
Journal of Theoretical and Applied Information Technology 
29th February 2020. Vol.98. No 04 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
672 

 

SUPERVISED MACHINE LEARNING FOR SMART DATA 
ANALYSIS IN INTERNET OF THINGS ENVIRONMENT: AN 

OVERVIEW 
 

MOHAMMED H. ALSHARIF 1,*, WILLIAM A. MOSIER2, OSAMA AHMAD ALOMARI3, 
KHALID YAHYA4 

1Department of Electrical Engineering, College of Electronics and Information Engineering, Sejong 

University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea 
2Department of Biomedical Sciences, School of Health Sciences, Istanbul Gelisim University, Istanbul, 

Turkey 
3Department of Computer Engineering, Faculty of Engineering and Architecture, Istanbul Gelisim 

University, Istanbul, Turkey 
4Department of Mechatronics Engineering, Istanbul Gelisim University, Avcılar, 34310, İstanbul, Turkey 

E-mail:  1moh859@gmail.com, 2drwilliammosier@gmail.com, 3oalomari@gelisim.edu.tr, 
4koyahya@gelisim.edu.tr  

 
 

ABSTRACT 
 

Machine learning techniques will contribution to making Internet of Things (IoT) applications that are 
considered the most significant sources of new data in the coming future more intelligent, where the 
systems will be able to access raw data from different resources over the network and analyze this 
information in order to extract knowledge. This study focuses on supervised machine learning techniques 
that is considered the main pillar of the IoT smart data analysis. This study includes reviews and 
discussions of substantial issues related to supervised machine learning techniques, highlighting the 
advantages and limitations of each algorithm, and discusses the research trends and recommendations for 
further study.   
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1. INTRODUCTION  
 

Big data can be defined as high variety, high-
velocity, and high-volume data. Big data requires 
cost-effective and innovative procedures of 
information processing to empower greater insight, 
problem-solving, and process automation [1]. 
Internet of Things (IoT) is considered the most 
significant source of new data, since IoT creates a 
platform in which physical objects can mimic the 
specific human sensory capabilities of perception, 
vision, hearing, and thinking. Buoyed with these 
human sensory capabilities and the emerging tactile 
Internet, machines can communicate with one 
another, share relevant information and make real-
time decisions with minimal human input [2]. 
Systems need the ability to access raw data, coming 
from different resources within a network and 
analyze the data to extract useful information. 
Machine learning (ML) technology is a specific 

type of algorithm that can be applied to many 
different domains, data types, and data models [3]. 
Accordingly, ML is seen as providing a significant 
contribution to making IoT applications more 
intelligent [4]. 

ML is a type of Artificial Intelligence (AI) that 
provides machines with the ability to learn pattern 
recognition [5]. A learning algorithm depends on a 
set of samples as an input that name a training set; 
thus, learning algorithms can be classified into 
three main categories of learning (Figure 1) [6]: 

 

1. Supervised learning. This learning algorithm 
uses samples of input vectors and their target 
vectors. The target vectors are typically referred 
to as labels. This type of learning attempts to 
predict the output vector for a specified input 
vector. Applications that have target labels 
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contain a finite quantity of distinct categories. 
This is, typically, referred to as classification 
tasks. When these target labels are composed of 

one or more constant variables they are called 
regression tasks [5]. 

 
 

Figure 1: Classification of learning models. 

 
2. Unsupervised learning. This learning algorithm 

does not require labeling of the training set. The 
objective of this type of learning is to identify 
workable clusters of analogous samples in the 
input data. This is commonly called clustering. 
This learning algorithm can provide suitable 
internal representation of the input information, 
by preprocessing the baseline input, so as to 
reposition it into a different variable space of the 
algorithm. The preprocessing stage can improve 
the outcome of a successive ML algorithm. This 
is typically referred to as a feature extraction 
[7]. 

3. Reinforcement learning. This learning algorithm 
deals with the problem of learning the 
appropriate action or sequence of actions to be 
taken for a given situation in order to maximize 
payoff [8]. 

This study will focus on supervised learning, 
since it is considered the main pillar of the IoT 
smart data analysis [5]. In a hot research topic in 
Information and Communications Technology 
(ICT) like ML algorithms for smart data analysis in 
IoT environment, there are many developments that 
quickly come into the spotlight and need to be 
highlighted in order to provide clear insights for 
researchers to choose the appropriate solution for a 
best performance. This article has incorporated 
information about supervised learning that are used 
in ML algorithms for smart data analysis in IoT 
environment, to achieve a precise, concrete and 
concise conclusion at the end of the study.  

The key contributions of this study are presenting 
a comprehensive analyzes of the related literature 
on supervised ML techniques that is the main pillar 
of the IoT smart data analysis. This algorithm is 
investigated based on their respective sub-domains 
as well as advantages and limitations to achieving a 
precise, concrete and concise conclusion. This 
article also addresses research trends in the field of 
smart data analysis of IoT, and open issues that are 
being pursued in this area. 

The rest of this paper is organized as follows. 
Section 2 discusses Taxonomies of supervised ML 
techniques based on their respective sub-domains 
with their advantages and limitations. Section 3 
reviews the research trends and open issues. 
Section 4 elaborates the conclusions and 
recommendations. 
 
2. TAXONOMIES OF SUPERVISED ML 

ALGORITHMS 

The majority of practical ML uses supervised 
learning. In supervised learning, the available 
datasets are called “true” datasets or “correct” 
datasets. The algorithm is “trained” by using these 
input datasets. This is referred to as: training data. 
During this process, the algorithm makes predictions 
about the input data and expands or contracts its 
evaluations using the “ground truth” as baseline, 
repeating the process until the algorithm achieves a 
level of accuracy that is determined acceptable [11]. 
An ML algorithm will, typically, adjust satisfy a cost 
function. A cost function quantifies the error 
between the “ground truth” and algorithm 
calculations. Minimizing the cost function, allows 
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for training the model to yield results that align to 
more precise values (ground truth). Minimizing cost 
function can be achieved with the utilization of a 
gradient descent technique [12]. Different gradient 

descent techniques such as stochastic gradient 
descent, momentum-based gradient descent, 
Nesterov accelerated gradient descent [13] have been  

 
 

 
 

Figure 2: Summarized taxonomy of supervised ML algorithms. 
 

applied to ML training paradigms. In an example 
where ‘m’ represents the number of trainings, each 
training can be denoted in a pair, as follows: (x, y). In 
this example the x can signify the input data and y 
signifies the class label. The input data x represents 
an n dimensional, while each dimension links to a 
explicit feature or a specific variable. In this 
example, the ML algorithm is aligned with a specific 
sensor system embedded in the program to 
accommodate the IoT application. [14]. Supervised 
learning problems can be further grouped into 
classification and regression problems [12]. The 
summarized taxonomy of supervised ML 
algorithms is given in Figure 2. In addition, Table 1 
provides a summarized comparison of the basis and 
notable attributes, as well as advantages and 
limitations for each algorithm of the sub-domains 
of a supervised ML. In the following subsections, a 
detailed discussion is presented. 
 
 
 

2.1.  Classification Tasks 
 

Classification is a technique to categorize the data 
into a desired and distinct number of classes where a 
label is assigned to each class [15]. There are many 
methods to classify the data, a detailed discussion 
about the types of classification algorithms is given 
in the following subsections. 

 
2.1.1. K-Nearest Neighbors (KNN) 

 
The k-nearest neighbors (KNN) algorithm is a 
supervised ML algorithm that can be used to solve 
both classification and regression problems. 
However, it is more widely used in classification 
problems [16]. There are three important aspects 
that are used to evaluate any algorithm, (i) ease to 
interpret output, (ii) calculation time, and (iii) 
predictive power. KNN is simple, easy to 
implement, and commonly used because its ease of 
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interpretation and low calculation time. In 
classification and regression problems, the input 
consists of the k that is closest to the training 
examples in the featured space. The output depends 
on whether KNN is used for classification or 
regression: (i) In KNN classification, the output is a 
class membership [5]. An object is classified by a 
plurality vote of its neighbors, with the object being 
assigned to the class most common among its k 
nearest neighbors (k is a positive integer). If k = 1, 
then the object is simply assigned to the class of its 
single nearest neighbor. (ii) In KNN regression, the 
output is the property value for the object. This 
value is the average of the values of k’s nearest 
neighbors. To find the k of a data point, Euclidean 
distance, L∞ norm, angle, Mahalanobis distance, or 
Hamming distance can be used as the distance 
metric [17, 18]. A KNN model is shown in Figure 
3, for k =3, imagine that in this example, the test 
point (star) belonging to class B and for k=6, the 
point is classified as belonging to class A. In this 
example, KNN is a non-probabilistic and non-
parametric model [19]. It is common for this to be 
the first choice for a classification study when no 
prior knowledge of the data distribution is 
available. In this illustration, KNN supplies all 
labelled input points. So, the question is raised what 
should be done with the unknown sample or 
samples? Resolving this dilemma can lead to 
significant computational expense. Classification of 
this type is based on a distance metric referred to as 
a similarity measure. Any sample labeled as 
unknown must be then classified by majority vote 
of its k nearest neighbors. Because complexity 
increases as the dimensionality increases, 
dimensionality reduction techniques [20] must be 
performed before using KNN. This is necessary to 
circumvent effects that might eschew 
dimensionality. For example, KNN classifiers are 
used for stress detection in the monitoring of 
human physiological signals [21] as well as in the 
detection of seizure activity in a patient with 
epilepsy [22]. 
 

 

Figure 3: A simple KNN model for different values of 

k. 
To formulate the problem in this example, Figure 3 
represents the new input vector (data point) by x, its 
K nearest neighbors by Nk(x), the predicted class 
label for x by y, and the class variable by a random 
variable t. In addition, 1(.) can indicate the 
function: 1(s)=1 if s is true and 1(s)=0 otherwise. 
The form of the classification task can be expressed 
as follows [5]: 

 

 
 

(1) 

 
Despite the benefits that can be achieved with 

this algorithm, (such as no training period) which 
allows for new data to be added seamlessly without 
negative impact on the accuracy of the algorithm; 
one major limitation of KNN is that it requires 
storing the entire training set, which makes KNN 
unsalable to large data sets. Moreover, the KNN 
algorithm doesn't work well with high dimensional 
data because with a large number of dimensions, it 
becomes difficult for the algorithm to calculate the 
distance in each dimension. In addition, the KNN is 
sensitive to noise in the dataset [23]. We need to 
manually input missing values and remove outliers. 
The authors in [24] have addressed with the large 
data sets issue by constructing a tree-based search 
with a one-off computation. Additionally, the 
authors in [25] suggest a structure for learning 
multiple metric combinations utilizing a vigorous 
and unique KNN classifier. Other authors, [26] link 
KNN with a rough-set-based algorithm that has 
been used for classifying travel pattern regularities. 
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There are a lot of different improvements for 
the traditional KNN algorithm, such as the Wavelet 
Based KNN Partial Distance Search (WKPDS) 
algorithm [27], Equal-Average Equal-Norm 
Nearest Neighbor code word Search (EENNS) 
algorithm, and the Equal-Average Equal-Variance 
Equal-Norm Nearest Neighbor Search (EEENNS) 
algorithm [28]. 
 

2.1.2. Naive Bayes 
 

A naive bayes classifier is a supervised machine-
learning algorithm that uses the Bayes’ Theorem, 
which assumes that features are statistically 
independent. The theorem relies on the naive 
assumption that input variables are independent 
from each other, i.e. there is no way to know 
anything about other variables when given an 
additional variable. Given a new, unseen data point 
(input vector) x= (x1, …, xM), naive Bayes 
classifiers, which are a family of probabilistic 
classifiers, classify x based on applying Bayes' 
theorem with the “naive” assumption of 
independence between the features (attributes) of x 
given the class variable t. By applying Bayes' 
theorem, the form can be expressed as follows [29]: 

 

(2) 

 
By applying the naive independence assumption 
and some simplifications, the result is:. 
 

(3) 

The form of the classification task can be expressed 
as follows [30]: 

 

(4) 

 

Where y denotes the predicted class label for x. 
Different naive Bayes classifiers use different 
approaches and distributions to estimate p(t=c) and 
p(xj|t=c). 

Naive bayes classifier requires a small number of 
data points to be trained, can deal with high-
dimensional data points, and is fast and highly 
scalable [31]. Moreover, Naive bayes classifier is a 
popular model for applications, such as spam 
filtering [32], text categorization, and automatic 
medical diagnosis [33]. On the other hand, the 
authors in [34] used this algorithm to combine 

factors to evaluate the trust value and calculate the 
final quantitative trust value of the agricultural 
product. Despite the benefits that can be achieved 
by this classifier; the main limitations of this 
classifier (Naive Bayes) are the assumption of 
independent predictors and assumption that all the 
attributes are mutually independent. However, in 
real life, it is almost impossible that we get a set of 
predictors which are completely independent [30]. 
Conversely, if the categorical variable has a 
category in the test data set, which was not 
observed in the training data set, then the model 
will assign a 0 (zero) probability and will be unable 
to make a prediction. This is often known as Zero 
Frequency. However, to solve this, we can use the 
smoothing technique. One of the simplest 
smoothing techniques is called Laplace estimation 
[35]. 
 
2.2. Regression Tasks 
 

Regression models are used to predict a 
continuous value. A detailed explanation of the 
different types of regression tasks, with some 
important concepts are presented in following 
subsection. 

 
2.2.1. Linear Regression 

 
Linear Regression is a ML algorithm based on 

supervised learning. It performs a regression task. 
Regression models aim to provide a prediction 
value based on independent variables. It is mostly 
used for finding out the relationship between 
variables and forecasting possible results [36]. 
Regression models differ based on the relationship 
that exists between dependent and independent 
variables. The objective of linear regression is to 
learn a specific function f(x, w). In this case one 
would plot the following: f : ϕ(x)→y. This is the 
linear amalgamation of a set of fixed linear or 
nonlinear functions from the input variable. This 
can be symbolized as the basic function: ϕi(x) [29]. 

 
f(x,w)= ϕ(x)Tw (5) 

 
With w signifying the weight vector (i.e., matrix), 
the equation would be conveyed as w=(w1, …, 
wD)T, and ϕ =( ϕ1, …, ϕD)T. A broad range of basic 
functions exist to assist in creating this application. 
For example: polynomial, gaussian, radial, or 
sigmoidal basic functions could be used in this 
application [37].  
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A key concern is training the model for 
application. Several approaches are available: 
Ordinary Least Square, Regularized Least Squares, 
Least-Mean-Squares (LMS) and Bayesian Linear 
Regression. The LMS approach is very useful 
because it is quick, can easily be adapted to 
accommodate large data sets, and can learn the 
parameter requirements over the internet by using 
stochastic gradient descent (sequential gradient 
descent) [38]. Using the appropriate basic function, 
random nonlinearities in the mapping from input 
variable to output variable can be identified. 
However, the use of fixed basis functions can lead 
to significant shortcomings. (E.g. an increase in the 
dimension of the input space is coupled with rapid 
growth in the number of basic functions) [39]. 
Linear regression can process at a high rate [40]. 
For example, this algorithm can be used to analyze 
and predict the energy usage of buildings. 

In contrast, neural networks can be used to fix the 
number of basic functions and allow the model to 
learn the parameters of the basic functions. In 
addition, neural networks are fast to process new 
data, because they are compact models. 
Additionally, they are easily adaptable to regression 
and classification problems. However, they usually 
require a large amount of computation to be trained. 
[41]. There exist many different types of neural 
networks, with different architectures, use cases, 
and applications.  

 
2.3. Combining Classification and Regression 

Tasks 
 
2.3.1.  Support Vector Machine (SVM) 

 
Classical Support Vector Machine (SVM) is a 

support-vector network that can be utilized with 
supervised learning models. This model is a non-
probabilistic, binary classifier that can be used to 
identify the hyperplane that divides classes of the 
training set. This provides a maximized margin. 
The predicted label of a previously unobserved data 
point can be determined by the side of the 
hyperplane on which it falls [42]. A significant 
property of SVMs is that it requires only a few 
training points. These training points are support 
vectors that can classify any new data point in the 
network. SVMs not only perform binary 
classification, they are also able to do multiclass 
classification. Four such models are: All-vs-all 
(AVA) SVM, One-vs-all (OVA) SVM, Structured 
SVM [43], and the Weston and Watkins version 
[44]. Besides linear classification, SVMs can 
perform non-linear classification. This can be 

useful for finding the hyperplane of a non-linear 
functioning input variable. For example, an input 
variable can be mapped into a high-dimensional 
feature space. This process is referred to as a kernel 
trick [45]. To formulate the problem, identify the 
typical vector of the hyperplane as w and the 
parameter for controlling the offset of the 
hyperplane as b. To safeguard that SVM will be 
able to control for outliers in the data, a variable  
can be introduced for every training point xi. This is 
a slack variable that determines the distance that 
the training point encroached upon the margin in 
units of |w|. In this example, a binary linear 
classification task can be designated as a 
constrained optimization problem in the following 
manner [46]: 

 
Subject to   
i= 1, … n;   

(6) 

 
Where parameter C > 0 determines how heavily a 
violation is punished. Moreover, the parameter C is 
a hyperparameter which can be chosen via cross-
validation or Bayesian optimization. There are 
different techniques to address the constrained 
optimization problem in Equation (6). P-pack SVM 
[49], quadratic programming optimization [47], and 
sequential minimal optimization [48] are techniques 
that can be applied to this problem. SVM is an 
excellent supervised learning model that can 
efficiently address high dimensional data sets. It is 
particularly effective addressing memory usage 
because it utilizes support vectors to facilitate 
prediction. However, this model has a significant 
drawback in that it does not directly provide 
probability estimates. SVM is useful in many real-
world applications such as hand-written character 
recognition [50], image classification [51], and 
protein classification [52]. Finally, we should note 
that SVMs can be trained in an online fashion, 
which is addressed in [53]. The authors in [54] 
proposed a method on the Intel Lab Dataset; data 
set consists of four environmental variables 
(temperature, voltage, humidity and light) collected 
through S4 Mica2Dot sensors. The authors in [55]  
applied SVM to classify traffic data. 
 

2.3.2. Classification and Regression Trees 
(CART) 

 
A training algorithm that works quite quickly is 

the classification and regression tree. This 
algorithm has been used to identify and classify 
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smart citizen behaviors [56]. This decision tree 
algorithm is useful in predictive modeling machine 
learning. The classical decision tree algorithm, 
random forest, is an extremely useful procedure. 
For example, the input space in CART is first 
partitioned into axis-aligned cuboid regions Rk. 
Then a regression model assigns a separate 
classification to each region. The goal of this step is 
to predict the label for data points that may fall 
within a given region [57]. In the case of an 
unknown or hidden input vector (data point) x, the 
procedure for predicting the target marker can be 
determined based on the movement of the binary 
tree. This procedure must be consistent with the 
sequential decision-making process. An effective 
and efficient model for classification must predict a 
specific class for each region. The model must also 
be able to predict a constant for each region. To 
express the classification task, a class variable can 
be identified by a distinct random variable t. The 
predicted class label for x by y should also be able 
to be identified. The classification task would 
utilize the following formula [29], 

 (7) 

 
Equation (7) states that it will be labeled by the 
most common mode in its corresponding region 
[29]. 

To formulate the regression task, we denote the 
value of the output vector by t and the predicted 
output vector for x by y. The regression task is 
expressed as, 

 
(8) 

 
The output vector for x will be the mean of the 
output vectors of data points in its corresponding 
region. 
 

To train CART, the structure of the tree should 
be determined based on the training set. This means 
determining the split criterion at each node, along 
with the threshold parameter value. Finding the 
optimal tree structure is an NP-complete problem. 
This is termed as a greedy heuristic, which 
constructs the tree top-down and chooses the best 
split node by node to train CART. To achieve a 
better generalization and reduce overfilling, some 
stopping criteria should be used for constructing the 
tree. Possible stopping criterion are the maximum 
depth reached, whether the distribution in the 
branch is pure, whether the benefit of splitting is 

below a certain threshold, and whether the number 
of samples in each branch is below the criteria 
threshold. Moreover, after constructing the tree a 
pruning procedure can be used to reduce overfitting 
[56, 58]. The main advantage of CART is that it is 
fast and scalable to large data sets. However, it is 
very sensitive to the choice of the training set [59]. 
A significant shortcoming of this model concerns 
unsmooth labeling of the input space since each 
region of the input space is associated with exactly 
one label [9]. 
  
2.3.3. Random Forests 
Random forests and random decision forests are 
useful learning methods for classification and 
regression tasks. These models construct multiple 
decision trees related to classification and 
regression; addressing training time, class output, 
mode of the classes, and mean prediction of 
individual trees. In random forests, multiple trees 
are trained in tandem. Each tree is trained with one 
subset of the training set. Each is chosen randomly 
with a potential replacement. This is done using a 
arbitrarily identified subset of M input variables 
[60]. Two setups for forecasting the identifier of an 
unknown or unseen data point are suggested as 
follows: (1) A classification task would determine 
the mode of the labels predicted by each tree; (2) A 
regression tasks would identify the mean of the 
labels projected by each tree. However, an issue to 
address is the possibility of different values for M: 
A value for M that is determined to be too small 
results in random trees with meagre predictive 
power. Similarly, value for M that is too large 
results in random trees that are too similar to be 
useful for prediction. 

Random forests have a high degree of 
accuracy. However, the cost of losing human 
interpretability is significant [61]. Random forests 
are fast and useful for large data sets. Random 
forests also have numerous real-world applications, 
for example body-pose recognition [62] as well as 
body-part classification. 
 

2.3.4. Bootstrap Aggregating 
 

Bootstrap aggregating (bagging), is an ensemble 
technique used to enhance accuracy and strength of 
ML algorithms. Bagging reduces the risk of 
overfitting. With this procedure, K new M sized 
training sets are randomly replacing data points 
from the original training set. In each newly created 
training set, a ML model is trained [63]. The 
predicted label of a different and unseen data point 
is set as the new mode of the labels predicted by 
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each model in the classification task and becomes 
the new mean in regression tasks. Of the different 
ML models, CART and neural networks bagging 
technique are very effect at refining the results. On 
the other hand, bagging degrades the performance 
of stable models such as KNN. It is, therefore, 

important to scrutinize its applicability to any 
specific task. Practical applications for bootstrap 
aggregating include customer attrition prediction 
and preimage learning [29].  
 
 

 
Table 1: Summarized comparison of the basis and notable attributes, as well as advantages and limitations of a 
supervised ML. 
Data analysis tasks ML algorithm Advantages Disadvantages 
Classification KNN *Very simple implementation. 

*New data can be added seamlessly. 
*Robust against noisy training data. 
*It has the capability to modeling 
complex classification problem by a 
collection of less complex local 
approximation. 
*Maintain the information that 
presents in the training data. 

*Does not work well with large 
dataset. 
*Sensitive to unbalanced training 
data. 
*It is supervised lazy learner. 
Memory usage cost. 

Naive bayes *Resulting interpretable model. 
*Computational efficiency and 
highly scalable. 
*Good classification performance. 
*Require a small number of data 
points to be trained. 
*It can deal with high-dimensional 
data points. 

*It assumes that all the features are 
mutually independent. However, in 
real life, it is rarely that there is no 
correlation between features in raw 
data, which in turn leads to negatively 
on the classification accuracy. 

Regression Linear 
regression 

*Model development is rapid and 
straightforward.  
*Useful when the relationship to be 
modeled is not extremely complex 
and if don’t have a lot of data. 

*Applicable only if the solution is 
linear. In many real life scenarios, it 
may not be the case. 
*Algorithm assumes the input 
residuals (error) to be normal 
distributed, but may not be satisfied 
always. 

Combining 
classification and 
regression 

SVM *Regularization capabilities. 
*Handles non-linear data efficiently. 
*Solves both Classification and 
Regression problems. 
*Stability. 
*Provide better generalization 
capabilities. 

*Choosing an appropriate Kernel 
function is difficult. 
*Extensive memory requirement. 
*Requires Feature Scaling. 
*Time-consuming training. 
*Difficult to interpret. 

Random forest *It is considered one of the most 
robustness and accurate 
computational learning algorithms 
*Good performance on many 
problem instances including non-
linear. 
*It has the capability of detect 
outliers and anomalies in 
knowledgeable data. 

*Overfitting can easily occur. 
*Need to determine the number of 
trees. 
*Small perturbation in data can 
significantly modify the tree’s 
structure, which in turn leads to 
produce inaccurate interpretations. 

Bootstrap 
aggregating 

*They often provide better 
calcification accuracy results than 
those obtained by individual 
machine learning. 

*Increasing of computational 
complexity. 
*Loss of interaction among the 
individual networks during learning. 
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3. RESEARCH TRENDS AND OPEN ISSUES 
 
3.2. Privacy and Security Privacy and Security 

IoT consists of a vast number of different devices 
that are connected to each other and transmit huge 
amounts of data. IoT applications fall into different 
categories according to their unique attributions and 
features. Certain issues should be considering for 
running data analysis in IoT applications in an 
accurate manner. First, the privacy of collected data 
is highly sensitive issue, because data collection 
processes can include personal or business data. 
This privacy issue must be solved. Second, due to 
the vast number of resources available and simple-
designed hardware in IoT, it is essential to consider 
security parameters, such as network security and 
data encryption. Ignoring security issues in the 
design and implementation of IoT devices can lead 
to an infected network. 
 
3.2. Real-Time Data Analytics 

According to the characteristic of smart data, 
analytic algorithms should be able to handle big 
data. That is, IoT requires algorithms that can 
analyze data that comes from a variety of sources in 
real-time. Many attempts have been made to 
address this issue. Deep learning algorithms, which 
are a form of neural networks incorporating 
evolution, can reach a high accuracy rate if they 
have enough data and time. However, deep learning 
algorithms can easily be influenced by noisy smart 
data. Furthermore, neural network-based algorithms 
can lack accurate interpretation. In the same 
manner, semi-supervised algorithms, which model 
a small amount of labeled data with a large amount 
of unlabeled data, can assist IoT data analysis. 

4. CONCLUSION 

This paper addresses the supervised ML 
techniques that are considered the main pillars of 
the IoT smart data analysis. To reach suitable 
decisions for smart data analysis, it is necessary to 
determine which task should be accomplished out 
of structure discovery, finding unusual data points, 
predicting values, predicting categories, or feature 
extraction. In order to predict values and classify 
sequenced data, the linear regression and SVM 
methods are the two most frequently applied 
algorithms. The objective of the models applied in 

these algorithms is to process and train data of high 
velocity. Another fast training algorithm is the 
classification and regression tree. To find unusual 
data points and anomalies in smart data, two 
important algorithms can be applied. Namely, the 
one-class SVM or PCA-based anomaly detection 
method. Both can train anomalies and noisy data 
with a high degree of accuracy. The SVM is a 
popular classification algorithm, which is capable 
of handling massive amounts of data and 
classifying their different types. Because SVM can 
handle a high volume and a variety of types of data, 
it is commonly applied in most smart data 
processing algorithms. To predict the categories of 
data, neural networks are suitable learning models 
for function approximation problems. Moreover, 
because smart data should be accurate and requires 
a long training time, a multi-class neural network 
can provide an appropriate solution. Research on 
the ML indicate that several challenges remain. 
This article has highlighted some shortcomings and 
challenges that exist with respect to some aspects of 
supervised ML techniques and future research that 
may prove beneficial in pursuing this vision as a 
useful technology. 
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