
Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

441

AN EFFICIENT ROUTING METHOD IN SDN FOR SMART
INTELLIGENT SYSTEMS

1HO-JIN HEO, 1NAMGI KIM
1Department of Computer Science and Engineering, Kyonggi University, Suwon 16277

E-mail: {h_hojin, ngkim}@kgu.ac.kr
*Corresponding Author: Namgi Kim (ngkim@kgu.ac.kr)

ABSTRACT
There are lots of multimedia services such as YouTube and Netflix in the Internet. The multimedia services
through the Internet will continue to grow. Most of these multimedia services generally stream a content to
many users. In these type services, the multicast transmission mode can efficiently deliver the content to
multiple subscribers. Especially in SDN (Software-Defined Network), multicast mode can be easily adopted
because the centralized controller sets up all routes using multicast tree with global network information.
However, the construction of multicast tree is an NP (Non-deterministic Polynomial-time) problem and is
hard to make the optimal multicast tree in the real world. Therefore, in this paper, we propose a heuristic way
to generate a multicast tree using DQN (Deep-Q-Network) which is a type of reinforcement learning in
machine learning field. Through the experiment, we show that the performance ratio of the proposed
algorithm is 1.21 with the topology of 10 nodes and it generates the multicast tree better than the previous
heuristic algorithms such as TM (Takahashi and Matsuyama) algorithm.

Keywords: DQN, Reinforcement Learning, Multicast, SDN

1. INTRODUCTION

Currently, various multimedia services are
provided on the Internet based on videos. Such
Internet video services include short-term services
like YouTube, long-term like Hulu, and Internet
video to TV services like Netflix. In addition,
various multimedia services such as live Internet
video services, online video purchase and rental
services, webcam viewing services, and web-based
video surveillance services are provided through
the Internet. According to the white paper of
Internet traffic forecast and trends of Cisco [1],
Internet video traffic will account for 82% of all
Internet traffic by 2022. Particularly, if the 4K
UHD and 8K UHD video markets flourish and
surpass HD, one-source-multi-use services, which
transmit one content to many users through the
Internet, will also increase exponentially [1].

The transmission mode that can most widely be
used to deliver one content to many users is
multicast. In the multicast transmission mode,
network resources can be utilized much more
efficiently, compared to the method of delivering
contents to multiple users on the application layer
by using the unicast transmission mode, because
the data that started from a single node is copied
onto a network layer and delivered to many users.
However, the conventional multicast mode

presents the problem that a global-optimal
multicast tree cannot be constructed, and local-
optimal multicast trees are constructed instead
because routers have distributed topology
information [2–6]. To resolve this problem, studies
on multicast in a Software-Defined Network (SDN)
have emerged.

In the SDN, a multicast tree can be constructed
with global topology information through an SDN
controller. However, the problem of constructing a
minimum cost multicast tree is like the problem of
constructing a Steiner tree, and this is NP-hard. To
resolve this, various approximation techniques
have been researched, but no study has yet adopted
a Deep Q-Network (DQN).

Therefore, in this paper, we investigates a
method of generating a multicast tree efficiently by
using a DQN. The structure of this paper is
organized as follows. Section 2 describes the
background and related works that were basically
required to perform this study. Section 3 introduces
a method that can construct a multicast tree
effectively using a DQN. Section 4 introduces the
experimental environment and analyzes the results
of various experiments performed in that
environment. Finally, Section 5 provides a
conclusion based on these results and describes a
future project.

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

442

2. RELATED AND PRIEVIOUS WORKS

In the unicast mode, a packet is transmitted from
a source node to a destination node in a one-to-one
fashion. Therefore, when one source node and
multiple destination nodes exist, the packets are
transmitted as many as times as the number of
destination nodes. By contrast, in the multicast
mode, only one packet is forwarded from the
source node, and in the process of delivering the
packet, the router that has to forward the packet to
two or more links copies and forwards the packet.
Consequently, it prevents the same packet from
being transmitted multiple times through the same
link. Therefore, in a multimedia service that
characteristically sends packets from one node to
multiple nodes, the multicast transmission mode
offers the advantage of using the network resources
more efficiently.

The method of implementing the multicast mode
in a distribution environment has been proposed for
a very long time. The multicast routing protocols
used in the existing Internet environment include
PIM (Protocol-Independent Multicast) [7], IGMP
[8], DVMRP [9], and MBGP [10]; among these,
PIM protocol is the most widely used. In addition,
there are variants of PIM such as PIM-SM (PIM
Sparse Mode) [11], PIM-DM (PIM Dense Mode)
[12], Bidir-PIM [13], and PIM-SSM (PIM-Source
multicast) [14]. However, these routing protocols
are based on the distributed routing algorithm, in
which each router gathers routing information
independently and calculates a final route.
However, in the existing Internet environment,
which uses distribution environments, because
respective routers can hardly gather all global
routing information, a constructed multicast tree
becomes a local-optimal multicast tree, which is
actually far from being optimal. Furthermore,
because a variety of heterogeneous routers exist
independently, routers that do not support the
multicast mode also exist, thereby reducing the
effect of the multicast transmission mode.

With the SDN being proposed in recent years,
respective routers do not calculate the routes
independently. Instead, in every autonomous
system, a centralized controller gathers all routing
information, constructs a routing tree, and sends
the result to a switch. An SDN is divided into the
control plane and the data plane. A route
calculation occurring on the control plane is
performed using the centralized method at the SDN
controller, and the result is later forwarded to a sub-

level switch by using a protocol such as OpenFlow
[15]. Therefore, the controller can perform
centralized network controls such as forwarding
control, topology and resource state management,
and routing control for packets based on the global
view of a network state. Furthermore, according to
upper-level application service or policy
requirements, differentiated forwarding and packet
processing rules are determined and sent down to a
sub-level SDN switch. Hence, the network
operates in a flexible manner with the aid of
software [16][17]. Therefore, a multicast tree can
be calculated more effectively in such an SDN
environment. Furthermore, because the SDN
switch basically supports the packet copy
functionality, the multicast transmission mode can
be used more actively.

The algorithms that have implemented the
multicast mode can be largely classified into
source-based tree algorithms and group-shared tree
algorithms: the former transmits a packet by
constructing a Shortest Path Tree (SPT) from a
source node to a destination node; and the latter
constructs a sharing point called a Rendezvous
Point and transmits a packet to a destination node
via the Rendezvous Point. The source-based tree
algorithm can create an optimal path between a
source node and a destination node, and minimize
the network waiting time. However, the source-
based tree algorithm has to maintain the path
information for each source node at the router, and
a resource problem will inevitably occur in a
network that has numerous source nodes and
numerous groups. Typical source-based tree
multicast protocols include MOSPF [18], DVMRP
[9], and PIM-DM [12]. By contrast, although the
group-shared tree algorithm does not form an
optimal path, it has an advantage that not so many
resources are needed. The group-shared tree
algorithm needs a multicast dedicated router that
handles the Rendezvous Point, and the
corresponding router’s location has a large impact
on the efficiency of a generated multicast tree.
Typical group-shared tree multicast protocols
include PIM-SM [11] and CBT [19]. However, the
source-based tree algorithm and the group-shared
tree algorithm all still have the same problem that
a globally optimal multicast tree cannot be
generated because the routers possess local
information only.

A multicast tree can be classified as either a
single multicast tree that has a single source node,
or a multiple multicast tree that has multiple source
nodes. This study considers the generation of

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

443

single multicast tree only to firstly reduce the
complexity of problem.

The multicast tree generation problem in theory
eventually becomes the Steiner tree generation
problem [20]. Because the Steiner tree generation
problem is NP-hard and very difficult to solve,
many approximation algorithms exist for its
solution. The most typical single multicast
algorithm is the TM algorithm [21]. In the TM
algorithm, a graph G = (V, E), a source node srci,
and a destination node set Di are given as inputs,
and multicast tree Ti = (Vi, Ei) is the output. A
multicast tree Ti consists of a set of multicast nodes
Vi and a set of multicast links Ei. The TM algorithm
is the mostly widely used among the approximation
algorithms for multicast tree construction, and the
performance ratio value is known to be 2. The
performance ratio is a measure of how close the
constructed multicast tree and the optimal
multicast tree are. The performance ratio is the total
weight of constructed multicast tree over the total
weight of the optimal multicast tree. This study
uses a machine learning method called
reinforcement learning to generate a multicast tree.
As shown in Fig. 1, reinforcement learning is a
method in which an agent takes an action from
among the selectable actions in the current state of
the environment observed, that maximizes the
rewards, and then repeats the action until the
termination state is reached. The ultimate goal of a
reinforcement learning algorithm is to let an agent
decide actions in a way that maximizes the
cumulative rewards until the termination condition
is reached. The environment handled in the
reinforcement learning process is given as a
Markov Decision Process (MDP) [22]. In
reinforcement learning, correct input and output
pairs are not given, unlike supervised learning.
Furthermore, one of the important factors in
reinforcement learning is selecting between
exploration and exploitation. An agent chooses
whether to take actions based on learned
knowledge, or to take actions by using knowledge
other than that already learned.

This study uses a DQN among the reinforced
learning methods. A DQN is a variant of Q-
learning [23], and a model-free reinforcement
learning technique. In Q-learning, the value
function is expressed by Q(s, a), and in given state
S, it is a learned policy to select action a. The
principle of a DQN is that because there is a Q-
table that has a result value for each Q function, the
optimal rewards are known for all state and action
pairs. If the amount of data increases in a Q-

learning system that uses a Q-table, the size of the
Q-table increases and consequently, learning is
difficult when there are too many states and actions.
A DQN is a variant technique that has solved this
problem. The DQN solved the problem of Q-
learning being unable to process large data by
applying a neural network instead of a Q-table.
When a nonlinear function approximator such as a
neural network is used in reinforcement learning,
unstable or divergent problems arise, and the DQN
solves the non-stationary problem by using a
method of updating a target network periodically.
Furthermore, a data correlation problem generally
exists in reinforcement learning, but the DQN
solves the correlation problem between data by
training the samples in a batch method by using
relay memory [24].

Figure 1: Reinforcement learning

DQN is a variant of Q-learning, and this
technique ensures a number of things: Firstly, that
the optimal policy can be learned in a state S;
secondly, that large learning data can be handled
easily; and thirdly, that the data correlation
problem is solved. In the case of this particular
study, an enormous amount of learning data exists.
The number of cases that can be assigned pairs of
one source node and multiple destination nodes is
provided by Eq. (1), and in the case of 10 nodes,
there are 5,110 source node and destination node
pairs.

N ൈ ∑ 𝐶ሺ𝑁 െ 1, 𝑛ሻேିଵ
ୀଵ (1)

Here, the amount of data to be learned increases
exponentially according to the number of links
existing in the topology. Therefore, it has been
ascertained that an extremely large amount of
learning data exists in this study. Furthermore, it
can be said that the data correlation between

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

444

learning data is very high. As shown in Fig. 2, two
types of multicast group can exist in the same
topology. The multicast group consists of source
node #0 and destination node #3 in Fig. 2(a) and
source node #0 and destination node #2 and #4 in
Fig. 2(b). In both cases, if a packet has reached the
node #3, the termination state is reached by going
through a same path. Therefore, it is very
appropriate to use the DQN in this study.

3. SINGLE MULTICAST TREE
CONSTRUCTION USING DQN

The proposed method of this study is a multicast
routing tree generation method using a DQN in an
SDN environment. A multicast tree should be
constructed for multicast routing, and optimal
multicast tree construction is an NP-hard problem.
Therefore, this study proposes an algorithm that
generates a multicast tree by using a DQN. The
proposed method largely consists of three
processes: the method of expressing the network
situation as an MDP, the process of learning the
situation expressed as an MDP, and routing
through the value function learned.

In an SDN, a controller can gather status
information from multiple switches existing in a
domain, and after calculating the route in a global
view based on the gathered information, it can send
it down to the respective switches. Since the
controller can know globally the status regarding
the whole network such as network topology and
packet flow in the domain, it can perform the DQN
learning for multicast tree construction.

The process of a multicast service can be
understood as the process of ensuring a packet
reaches multiple destination nodes from a single
source node. In this process, the case of all packets
reaching the destination nodes becomes the
terminal state of the DQN. Therefore, the process
of learning a multicast tree can be expressed as a
finite MDP. The finite MDP is suitable for the
application of Q-learning, whose goal is to find an
optimal action-selection policy. However,
conventional Q-learning is not suitable for learning
in the real world which can have a very large
number of states. Therefore, this study applies the
DQN, which compensates for the disadvantages of
Q-learning with the action value function. The
DQN needs a state, an action, and a reward to learn
a network, and the DQN agent becomes the SDN
controller in the SDN environment.

In the proposed method, when n nodes exist, the
state is expressed as a state matrix of 𝑁 ൈ 𝑁. Once
the source node and the destination nodes, which
form a service group for multicast, are determined
and the packets are transmitted, the current state is
expressed in the 𝑁 ൈ 𝑁 state matrix according to
the moving path of the packet at each particular
time step. Fig. 3 shows an example of expressing a
matrix for the state in which a packet sent from the
source node #0 has reached node #2 and node #6 in
a network having 10 nodes.

The DQN agent performing as the controller
selects an action that has the highest reward among
many selectable actions through the network based
on the current state. Here, the link that the packet
passes through and the node that the packet is

Figure 2: Example topology of creating correlated learning data

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

445

transmitted to are expressed in the 𝑁 ൈ 𝑁 action
matrix. When going through the policy, the
information for all selectable actions must be
expressed, and the selectable actions, i.e. selectable
links, exist differently depending on the path that
the packet passed through. For this, the selectable
actions should be expressed variably but because
the size of the output layer is fixed due to the
structure of the neural network, the actions should
be set according to the output layer.

Therefore, when there are N nodes, as many
selectable links exists as N(N-1), and this can be
expressed with an 𝑁 ൈ 𝑁 action matrix. The output
layers of a neural network are shown by 𝑁 ൈ 𝑁,
and using the information about links that are
impossible to select in certain network topologies,
such links are thus not allowed to be selected as
actions, through the 𝑁 ൈ 𝑁 impossible link matrix.
The SDN controller adds the non-selectable link

information as a bias of the neural network through
the adjacent matrix of current topology, so that the
non-connectable links cannot be selected. As a
result, the unconnected links are not selected as
actions in the policy of the proposed method.

The proposed method grants a reward only when
all packets have reached the destination node. This
ensures the shortest path by discount ratio. The
discount ratio is calculated as γt at each time step t,
and the final reward is determined by multiplying
the discount ratio with the reward R. The final
reward is expressed as γt ൈ 𝑅, meaning that after
multiplying the discount factor γ by itself t times,
it is multiplied with the reward R. Because γ
consists of a value between zero and one, and R is
a constant larger than 0, the final value of the
reward decreases as the time step t increases.

The agent, which is the SDN controller,
identifies the current network state by observing

Figure 3: Example of state matrix for a topology

Figure 4: Example of data correlation

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

446

the current network environment, and selects an
action through the DQN. The reward is received for
the selected action, and this process is repeated
until the terminal state is reached.

The correlation between previous state and
current state is very high when a packet goes
through a node at every time step, as shown in Fig.
4. Furthermore, when the network learning is
performed, the problem of the target network
becoming non-stationary is same as the problem
that occurs in Q-learning. To resolve the data
correlation problem, the DQN gathers the training
data in the learning loop, and after saving the data
in the replay buffer, it performs the training by
extracting data randomly in a mini-batch format.
Therefore, the non-stationary target network
problem is solved by the following method: After
the DQN generates a target network, it copies the
training network every time a certain time step is
passed.

The proposed method performs the routing
through the learned model after completion of
learning. The whole process of routing is as follows.
First, when a single multicast service is created,
and a packet is generated, the corresponding
information is forwarded to the controller. The
SDN controller constructs a multicast tree that the
DQN learned in advance; based on this, the
switches send the flow table update command. The
packet is sent to the destination node via a switch

that possesses the updated flow table.

4. EXPERIMENTS

The environment used in the experiments for the
performance evaluation of the proposed method is
shown in Table 1. In the experiments, the number
of nodes was set to 10, and the number of links was
randomly selected from 1 to 5 at each node. In the
experiments, TensorFlow 1.2.1 GPU version was
used for the DQN learning, and two layers of neural
networks were used while the ReLU function was
used as the activation function. The number of
destination nodes was set to between 2 (minimum)
and 8 (maximum) since it is from a single multicast.
In the DQN, a tree without a loop was generated.

The proportion of learning data was set to 30%,
50%, and 70% of the total route cases, respectively.
When the proportion of learning data is given, the
history is created by selecting an action through the
DQN with a source node and destination node pair
for each learning case. Furthermore, when a
multicast tree containing all destination nodes is
constructed, one episode is completed. By
performing such an episode a certain number of
times, the value function is generated.

In the case of using 70% of learning cases, the
experiment was performed from 3,000 episodes to
30,000 episodes in incremental steps of 3,000. The
experimental results are shown in Fig. 5, and after
going through 21,000 episodes, it was observed
that the performance ratios were all similar.

Figure 5: Performance ratio in 70% of learning cases up to 30,000 episodes

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

447

In the case of 21,000 episodes in 70% of learning
cases, the average performance ratio was 1.24. Fig.
6 shows the proportion of optimal length trees
found according to the number of destinations

using the value function that learned the episode
21,000 times, and including the suboptimal length
cases of a tree that is one more link in length than
the optimal tree. On average, 38% of optimal trees

Figure 6: Construction ratio of optimal and suboptimal trees in 70% of learning cases

Figure 7: Performance ratio in 50% of learning cases up to 30,000 episodes

Figure 8: Performance ratio in 50% of learning cases up to 111,000 episodes

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

448

were found, and it was confirmed that 75% were
found on average when trees were included that

have the additional cost of one more link than the
optimal tree.

Figure 9: Construction ratio of optimal and suboptimal trees in 50% of learning cases

Figure 10: Performance ratio in 30% of learning cases up to 30,000 episodes

Figure 11: Performance ratio in 30% of learning cases up to 900,000 episodes

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

449

Table 1: Experimental parameters

Parameters Values

Node 10

Number of Source Node 1

Number of Destination Node 2 - 8

Number of Links per Node 1-5

DQN Layer 2

Activation Function ReLu

Ratio of Learning Cases 30%, 50%, 70%

In the case of using 50% of learning cases, the

same experiments were performed as were done
with 70% of learning cases. The experimental
results are shown in Fig. 7, and there was no section
in which the performance converged. In the case of

30,000 learning episodes, the experiments were
carried out again in the increment steps of 9,000
episodes, as shown in Fig. 8. In the experimental
results, the case of 75,000 episodes showed the best

performance with the performance ratio of 1.21.

Fig. 9 shows the proportion of optimal and
suboptimal trees found according to the number of
destinations using the value function that has
learned the episode 75,000 times. On average, 42%
of optimal trees were found, and 80% of

suboptimal trees were found on average.

In the case of using 30% of learning cases, the
same experiments were performed as were done
with 70% of learning cases. The experimental
results are shown in Fig. 10, and there was no
section in which the performance converged.
Furthermore, in the case of learning 30,000, the

Figure 12: Performance ratio in 30% of learning cases between 630,000 and 657,000 episodes

Figure 13: Construction ratio of optimal and suboptimal trees in 30% of learning cases

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

450

performance decreased instead. In the case of 30%
of learning cases, even when additional learning
was performed up to 90,000 times, the learning
performance was lower than that of the 70% and
50% cases. Fig. 11 shows the results of learning
630,000 times, in increments of 90,000 starting
from 90,000. In the results of learning 630,000
times, the average performance ratio was 1.25,
indicating the best performance. Since an
increasing trend of performance was shown from
540,000 times to 630,000 times, the performance
for the learning was investigated again starting
from 630,000 and increased in incremental steps of
3,000, as shown in Fig. 12. The performance was
highest when the learning was performed 648,000

times, and the performance ratio was 1.239.

Fig. 13 shows the proportion of optimal and
suboptimal trees found according to the number of
destinations using the value function that has
learned the episode 648,000 times. On average, 36%
of optimal trees were found, and 72% of

suboptimal trees were found on average.

The method used for finding an optimal tree
length was the brute force method. All paths of
5,050 cases were searched based on the Breadth-
first search (BFS), and after finding an optimal tree
length, the performance ratio was derived through
the tree that was generated using the proposed
method. The 50% learning case showed the best
average performance ratio. The performance ratio
was 1.21, which showed a maximum improvement
in performance of 39.5% and a minimum of 24.2%,
compared to that of conventional studies. The
result for 50% learning was better than that for 70%
learning, and it can be interpreted that in the case
of 70%, overfitting occurred with many of the

learning cases.

In the 70% case and the 50% case, the frequency
of learning that showed the best performance was
21,000 times and 75,000 times, respectively.
Moreover, it was confirmed that in the 50% case,
learning has to be performed more than three times
before it can show better performance than the 70%
case. This implies that the learning case proportion
and the frequency of learning should be adjusted
appropriately according to the network situation in

multicast routing.

6. CONCLUSIONS

This study proposed a single multicast tree
construction method using DQN, which is a
reinforcement learning method among machine
learning methods in the SDN environment. The
learning environment of this study had much
learning data, and the situation is appropriate for
application of a DQN because correlation between
data is high. Therefore, through a DQN, a policy
was learned, and it generated the value function,
thereby constructing a multicast tree. Furthermore,
after performing the learning according to the
proportion of learning cases, the tree was created
through the generated model, and the performance
ratio was measured in the experiments. In the
results, the 50% case showed the best performance
when the episode was learned 75,000 times. The
average performance ratio was 1.21, which showed
an improvement of 24.2% minimum and 39.5%

maximum over the conventional TM algorithm.

This paper has also limitations. To resolve the
limitations, there is a plan for a future study to
analyze the performance change by learning rate.
Furthermore, the experiments will be conducted
with an increase the number of nodes from the
current ten nodes. The plan is to perform the
learning using two or more layers in the neural
network. We also plan to study a method of setting
and applying rewards for various cases, excluding
the optimal case, and a method of generating
multiple multicast trees instead of a single
multicast tree. An additional study will be
conducted for a situation in which the topology
changes dynamically.

ACKNOWLEDGMENTS:
This work was supported by Kyonggi University
Research Grant 2017.

REFRENCES:

[1] Cisco, V. N. I. "Cisco visual networking index:

Forecast and trends, 2017–2022," White Paper 1,
2018.

[2] C. A. C. Marcondes and T. P. C. Santos,
"CastFlow: Clean-slate multicast approach using
in-advance path processing in programmable
networks," 2012 IEEE Symposium on
Computers & Communications (ISCC), pp. 94-
101, 2012.

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

451

[3] S. Xu, C. Wu, and Z. Li, "Software defined mobile
multicast," Mobile Ad Hoc and Sensor Systems
(MASS), pp. 208-216, 2015.

[4] N. Xue, X. Chen, L. Gong, S. Li, D. Hu, and Z.
Zhu, "Demonstration of OpenFlow-controlled
network orchestration for adaptive SVC video
manycast," IEEE Transactions on Multimedia,
Vol. 17, pp. 1617-1629, Sep. 2015.

[5] J. R. Jiang and S. Y. Chen, "Constructing multiple
Steiner trees for software-defined networking
multicast," ACM International Conference
Proceeding Series, pp. 1-6, 2016.

[6] M. Sun, et al., "A multiple multicast tree
optimization solution based on software defined
network," Information and Communication
Systems (ICICS), pp. 168-173, 2016.

[7] S. Deering, D. L. Estrin, D. Farinacci, V.
Jacobson, C. G. Liu, and L. Wei, "The PIM
architecture for wide-area multicast routing,"
IEEE/ACM transactions on networking, Vol. 2,
pp.153-162, 1996.

[8] B. Fenner, H. He, B. Haberman, and H. Sandick,
"Internet group management protocol
(IGMP)/multicast listener discovery (MLD)-
based multicast forwarding (IGMP/MLD
Proxying)," IETF RFC 4605, 2006.

[9] D. Waitzman, S. E. Deering, and C. Partridge,
"Distance vector multicast routing protocol,"
1988.

[10] P. Rajvaidya and K. C. Almeroth, "Analysis of
routing characteristics in the multicast
infrastructure," IEEE INFOCOM 2003, Vol. 2,
pp. 1532-1542, Mar. 2003.

[11] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S.,
Deering, M., Handley, and L. Wei, "Protocol
independent multicast-sparse mode (PIM-SM):
Protocol specification," 1998.

[12] A. Adams, J. Nicholas, and W. Siadak, "Protocol
independent multicast-dense mode (PIM-DM):
Protocol specification (revised)," IETF RFC
3973, Jan. 2005.

[13] M. Handley, L. Vicisano, I. Kouvelas, and T.
Speakman, "Bidirectional protocol independent
multicast (BIDIR-PIM)," 2007.

 [14] H. Holbrook and B. Cain, "Source-specific
multicast for IP," IETF RFC 4607, Aug. 2006.

[15] N. McKeown, et al, “OpenFlow: enabling
innovation in campus networks,” ACM
SIGCOMM 2008, Vol. 38, pp. 69-74, Apr. 2008.

[16] ONF, “Software-Defined Networking: The new
norm for networks,” ONF White Paper, pp. 7,
Apr. 13, 2012.

[17] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B.
Fraser, D. Lake, J. Finnegan, N. Viljoen, M.
Miller, and N. Rao, "Are we ready for SDN?
Implementation challenges for software-defined
networks," IEEE Communications Magazine,
Vol. 51, No. 7, pp. 36-43, July 2013.

[18] J. Moy, "Multicast routing extensions for
OSPF," Communications of the ACM, Vol. 37,
No. 8, pp. 61-67, 1994.

[19] T. Ballardie, P. Francis, and J. Crowcroft, "Core
based trees (CBT)," ACM SIGCOMM 1993,
Vol. 23, No. 4, pp. 85-95, Oct. 1993.

[20] R. Novak, J. Rugelj, and G. Kandus, “Steiner
tree based distributed multicast routing in
networks", Steiner Trees in industry, Springer,
pp. 327-351, 2001.

[21] H. Takahashi and A. Matsuyama, “An
approximate solution for the Steiner problem in
graphs,” Math. Japonica, Vol. 24, No. 6, pp. 573-
577, 1980.

[22] Markov Decision Process,
https://en.wikipedia.org/wiki/Markov_decision_
process

[23] Q-learning Variants, https://en.wikipedia.org
/wiki/Q-learning#Variants

[24] V. Mnih, K., Kavukcuoglu, D., Silver, A. A.
Rusu, J. Veness, M. G. Bellemare, and S.
Petersen, “Human-level control through deep
reinforcement learning," Nature, 518.7540: 529.
2015.

