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ABSTRACT 
 

Recently, many approaches based on deep convolutional neural networks (CNNs) for object detection have 
showed better performance compared with traditional approaches. Since objects in high-resolution aerial 
images are usually very small with complex backgrounds, the performance of deep CNN-based approaches 
on object detection in high-resolution aerial images is still limited. In addition, with the constraint of the 
amount of memory on graphics processing units (GPUs), current state-of-the-art CNN architectures cannot 
directly process high-resolution aerial images. This paper proposes an improved deep CNN-based framework 
for object detection in high-resolution aerial images. To detect objects at different scales, image pyramid with 
different sizes is generated from single input image by down-sampling the original high-resolution input 
image. Each image level in the image pyramid can be used to detect objects at a different scale. For each 
image in the image pyramid, small patches with small fixed-size are generated. Each patch is then fed to the 
detection network, which is based on SSD framework with VGG-16 architecture as the base network, to 
generate patch detection results. Patch detection results are then projected to the image pyramid at the original 
scale to form image detection results. Finally, Non-Maximum Suppression (NMS) algorithm is adopted after 
image detection results to create final detection results. Experimental results on public datasets with high-
resolution aerial images show that the proposed approach is very simple and efficient while achieving nearly 
as detection accuracy as recent state-of-the-art methods. 
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1. INTRODUCTION  
 

With the development of earth observation 
technology and the diversity of remote sensing 
platforms, vision-based object detection in aerial 
images has attracted more and more attention. 
However, due to difficult conditions such as the 
complex backgrounds, high-resolution images, 
small objects, the uneven distributions of training 
samples in terms of size and quantity, illumination, 
and occlusion, object detection in aerial images are 
still challenging. Existing vision-based object 
detection in aerial images can be divided into two 
groups: traditional methods and deep learning-based 
methods. Traditional methods first use the traditional 
filters to extract features and then perform feature 
fusion and dimension reduction to concisely extract 
features. Finally, the features are fed into a classifier 
like Support Vector Machine or AdaBoost, which 

rely on hand-crafted features. However, these 
classifiers have difficulty to efficiently processing 
aerial images in the context of big data. In addition, 
hand-crafted features can detect only specific 
targets, when applying them to other objects, the 
detection results are unsatisfactory. 

Recently, deep learning-based methods for 
object detection in aerial images have achieved good 
performance. However, these innovations usually 
fail to detect very small objects because small object 
features are lost during the downsampling processes 
of convolution layers. In addition, objects in aerial 
images usually have small size, and the objects are 
usually blurry, which has created considerable 
challenges in normal object detection with no good 
solutions to date. To alleviate the issues of small 
object detection, many methods such as feature 
pyramid network, deeply supervised object 
detectors, and scale normalization for image 
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pyramids have been proposed. To a certain extent, 
these methods strengthen the feature extraction of 
small objects. However, they do not perform well 
when detecting aerial objects because many objects 
in aerial images have complex backgrounds due to 
terrain or illumination factors, and the above 
methods cannot easily distinguish them. 

To address previous issues, this paper proposes 
a framework to improve the performance of object 
detection in high-resolution aerial images. In the 
proposed framework, image pyramid with different 
image sizes is first generated from high-resolution 
input image. The image pyramid can help to detect 
objects at a different scale. For each image in the 
image pyramid, small patches with small fixed-size 
are generated. Each patch is then fed to the detection 
network, which is based on SSD framework with 
VGG-16 architecture as the base network, to create 
patch detection results. Patch detection on small 
patches can solve the problem of the memory 
constraint on GPUs. Patch detection results are then 
projected to the image pyramid at the original scale 
to form image detection results. Finally, Non-
Maximum Suppression algorithm is adopted after 
image detection results to create final detection 
results. Experimental results on public datasets show 
that the proposed approach achieves nearly as 
detection accuracy as recent state-of-the-art methods 
while being simpler and more efficient. 

This paper is organized as follows: an overview 
of previous methods on vehicle detection is 
presented in Section 2. Section 3 describes detail the 
proposed method. Section 4 demonstrates 
experimental results. Finally, the conclusion is made 
in Section 5. 
 
2. RELATED WORK 
 

Existing object detection approaches can be 
divided into two main categories: traditional 
methods and deep learning methods. Traditional 
methods include the scale-invariant feature 
transform [13] [37] and histogram of oriented 
gradients [14]. These methods first use the 
traditional filters to extract features and then perform 
feature fusion and dimension reduction to concisely 
extract features. Finally, the features are fed into a 
classifier like Support Vector Machine [15], 
AdaBoost [16], which rely on hand-crafted features. 

Recently, deep learning-based object detection 
approaches, including two-stage networks such as 
Faster R-CNN [7], and one-stage networks such as 
You Only Look Once (YOLO) [12] and single shot 
multibox detector (SSD) [1], have achieved good 
performance in object detection tasks. Faster R-CNN 

introduces a Region Proposal Network (RPN) that 
shares full-image convolutional features with the 
detection network, thus enabling nearly cost-free 
region proposals. SSD framework skips the region 
proposal stage and directly uses multiple feature 
maps with different resolutions to perform object 
localization and classification. YOLO solves object 
detection as a regression problem to spatially 
separated bounding boxes and associated class 
probabilities. A single neural network predicts 
bounding boxes and class probabilities directly from 
full images in one evaluation. Since the performance 
of deep learning-based object detector is 
significantly affected by the base network, many 
theoretical studies concerning the architecture of the 
base network have been conducted. AlexNet, 
developed by Krizhevsky et al. [20], was a 
groundbreaking CNN architecture. The main feature 
of the GoogleNet [22] is its improved utilization of 
the computing resources inside the network. This 
improvement was achieved through a carefully 
crafted design that allowed the depth and width of 
the network to increase while keeping the 
computational demands constant. The VGG models 
proposed by Simonyan and Zisserman [8] were used 
to investigate the relationship between the depth of a 
convolutional network and its accuracy in large-
scale image recognition regardless of the size or 
scale of the image, thus eliminating the requirement 
for a fixed-size input image. ResNet [22] was 
reformulated to learn residual functions with 
reference to the layer inputs instead of learning 
unreferenced functions to ease the training of 
networks that are substantially deeper than those 
used previously. DenseNet [23] based on the ResNet 
uses dense connections to enhance the feature 
propagation, and greatly reduce the numbers of 
parameters. 

To better handle the issues of small object 
detection, many methods such as feature pyramid 
network (FPN) [17], deeply supervised object 
detectors (DSOD) [18], and scale normalization for 
image pyramids [19] have been proposed. To a 
certain extent, these methods strengthen the feature 
extraction of small objects. FPN exploited the 
inherent multi-scale, pyramidal hierarchy of deep 
convolutional networks to construct feature 
pyramids with marginal extra cost. Furthermore, a 
top-down architecture with lateral connections is 
developed for building high-level semantic feature 
maps at all scales. DSOD designed a set of design 
principles for training object detectors from scratch. 
Scale normalization for image pyramids applied 
high-capacity convolutional neural networks to 
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bottom-up region proposals in order to localize and 
segment objects. 

In the field of object detection in aerial images, 
many deep learning-based methods have been 
proposed to improve the detection accuracy. Yang et 
al. [24] proposed a framework called Rotation Dense 
Feature Pyramid Networks which can effectively 
detect ship in different scenes including ocean and 
port. Furthermore, a rotation anchor strategy is 
designed to predict the minimum circumscribed 
rectangle of the object so as to reduce the redundant 
detection region and improve the recall. Zhang et al. 
[25] developed a CNN-based method to extract the 
high-level features and the hierarchical feature 
representations of the objects. An iterative weakly 
supervised learning framework is then employed to 
automatically mine and augment the training data set 
from the original image. In [26], the authors first 
adopted a region proposal method to generate 
candidate regions with the aim of detecting all 
objects of interest within these images. Then, generic 
image features from a local image corresponding to 
each region proposal are extracted by a combination 
model of 2-D reduction convolutional neural 
networks. Finally, to improve the location accuracy, 
an unsupervised score-based bounding box 
regression algorithm combined with a non-
maximum suppression algorithm was proposed to 
optimize the bounding boxes of regions that detected 
as objects. The deep learning-based method [27] 
used CNN features from combined layers to perform 
orientation-robust aerial object detection. A 
position-sensitive balancing framework [28] based 
on the ResNet and a novel end-to-end adaptively 
aspect-ratio multi scale network [29] can 
significantly improve detection accuracy. Wu et al. 
[30] proposed an efficient way to automatically learn 
the presentations from the passive image data and 
increase the computational efficiency of aircraft 
detection. Ding et al. [31] investigated the 
capabilities of a CNN model combined with data 
augmentation operations in SAR target recognition. 
Zhang et al. [32] designed a network with a 
deconvolution layer after the last convolution layer 
of base network for small object detection on high 
resolution remote sensing images. In [33], the 
authors presented an automatic content-based 
analysis of aerial imagery in order to detect and mark 
arbitrary objects or regions in high resolution 
images. Zhang et al. [34] presented a hierarchical oil 
tank detector with deep surrounding features 
combined with local features to describe oil tanks 
and then applied gradient orientation to select 
candidate regions from satellite images. Salberg et 
al. [35] investigated an algorithm for automatic 

detection of seals in aerial remote sensing images 
using features extracted from a pre-trained deep 
convolutional neural network. Jiang et al. [36] 
proposed a vehicle detection method in satellite 
images using DCNNs based on super-pixel 
segmentation. Zhu et al. [38] used CNN features 
from combined layers to perform orientation-robust 
aerial object detection. 
 
3. METHODOLOGY 
 

In this section, this paper presents the details of 
the proposed model in Section 3.1. The details of 
training and testing process are presented in Section 
3.2. 
 
3.1 Model 

Figure 1 illustrates the overall architecture of 
the proposed framework. As shown in Figure 1, to 
reduce the memory usage on high-resolution aerial 
images, the input image is cropped into small fixed-
sized patches. These patches are then fed into the 
detection network. Moreover, since large objects 
may not be entirely covered in a single image patch, 
the original image is down-sampled to form an 
image pyramid. Image pyramid allows the proposed 
framework to achieve scale-invariance and to 
process input images with a variety of resolutions. In 
the detection network, the proposed method makes 
predictions on only one feature map of small scale. 
Details of each module of the proposed method will 
be explain in the following sections. 
 
3.1.1 ResNet 

Since the detection network is designed to be 
sensitive to small objects in high-resolution aerial 
images, large objects will not be detected in the 
original image. Thus, this paper constructs an image 
pyramid based on input image as shown in Figure 2. 
With the image pyramid, the larger objects that 
cannot be detected in the image with original 
resolution become detectable on images with smaller 
scales. Moreover, since the memory available on 
GPUs is limited, the VGG-16 [8] network cannot 
process large images. To solve this problem, small 
patches with fixed size W × H will be cropped from 
each image level in the image pyramid as the input 
to the detection network. Each patch is created by 
using a sliding window with a stride of s in both 
horizontal and vertical direction on image. 
 
3.1.2 Enhanced Feature Map Generation 

The detection network is based on SSD 
framework [1] with VGG-16 [8] as the base 
convolution layers. SSD framework is built on top of 
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a base network that ends with some convolutional 
layers. SSD adds a series of progressively smaller 
convolutional layers. Each of the added layers, and 
some of the earlier base network layers are used to 
predict scores and offsets for some pre-defined 
default bounding boxes. These predictions are 
performed by two 3x3 filters, one filter for each 
category score and one for each dimension of the 
bounding box that is regressed. In this paper, single 
scale feature map is used for detection. More 
specific, this paper produces the object detection on 
the feature map generated by the highest-level 
feature map, i.e. Conv4-3 as shown in Figure 3. The 
receptive field of this layer is 97 × 97, which is 
adequate for small object detection [9], [10]. 
 For the default anchor boxes, similar to the 
approach in Faster-RCNN [7] and SSD [1], a set of 
pre-defined default boxes with different sizes and 
aspect ratios are introduced at each location of the 
highest-level feature map of the base convolution 
layers to assist producing the predictions for 
bounding boxes. Instead of directly predicting the 
location of the bounding boxes for each object in an 
image, for each position of the feature map, the 
detection network predicts the offsets relative to 
each of the default boxes and the corresponding 
confidence scores over the target classes 
simultaneously. Specifically, given n default boxes 
associated with each location on the highest-level 
feature map with a size of w × h, there are n × w × h 
default boxes in total. For each of the default boxes, 
c classes and 4 offsets relative to the default box 
location should be computed. As a result, (c + 4) × n 
× w × h predictions are generated for the feature map. 
 
3.2 Training and Testing 
 
3.2.1 Training Samples 
 For the training samples, 200×200 patches 
centered at target objects are cropped from the 
original images as input of the detection network. 
For each training samples, the target objects may be 
larger than the patch at the current pyramid level. 
Moreover, multiple objects might be included in one 
patch. Thus, to create the training samples, this paper 
considers an object as positive only if over 1/2 area 
of the object is covered in the patch. In addition, to 
include more background information, a set of 
patches containing only background are randomly 
cropped from the original training images for 
learning the model. The ratio between the number of 
background patches and that of the positive patches 
is roughly 2:1. 
 
 

3.2.2 Choosing the Default Boxes 
In SSD framework, there are six default boxes 

per feature map location. By combining predictions 
for all default boxes with different scales and aspect 
ratios from all locations of many feature maps, a 
diverse set of predictions covering various input 
object sizes and shapes are obtained. This paper 
chooses the default boxes with small size to ensure 
the performance of the proposed method for small 
object detection in high-resolution aerial images. 
More specific, the size of the square default boxes is 
𝑆ଵ= 0.1×200 and 𝑆ଶ ൌ
ඥሺ0.1 ൈ 200ሻ ൈ ሺ0.2 ൈ 200ሻ. With the resolution 
of input image of the detection network is 200×200, 
default boxes occupy around 10% of area of the 
input image. To make the network fit better to 
objects with a shape other than square, the aspect 

ratios are chosen as 𝑎ோ ∈ ቄ2,3,
ଵ

ଶ
,
ଵ

ଷ
ቅ. Thus, there are 

total 6 default boxes with size of 25×25 at each 
location of the highest-level feature map. The width 
𝑤ோ and the height ℎோ of the corresponding default 
box can be calculated as follows: 

 
𝑤ோ ൌ 𝑆ଵ√𝑎ோ   (1) 

 

ℎோ ൌ
ௌభ

√௔ೃ
    (2) 

 
3.2.3 Matching Default Boxes 

In training phase, this paper first finds the 
correspondence between the default boxes and the 
ground-truth bounding boxes by calculating the 
Jaccard overlap between each default box and the 
ground truth boxes as in MultiBox [11]. The default 
boxes are labeled as “matched” when the Jaccard 
overlap is over 0.5. Analogous to regressing multiple 
boxes at each location in YOLO [12], different 
default boxes can be matched to one ground truth 
box. For each of the matched boxes, offsets relative 
to the box shape and the corresponding confidence 
scores used to calculate the loss and update the 
parameters of the detection network are produced. 
 
3.2.4 Loss Function 
 The overall objective loss function is to 
minimize the localization loss (𝐿௖௢௡௙) and the 
confidence loss (𝐿௟௢௖) [1].  The overall objective loss 
function is defined as follows: 
 

𝐿 ൌ
௅೎೚೙೑ሺ௫,௖ሻାఒ௅೗೚೎ሺ௫,௕෠,௕ሻ

ே
    (3) 

 
where 𝑥 represents a matched default box; 𝑁 
represents the number of matched default boxes; 𝐿௟௢௖ 
is the Smooth L1 loss based on the predicted box 𝑏෠ 
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and the ground truth bounding box 𝑏; 𝐿௖௢௡௙ is the 
softmax loss over target classes; and 𝜆 represents the 
weight to balance between the two losses. In this 
paper, 𝜆 is set to 1 by cross validation. 
 
3.2.5 Data Augmentation 
 To make the network more robust to various 
input object sizes and shapes, this paper adopts 
similar data augmentation approach as in [1]. 
Training samples will be produced by cropping 
patches from the input images. The overlapped part 
of the ground-truth box will be kept if over 70 
percent of its area falls in the sampled patch, and the 
sampled patch is resized to a fixed size. 
 
3.2.6 Hard Negative Sampling 
 During the training process, hard negative 
samples are selected for training according to the 
confidence scores after each iteration. More specific, 
at the end of each training iteration, the miss-
classified negative samples will be sorted based on 
the confidence scores and the ones with the highest 
confidence scores will be chosen as hard negative 
samples. Hard negative samples are then used to 
update the weights of the network. Following the 
implementation in SSD [1], the number of hard 
negatives used for training the model is at most 3 
times larger than the number of positives. 
 
3.2.7 Testing 
 In the testing phase, since the limited amount 
of memory available on current GPUs, it is 
impossible for deep networks to process large image 
size. Thus, 200×200 patches will be cropped from 
the input image, which will be fed into the trained 
detection network for testing. Since the detection 
network is designed to focus on small objects in 
high-resolution aerial images, some large objects in 
the original image will be missed at the original 
resolution. To solve this problem, an image pyramid 
based on the input image is created. More specific, 
given an input image, a smaller image is obtained by 
sub-sampling the input image by a factor of r along 
each coordinate direction. The sample procedure is 
repeated several times until a stop criterion is met. 
Patches with size of 200×200 are cropped from each 
of the images in the pyramid, which are employed as 
input to the detection to produce patch-level 
detection. Then, image-level detection can be 
obtained by applying Non-Maximum Suppression 
(NMS) algorithm. Furthermore, it is impossible to 
put all the patches from a single image into one 
testing batch because of the limitation of memory on 
current GPUs. Thus, this paper divides the patches 
from the same image into several batches. All the 

patch-level predictions will be projected back onto 
the image at the original scale after all the patches 
from the same image are processed. Then, NMS is 
employed to generate the final image-level 
predictions. 
 
4. EXPERIMENTAL RESULTS 
 
4.1 Implementation Details 

The initial learning rate for training the 
detection network is set at 0.001. The learning rate is 
then decreased to 0.0001 after 40,000 iterations and 
continues training for another 30,000 iterations. A 
momentum is set at 0.9, and a weight decay is set at 
0.0005. During testing phase, an image pyramid will 
be constructed with a down sampling ratio r = 0.5, 
until the area of the down-sampled image falls below 
0.4x200. Patches are cropped from each of the 
images in the pyramid with a stride of s = 150 in both 
horizontal and vertical directions. The last part in the 
horizontal direction will be padded by zeros if it does 
not fit the patch completely. The last part in the 
vertical direction gets discarded if it does not make 
a whole patch. When evaluating the results, this 
paper uses a threshold at 0.5 for the confidence score 
and an intersection over union (IoU) at 0.5 between 
the predicted bounding box and ground-truth. The 
proposed method is implemented on a Window 
system machine with Intel Core i7 8700 CPU, 
NVIDIA GTX 1080 GPU and 8 GB of RAM. 
TensorFlow is adopted for implementing deep CNN 
frameworks. 
 
4.2 Dataset 

To evaluate and compare the performance of 
the proposed approach with that of other state-of-
the-art approaches, this paper conducts experiments 
on DOTA dataset [3] and RSOD dataset [26]. DOTA 
is so far the largest and most diverse dataset for 
multi-object detection in aerial and satellite images. 
There are 15 object categories: plane, ship, storage 
tank, baseball diamond, tennis court, basketball 
court, ground track field, harbor, bridge, large 
vehicle, small vehicle, helicopter, roundabout, 
soccer ball field and swimming pool. The DOTA 
dataset contains 2806 aerial images. The resolution 
of each image is from 800×800 to 4000×4000 pixels. 
The image contains objects of different scales, 
orientations, and shapes. This paper utilizes the 
horizontal annotation of DOTA to evaluate the 
proposed network. Furthermore, this paper divides 
the DOTA dataset into three types based on the size 
of object instance: small instance categories for 
helicopter, swimming pool, small vehicle, ship, and 
plane; medium categories for large vehicle, bridge, 



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
457 

 

harbor, storage tank, and roundabout; large 
categories for soccer ball field, ground track field, 
basketball court, tennis court, and baseball diamond. 
RSOD dataset is an open dataset for object detection 
in remote sensing images. This dataset contains 2326 
images captured by Google Earth and was divided 
into four classes: aircraft, overpass, oil tank, and 
playground. Table 1 shows the numbers of objects 
and images in each class. 
 
4.3 Evaluation Metrics 

The mean average precision, which has been 
used in many deep learning-based methods [1], [4], 
is adopted to evaluate the performance of the 
proposed object detection networks. The Precision 
(P), Average Precision (AP), Mean Average 
Precision (mAP) are defined as follows: 

 

𝑃 ൌ
்௉

்௉ାி௉
     (4) 

 

𝐴𝑃 ൌ
ଵ

ே
∑ 𝑃ே
ூୀଵ      (5) 

 

𝑚𝐴𝑃 ൌ
ଵ

ெ
∑ 𝑃ெ
ூୀଵ     (6) 

 
where 𝑇𝑃 represents the number of true positive 
samples which means the positive samples be 
predicted positively; 𝐹𝑃 represents the number of 
false positive samples which means the negative 
samples be predicted positively; 𝑁 is the number of 
the samples in one class and 𝑀 is the number of 
class. A sample is considered as correct detection if 
the Jaccard overlap between this sample and ground 
truth sample is at least 0.5. 
 
4.4 Detection Results on DOTA Dataset 
 To demonstrate the effectiveness of the 
proposed method on small object detection in high-
resolution aerial images while maintaining the 
effectiveness for detecting larger objects , the DOTA 
dataset is divided into three different groups based 
on the size of object instance in image: small group 
with helicopter, swimming pool, small vehicle, ship, 
and plane; medium group with large vehicle, bridge, 
harbor, storage tank, and roundabout and large group 
with soccer ball field, ground track field, basketball 
court, tennis court, and baseball diamond. Notably, 
even objects falling in the large group has relatively 
small size compared to the size of the original image.  
This paper conducts experiments on all three groups 
and then compares the detection results with the 
results of recent state-of-the-art methods, including 
Li et al. [5], Wang et al. [6], and Faster R-CNN [7]. 
Li et al. [5] proposed to detect coarse candidate 
regions that may contain objects at the first stage. At 

the second stage, fine candidate regions are cropped 
from coarse candidate regions, and are classified as 
objects or backgrounds. Wang et al. [6] used skip-
connected encoder-decoder model to extract 
multiscale features from a full-size image. For 
feature maps in each scale, a visual attention network 
is learned, which is followed by a classification 
branch and a regression branch, to highlight the 
features from object region and suppress the 
cluttered background. Faster R-CNN [7] introduced 
a Region Proposal Network (RPN) that shares full-
image convolutional features with the detection 
network, thus enabling nearly cost-free region 
proposals. The comparison of detection results is 
shown in Table 2. As shown in Table 2, the proposed 
approach achieves the best results in both small and 
medium group. More specific, with small group, the 
performance of the proposed method is improved by 
19%, 3.8%, and 3.9% compared with Li et al. [5], 
Wang et al. [6], and Faster R-CNN [7] respectively. 
With medium group, the performance of the 
proposed method is improved by 24.6%, 3.7%, and 
3.9% compared with Li et al. [5], Wang et al. [6], 
and Faster R-CNN [7] respectively. For large group, 
the proposed model achieves nearly as performance 
as other state-of-the-art models. It can be seen from 
Table 2 that the proposed method shows obvious 
advantages for multi-scale object detection in high-
resolution aerial images. Figure 4 shows some 
detection results of the proposed approach on DOTA 
dataset. As shown in Figure 4, the proposed 
approach can locate exactly multi-scale objects in 
high-resolution aerial images. Figure 5 shows some 
failed detection results. When the size of objects in 
image is too small with heavy occlusion between 
objects, the proposed method cannot accurately 
detect them. 
 
4.5 Detection Results on RSOD Dataset 
 To further evaluate the performance of 
proposed approach on object detection in high-
resolution aerial image, this paper conducts 
experiments on RSOD dataset. Table 3 shows the 
comparison results of the proposed approach with 
Faster R-CNN and R-FCN [39]. R-FCN proposed 
position-sensitive score maps to address a dilemma 
between translation-invariance in image 
classification and translation-variance in object 
detection. As shown in Table 3, the proposed 
approach outperforms both Faster R-CNN and R-
FCN. More specific, in terms of the mAP, the 
performance of the proposed method is improved by 
9.1% and 7.9% compared with Faster R-CNN and R-
FCN respectively. The results show the effectiveness 
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of the proposed method on object detection in high-
resolution aerial images. 
 
5. CONCLUSIONS 
 

In this paper, a deep learning-based framework 
for addressing the object detection problem in high-
resolution aerial images is presented. In particular, 
due to the limited memory available on current 
GPUs, it is hard for CNNs to process large input 
images. Furthermore, detect small objects from large 
images is still a challenging in recent years. To 
address the above challenges, the large input image 
is broken into small patches with fixed size, which 
are employed as input to a detection network. 
Moreover, since objects with large sizes may not be 
detected in the original resolution, an image pyramid 
is constructed by down-sampling the original image 
to make the large objects detectable by the detection 
network. The detection network is derived from an 
SSD model with a VGG-16 network as the base 
network, where only the first 4 convolutional stages 
of VGG-16 network are kept. A group of default 
boxes are associated with each location on the 
feature map to assist the detection network to 
produce object detection. A set of convolutional 
layers with a kernel size of 3×3 is employed to 
produce the confidence scores and coordinates of the 
corresponding bounding box for each of the default 
boxes. Experimental results on DOTA dataset and 
RSOD dataset, which include images containing 
small objects occupying only a small proportion of 
an image, have demonstrated the effectiveness of the 
proposed method in terms of alleviating the memory 
usage while maintaining a good object detection 
performance, especially for objects with small sizes. 
Since the proposed framework employed a sliding 
window strategy, it is time consuming. In the future, 
this paper plans to make the system more efficient. 
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Figure 1: The Overall Architecture of The Proposed Approach. 

 
 

 
Figure 2: Image Pyramid Construction from Input Image. 

 

 
Figure 3: The Architecture of The Proposed Detection Network.

 
 
 
 
 
 
 
 
 

 



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
462 

 

Table 1: The Numbers of Objects and Images in Each Class of RSOD Dataset. 

Class Number of Image Number of Object 

Aircraft 446 4993 
Playground 189 191 
Overpass 176 180 
Oil tank 165 1586 

 

Table 2: Performance Comparisons on DOTA Dataset. 

Methods Average Precision mAP (%) 

 Small (%) Medium (%) Large (%)  
Li et al. [5] 41.4 30.6 40.6 37.6 

Wang et al. [6] 56.6 51.5 73.4 60.5 
Faster R-CNN [7] 56.5 51.3 74.2 60.6 
Proposed method 60.4 55.2 72.8 62.8 

 

Table 3: Performance Comparison on RSOD Dataset. 

Method Aircraft (%) Oil Tank (%) Overpass (%) Playground (%) mAP (%) 

Faster R-CNN 70.8 90.2 78.7 98.1 84.5 

R-FCN 71.5 90.2 81.5 99.5 85.7 

Proposed Method 86.4 95.1 93.1 99.8 93.6 
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Figure 4: Detection Results on DOTA Dataset. 
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Figure 5: Examples of Failed Detection Result.

 


