ 1 𝑖𝑓 𝑧௨
ᇱ ൌ 𝑏 𝑜𝑟 𝑧௨ିଶ

ᇱ ൌ 𝑧௨
ᇱ

𝑢 െ 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑔ሺ𝑢ሻ

ൌ ൜𝑢 1 𝑖𝑓 𝑧௨
ᇱ ൌ 𝑏 𝑜𝑟 𝑧௨ାଶ

ᇱ ൌ 𝑧௨
ᇱ

𝑢 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

with boundary conditions:

𝛼ሺ𝑡, 0ሻ ൌ 0, ∀𝑡,
𝛽ሺ𝑡, |𝑧ᇱ| 1ሻ ൌ 0, ∀𝑡

then, the error gradient at time 𝑡, 𝑎

௧ , is computed as

𝜕ℶሺ𝑥, 𝑦ሻ
𝜕𝑎

௧ ൌ 𝑦
௧ െ

1

𝑝 ቀ
𝑧
𝑥ቁ

 𝛼ሺ𝑡, 𝑢ሻ
௨ఢሺ௭,ሻ

𝛽ሺ𝑡, 𝑢ሻ,

where 𝐵ሺ𝑧, 𝑘ሻ ൌ ሼ𝑢: 𝑧௨

ᇱ ൌ 𝑘ሽ and 𝑝ሺ𝑧|𝑥ሻ ൌ
𝛼ሺ𝑇, |𝑧ᇱ| െ 1ሻ.

3.1. Beam search

This searching algorithm goes through the
network output creating beams, which have a
corresponding score. Figure 5 shows the beam’s

evolution: starting with an empty beam, we add all
possible characters (there are only “a” and “b” in
our case) on first iteration and we keep the ones
with the best scores. This process is repeated until
the whole NN output is processed.

Figure 4. Beam seach

3.2. Optimization algorithms

Gradient descent [7] is well know and
probably the most popular way to optimize deep
neural networks. However, every well-known
neural network frameworks contain
implementations of various types of methods to
optimize gradient descent.

Gradient descent is applied in order to
minimize a cost function 𝐽ሺ𝜃ሻ. It does this by
updating every time the parameters in the negative
direction of the function’s gradient ∇ఏ𝐽ሺ𝜃ሻ. The
learning rate η is a parameter that defines the step
size in order to reach local minimum. Simply, we
follow the direction of the slope downhill until we
get to the minimum point.

Stochastic gradient descent

SGD in [8] does the same thing like simple
gradient descent. However, it updates the
parameters of the model taking original dataset’s
(m) part (mini-batch):

𝑔 ൌ
1
𝑚

∇ఏ 𝐿൫𝑓൫𝑥ሺሻ; 𝜃൯, 𝑦ሺሻ൯

 ,

 𝜃 ൌ 𝜃 െ 𝜖 ൈ 𝑔

Adagrad

This method simply makes an adaptive
learning rate െη to depending on parameters. For
example, infrequent parameters make a big update
and frequent parameters make a small. Therefore, it

Journal of Theoretical and Applied Information Technology
29th February 2020. Vol.98. No 04

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

710

is more suitable for working with rare data (sparse
data).

In [11] Adagrad applies different learning rate
at each time t for every parameter 𝜃ሺ𝑖ሻ. Briefly, we
set 𝑔ሺ𝑡, 𝑖ሻ as the gradient of loss function:

𝜃௧ାଵ, ൌ 𝜃௧, െ
η

ඥ𝐺௧, 𝜖
∙ 𝑔௧,

Momentum

SGD has a hard time navigating areas
where the curves a lot sharper in one depth
comparing to another, which are around local
optima. In these scenarios, SGD hesitates through
the slopes while making slow progress through the
bottom to the local minimum.

Momentum in [10] is a method that
accelerates SGD in the appropriate direction. It is
achieved by adding a fraction 𝛾 to the update
vector.

𝜗௧ ൌ 𝛾𝜗௧ିଵ η∇ఏ𝐽ሺ𝜃ሻ
𝜃 ൌ 𝜃 െ 𝜗௧

The γ value is almost any case is equals to

0.9 or a somewhere around this value. Basically,
when we are using momentum, we are pushing the
ball down a hill. The momentum accumulates as the
ball goes downhill, becoming faster. Identically, for
parameter updates: The momentum increases if
gradients go in the same direction and decreases
updates if gradients directions change. As an
outcome, we’ll get more faster convergence with
less oscillation.

Adam

Adam is the method that also computes the
learning rate for the parameters that is adaptive [9].
Adam exponentially keeps decomposing average of
past gradients Mሺtሻ, like momentum:

𝑚௧ ൌ 𝛽ଵ𝑚௧ିଵ ሺ1 െ 𝛽ଵሻ𝑔௧
𝑣௧ ൌ 𝛽ଶ𝑣௧ିଵ ሺ1 െ 𝛽ଶሻ𝑔௧

ଶ

𝑚௧ and 𝑣௧ are calculations of the first moment and
the second moment of the gradients. When 𝑚௧ and
𝑣௧ are initialized as 0 vectors, it has been observed
and stated that they are biased to zero, especially in
the beginning of the time step and when the β1 and
β2 are small.

𝑚௧ෞ ൌ

ଵିఉభ
 , 𝑣௧ෝ ൌ

௩

ଵିఉమ

These later used to update parameters:

𝜃௧ାଵ ൌ 𝜃௧ െ
η

ඥ𝑣௧ෝ 𝜖
𝑚௧ෞ

The proposed values for β1, β2 and 𝜖 are

0.9, 0.999 and 10−8, respectively.

4. Experiment

To train the CTC model, there has been
used a python library Tensorflow. Actually, there
are quite a lot of frameworks for building ASR
systems like Kaldi, Sphinx. However, the
advantage of Tensorflow is that, it allows us to use
GPU of the computer and parallelize the tasks into
tensors. As a speech data for a training a model,
SDU corpus data has been used. It is a data, which
has been collected in the base of university of
Suleyman Demirel, which contains 70 native
speakers with 360 sentences. It weighs about 5GB,
but for illustration purposes, only part of it was
used in this experiment.

The structure of the Neural Network is
using a RNN (Recurrent Neural Network) with 100
hidden layers. Specifically, LSTM (Long-Short
Term Memory) type of RNN has been used, for
capturing all information in the sequence. As for
optimization part, three algorithms have been
considered (Adam, Momentum, Adagrad), which
were discussed earlier. Each of them has
advantages over the other two, but specifically for
speech data, these algorithms were evaluated by
LER (label error rate) and CTC loss.

Before feeding into neural network dataset
has gone through data augmentation process with
time warping technique. Number of epochs to train
the model is 100. Output of the CTC model is
actually sequence of characters including blanks
(encoding part). Decoding part is done by using
dynamic programming method, which is in this
case greedy search. Greedy search was preferred
instead of beam search, because it decodes faster,
although beam search performs better. In order to
avoid the overfitting problem we have taken the
learning rate as 0.005. Network uses pre-trained
language model while training and decoding in
order to improve overall performance.

Journal of Theoretical and Applied Information Technology
29th February 2020. Vol.98. No 04

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

711

5. RESULTS AND DISCUSSIONS

After training the model three times with
different optimization algorithms, we see the
following outcomes (Table 2).

Table 2. Results of each optimizer

5.1. Adagrad

Figure 5. CTC loss and LER of Adagrad

After that, the loss value starts to hesitate
drastically between 500 and 50 (approximately). At
the same time, LER right from the beginning start
to hesitate between 1 and 0.9(approximately),
which does not allow the model to learn.

5.2. Momentum

Figure 6. CTC loss and LER of Momentum

The visualization we see in Figure 7 shows
that Momentum works a lot better than Adagrad.
LER and CTC loss are continuously decreasing for
training and validation sets. After the gradient steps
reach the 900 epochs CTC loss goes down to
almost 1, where LER shows the 0. This is may be
prone to over fit because there is a quite big gap
between training set and validation set. Applying
other optimizing techniques like dropout and
feeding even more data this problem can be
avoided in the future.

Because of learning rate is equal to 0.005
decreasing process slows down little bit. Learning
process is much better than Adagradoptimizer.

5.3. Adam

Name Training
cost

Validation
cost

Training
LER

Validation
LER

Adagrad 166.774 242.164 0.970 0.980

Momentum 2.405 71.289 0.000 0.500

Adam 166.774 242.164 0.970 0.980

Journal of Theoretical and Applied Information Technology
29th February 2020. Vol.98. No 04

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

712

Figure 7. CTC loss and LER of Adam

As shown in Figure 5 CTC loss decreases
at the beginning of the gradient steps and once
again as in Adagrad optimizer starts to hesitate
between two numbers with a big difference. LER
on the other hand decreases to 1 after few iterations
and after that does not change for a long gradient
steps. Right after it reaches about 750 iteration LER
starts to hesitate between 1 and 0.5(approximately),
which is not a well performance.

CONCLUSION AND FUTURE WORKS

This paper shows a clear benefit of
Momentum optimizer over Adam and Adagrad for
CTC algorithm for speech recognition. The
experiment showed that model with Momentum
optimizer learns faster decreasing the CTC loss and
LER after each gradient step, whereas Adagrad and
Adam optimizers performed very poorly, showing a
hesitation of errors from big number to small. Other
than that, this paper shows the advanced algorithm
called Connectionist Temporal Class for speech
recognition in action. It also describes the clear
benefits of this algorithm over the traditional
method, which is HMM based model, which is the
simplicity and effectiveness.

For the future work we are planning to add
other regularization algorithms to make out CTC
algorithm work a lot faster and accurate. To avoid
the problems like overfit and exploding gradients,
we are planning to add techniques like dropout,
residual blocks and collect more data.

Funding: This work is supported by a grant from
the Ministry of Education and Science of the
Republic of Kazakhstan within the framework of
the Project “AP05132648- Creating verbal and
interactive robots based on advanced voice and
mobile technologies”

Conflicts of Interest: The authors declare
no conflict of interest.

REFERENCE LIST

[1] Mark G., Steve Y., The Application of Hidden
Markov Models in Speech Recognition,
Foundations and Trends in Signal Processing,
Vol. 1, No. 3 (2007) 195–304

[2] Alex Graves, NavdeepJaitly. Towards End-to-
End Speech Recognition with Recurrent
Neural Networks, Proceedings of the 31st
International Conference on Machine
Learning (2014), Volume 32 Pages II-1764-II-
1772

[3] Alex G., Santiago F., Faustino G., J¨urgen S.,
Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data with
Recurrent Neural Networks, Proceedings of
the 23rd International Conference on Machine
Learning, Pittsburgh, PA, 2006, Pages 369-
376

[4] YoshuaBengio, RéjeanDucharme Pascal
Vincent, Christian Jauvin, A Neural
Probabilistic Language Model, Journal of
Machine Learning Research 3 (2003) 1137–
1155

[5] Dong Yu, Jinyu Li, Recent Progresses in Deep
Learning based Acoustic Models, IEEE/CAA
Journal of AutomaticaSinica(2017), Volume
4, Pages 396 – 409

[6] Sam W., Alexander M. Rush. Sequence-to-
Sequence Learning as Beam-Search
Optimization, Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing, pages 1296–
1306,November 1-5 (2016)

[7] Marcin Andrychowicz, MishaDenil, Sergio
Gómez Colmenarejo, Matthew W. Hoffman,
David Pfau, Tom Schaul, Brendan
Shillingford, Nando de Freitas. Learning to
learn by gradient descent by gradient descent,
30th Conference on Neural Information
Processing Systems (NIPS 2016)

[8] Leon B., Large-Scale Machine Learning with
Stochastic Gradient Descent, NEC Labs
America, Princeton NJ 08542, USA

[9] Diederik P. Kingma, Jimmy Lei Ba. ADAM:
A METHOD FOR STOCHASTIC
OPTIMIZATION, arXiv:1412.6980v9
[cs.LG] 30 Jan 2017

[10] Nicolas L., Peter Richt´arik. Momentum and
Stochastic Momentum for Stochastic
Gradient, Newton, Proximal Point and
Subspace Descent Methods, School of
Mathematics, The University of Edinburgh
(2017)

[11] John Duchi, EladHazan, Yoram Singer.
Adaptive Subgradient Methods for Online

Journal of Theoretical and Applied Information Technology
29th February 2020. Vol.98. No 04

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

713

Learning and Stochastic Optimization,
Journal of Machine Learning Research 12
(2011) 2121-2159

[12] Daniel S. Park, William Chan, Yu
Zhang, Chung-Cheng Chiu, BarretZoph, Ekin
D. Cubuk, Quoc V. Le, SpecAugment: A
Simple Data Augmentation Method for
Automatic Speech Recognition,
arXiv:1904.08779

[13] Russell S. and Norvig P. Artificial
Intelligence: A Modern Approach (2nd Ed.).
Pretice Hall. 2002.

[14] Kukich Karen, Techniques for automatically
correcting words in text. ACM Computing
Surveys.1992. 24(4), pp. 377-439.

[15] Alan Newell, Stefan Langer, Marianne
Hickey, The role of natural language
processing in alternative and augmentative
communication. Natural Language
Engineering. 1998. pp. 1-16

[16] Kenneth Ward Church, A Stochastic Parts
Program and Noun Phrase Parser for
Unrestricted Text. Second Conference on
Applied Natural Language Processing. 1988.
pp. 136–143

[17] Peter F. Brown, John Cocke, Stephen Andrew
Della Pietra, Vincent joseph DellaPietra, A
Statistical Approach To Machine Translation,
Computational Linguistics, Volume 16, pp.
79-85

[18] Jonathan J. Hull, Combining syntactic

knowledge and visual text recognition: A
hidden Markov model for part of speech
tagging in a word recognition algorithm. AAAI
Symposium: Probabilistic Approaches to
Natural Language. 1992. pp. 77–83.

