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ABSTRACT 
There are lots of multimedia services such as YouTube and Netflix in the Internet. The multimedia services 
through the Internet will continue to grow. Most of these multimedia services generally stream a content to 
many users. In these type services, the multicast transmission mode can efficiently deliver the content to 
multiple subscribers. Especially in SDN (Software-Defined Network), multicast mode can be easily adopted 
because the centralized controller sets up all routes using multicast tree with global network information. 
However, the construction of multicast tree is an NP (Non-deterministic Polynomial-time) problem and is 
hard to make the optimal multicast tree in the real world. Therefore, in this paper, we propose a heuristic way 
to generate a multicast tree using DQN (Deep-Q-Network) which is a type of reinforcement learning in 
machine learning field. Through the experiment, we show that the performance ratio of the proposed 
algorithm is 1.21 with the topology of 10 nodes and it generates the multicast tree better than the previous 
heuristic algorithms such as TM (Takahashi and Matsuyama) algorithm. 
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1. INTRODUCTION  

Currently, various multimedia services are 
provided on the Internet based on videos. Such 
Internet video services include short-term services 
like YouTube, long-term like Hulu, and Internet 
video to TV services like Netflix. In addition, 
various multimedia services such as live Internet 
video services, online video purchase and rental 
services, webcam viewing services, and web-based 
video surveillance services are provided through 
the Internet. According to the white paper of 
Internet traffic forecast and trends of Cisco [1], 
Internet video traffic will account for 82% of all 
Internet traffic by 2022. Particularly, if the 4K 
UHD and 8K UHD video markets flourish and 
surpass HD, one-source-multi-use services, which 
transmit one content to many users through the 
Internet, will also increase exponentially [1]. 

The transmission mode that can most widely be 
used to deliver one content to many users is 
multicast. In the multicast transmission mode, 
network resources can be utilized much more 
efficiently, compared to the method of delivering 
contents to multiple users on the application layer 
by using the unicast transmission mode, because 
the data that started from a single node is copied 
onto a network layer and delivered to many users. 
However, the conventional multicast mode 

presents the problem that a global-optimal 
multicast tree cannot be constructed, and local-
optimal multicast trees are constructed instead 
because routers have distributed topology 
information [2–6]. To resolve this problem, studies 
on multicast in a Software-Defined Network (SDN) 
have emerged. 

In the SDN, a multicast tree can be constructed 
with global topology information through an SDN 
controller. However, the problem of constructing a 
minimum cost multicast tree is like the problem of 
constructing a Steiner tree, and this is NP-hard. To 
resolve this, various approximation techniques 
have been researched, but no study has yet adopted 
a Deep Q-Network (DQN). 

Therefore, in this paper, we investigates a 
method of generating a multicast tree efficiently by 
using a DQN. The structure of this paper is 
organized as follows. Section 2 describes the 
background and related works that were basically 
required to perform this study. Section 3 introduces 
a method that can construct a multicast tree 
effectively using a DQN. Section 4 introduces the 
experimental environment and analyzes the results 
of various experiments performed in that 
environment. Finally, Section 5 provides a 
conclusion based on these results and describes a 
future project.  
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2. RELATED AND PRIEVIOUS WORKS 

In the unicast mode, a packet is transmitted from 
a source node to a destination node in a one-to-one 
fashion. Therefore, when one source node and 
multiple destination nodes exist, the packets are 
transmitted as many as times as the number of 
destination nodes. By contrast, in the multicast 
mode, only one packet is forwarded from the 
source node, and in the process of delivering the 
packet, the router that has to forward the packet to 
two or more links copies and forwards the packet. 
Consequently, it prevents the same packet from 
being transmitted multiple times through the same 
link. Therefore, in a multimedia service that 
characteristically sends packets from one node to 
multiple nodes, the multicast transmission mode 
offers the advantage of using the network resources 
more efficiently. 

The method of implementing the multicast mode 
in a distribution environment has been proposed for 
a very long time. The multicast routing protocols 
used in the existing Internet environment include 
PIM (Protocol-Independent Multicast) [7], IGMP 
[8], DVMRP [9], and MBGP [10]; among these, 
PIM protocol is the most widely used. In addition, 
there are variants of PIM such as PIM-SM (PIM 
Sparse Mode) [11], PIM-DM (PIM Dense Mode) 
[12], Bidir-PIM [13], and PIM-SSM (PIM-Source 
multicast) [14]. However, these routing protocols 
are based on the distributed routing algorithm, in 
which each router gathers routing information 
independently and calculates a final route. 
However, in the existing Internet environment, 
which uses distribution environments, because 
respective routers can hardly gather all global 
routing information, a constructed multicast tree 
becomes a local-optimal multicast tree, which is 
actually far from being optimal. Furthermore, 
because a variety of heterogeneous routers exist 
independently, routers that do not support the 
multicast mode also exist, thereby reducing the 
effect of the multicast transmission mode. 

With the SDN being proposed in recent years, 
respective routers do not calculate the routes 
independently. Instead, in every autonomous 
system, a centralized controller gathers all routing 
information, constructs a routing tree, and sends 
the result to a switch. An SDN is divided into the 
control plane and the data plane. A route 
calculation occurring on the control plane is 
performed using the centralized method at the SDN 
controller, and the result is later forwarded to a sub-

level switch by using a protocol such as OpenFlow 
[15]. Therefore, the controller can perform 
centralized network controls such as forwarding 
control, topology and resource state management, 
and routing control for packets based on the global 
view of a network state. Furthermore, according to 
upper-level application service or policy 
requirements, differentiated forwarding and packet 
processing rules are determined and sent down to a 
sub-level SDN switch. Hence, the network 
operates in a flexible manner with the aid of 
software [16][17]. Therefore, a multicast tree can 
be calculated more effectively in such an SDN 
environment. Furthermore, because the SDN 
switch basically supports the packet copy 
functionality, the multicast transmission mode can 
be used more actively. 

The algorithms that have implemented the 
multicast mode can be largely classified into 
source-based tree algorithms and group-shared tree 
algorithms: the former transmits a packet by 
constructing a Shortest Path Tree (SPT) from a 
source node to a destination node; and the latter 
constructs a sharing point called a Rendezvous 
Point and transmits a packet to a destination node 
via the Rendezvous Point. The source-based tree 
algorithm can create an optimal path between a 
source node and a destination node, and minimize 
the network waiting time. However, the source-
based tree algorithm has to maintain the path 
information for each source node at the router, and 
a resource problem will inevitably occur in a 
network that has numerous source nodes and 
numerous groups. Typical source-based tree 
multicast protocols include MOSPF [18], DVMRP 
[9], and PIM-DM [12]. By contrast, although the 
group-shared tree algorithm does not form an 
optimal path, it has an advantage that not so many 
resources are needed. The group-shared tree 
algorithm needs a multicast dedicated router that 
handles the Rendezvous Point, and the 
corresponding router’s location has a large impact 
on the efficiency of a generated multicast tree. 
Typical group-shared tree multicast protocols 
include PIM-SM [11] and CBT [19]. However, the 
source-based tree algorithm and the group-shared 
tree algorithm all still have the same problem that 
a globally optimal multicast tree cannot be 
generated because the routers possess local 
information only. 

A multicast tree can be classified as either a 
single multicast tree that has a single source node, 
or a multiple multicast tree that has multiple source 
nodes. This study considers the generation of 
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single multicast tree only to firstly reduce the 
complexity of problem. 

The multicast tree generation problem in theory 
eventually becomes the Steiner tree generation 
problem [20]. Because the Steiner tree generation 
problem is NP-hard and very difficult to solve, 
many approximation algorithms exist for its 
solution. The most typical single multicast 
algorithm is the TM algorithm [21]. In the TM 
algorithm, a graph G = (V, E), a source node srci, 
and a destination node set Di are given as inputs, 
and multicast tree Ti = (Vi, Ei) is the output. A 
multicast tree Ti consists of a set of multicast nodes 
Vi and a set of multicast links Ei. The TM algorithm 
is the mostly widely used among the approximation 
algorithms for multicast tree construction, and the 
performance ratio value is known to be 2. The 
performance ratio is a measure of how close the 
constructed multicast tree and the optimal 
multicast tree are. The performance ratio is the total 
weight of constructed multicast tree over the total 
weight of the optimal multicast tree. This study 
uses a machine learning method called 
reinforcement learning to generate a multicast tree. 
As shown in Fig. 1, reinforcement learning is a 
method in which an agent takes an action from 
among the selectable actions in the current state of 
the environment observed, that maximizes the 
rewards, and then repeats the action until the 
termination state is reached. The ultimate goal of a 
reinforcement learning algorithm is to let an agent 
decide actions in a way that maximizes the 
cumulative rewards until the termination condition 
is reached. The environment handled in the 
reinforcement learning process is given as a 
Markov Decision Process (MDP) [22]. In 
reinforcement learning, correct input and output 
pairs are not given, unlike supervised learning. 
Furthermore, one of the important factors in 
reinforcement learning is selecting between 
exploration and exploitation. An agent chooses 
whether to take actions based on learned 
knowledge, or to take actions by using knowledge 
other than that already learned. 

This study uses a DQN among the reinforced 
learning methods. A DQN is a variant of Q-
learning [23], and a model-free reinforcement 
learning technique. In Q-learning, the value 
function is expressed by Q(s, a), and in given state 
S, it is a learned policy to select action a. The 
principle of a DQN is that because there is a Q-
table that has a result value for each Q function, the 
optimal rewards are known for all state and action 
pairs. If the amount of data increases in a Q-

learning system that uses a Q-table, the size of the 
Q-table increases and consequently, learning is 
difficult when there are too many states and actions. 
A DQN is a variant technique that has solved this 
problem. The DQN solved the problem of Q-
learning being unable to process large data by 
applying a neural network instead of a Q-table. 
When a nonlinear function approximator such as a 
neural network is used in reinforcement learning, 
unstable or divergent problems arise, and the DQN 
solves the non-stationary problem by using a 
method of updating a target network periodically. 
Furthermore, a data correlation problem generally 
exists in reinforcement learning, but the DQN 
solves the correlation problem between data by 
training the samples in a batch method by using 
relay memory [24]. 

 

 

Figure 1: Reinforcement learning 

 

DQN is a variant of Q-learning, and this 
technique ensures a number of things: Firstly, that 
the optimal policy can be learned in a state S; 
secondly, that large learning data can be handled 
easily; and thirdly, that the data correlation 
problem is solved. In the case of this particular 
study, an enormous amount of learning data exists. 
The number of cases that can be assigned pairs of 
one source node and multiple destination nodes is 
provided by Eq. (1), and in the case of 10 nodes, 
there are 5,110 source node and destination node 
pairs.  

N ൈ ∑ 𝐶ሺ𝑁 െ 1, 𝑛ሻேିଵ
ୀଵ                (1) 

Here, the amount of data to be learned increases 
exponentially according to the number of links 
existing in the topology. Therefore, it has been 
ascertained that an extremely large amount of 
learning data exists in this study. Furthermore, it 
can be said that the data correlation between 
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learning data is very high. As shown in Fig. 2, two 
types of multicast group can exist in the same 
topology. The multicast group consists of source 
node #0 and destination node #3 in Fig. 2(a) and 
source node #0 and destination node #2 and #4 in 
Fig. 2(b). In both cases, if a packet has reached the 
node #3, the termination state is reached by going 
through a same path. Therefore, it is very 
appropriate to use the DQN in this study. 

 

3. SINGLE MULTICAST TREE 
CONSTRUCTION USING DQN 

The proposed method of this study is a multicast 
routing tree generation method using a DQN in an 
SDN environment. A multicast tree should be 
constructed for multicast routing, and optimal 
multicast tree construction is an NP-hard problem. 
Therefore, this study proposes an algorithm that 
generates a multicast tree by using a DQN. The 
proposed method largely consists of three 
processes: the method of expressing the network 
situation as an MDP, the process of learning the 
situation expressed as an MDP, and routing 
through the value function learned.  

In an SDN, a controller can gather status 
information from multiple switches existing in a 
domain, and after calculating the route in a global 
view based on the gathered information, it can send 
it down to the respective switches. Since the 
controller can know globally the status regarding 
the whole network such as network topology and 
packet flow in the domain, it can perform the DQN 
learning for multicast tree construction.  

The process of a multicast service can be 
understood as the process of ensuring a packet 
reaches multiple destination nodes from a single 
source node. In this process, the case of all packets 
reaching the destination nodes becomes the 
terminal state of the DQN. Therefore, the process 
of learning a multicast tree can be expressed as a 
finite MDP. The finite MDP is suitable for the 
application of Q-learning, whose goal is to find an 
optimal action-selection policy. However, 
conventional Q-learning is not suitable for learning 
in the real world which can have a very large 
number of states. Therefore, this study applies the 
DQN, which compensates for the disadvantages of 
Q-learning with the action value function. The 
DQN needs a state, an action, and a reward to learn 
a network, and the DQN agent becomes the SDN 
controller in the SDN environment.  

In the proposed method, when n nodes exist, the 
state is expressed as a state matrix of 𝑁 ൈ 𝑁. Once 
the source node and the destination nodes, which 
form a service group for multicast, are determined 
and the packets are transmitted, the current state is 
expressed in the 𝑁 ൈ 𝑁 state matrix according to 
the moving path of the packet at each particular 
time step. Fig. 3 shows an example of expressing a 
matrix for the state in which a packet sent from the 
source node #0 has reached node #2 and node #6 in 
a network having 10 nodes.  

The DQN agent performing as the controller 
selects an action that has the highest reward among 
many selectable actions through the network based 
on the current state. Here, the link that the packet 
passes through and the node that the packet is 

 

Figure 2: Example topology of creating correlated learning data  
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transmitted to are expressed in the 𝑁 ൈ 𝑁  action 
matrix. When going through the policy, the 
information for all selectable actions must be 
expressed, and the selectable actions, i.e. selectable 
links, exist differently depending on the path that 
the packet passed through. For this, the selectable 
actions should be expressed variably but because 
the size of the output layer is fixed due to the 
structure of the neural network, the actions should 
be set according to the output layer.  

Therefore, when there are N nodes, as many 
selectable links exists as N(N-1), and this can be 
expressed with an 𝑁 ൈ 𝑁 action matrix. The output 
layers of a neural network are shown by 𝑁 ൈ 𝑁, 
and using the information about links that are 
impossible to select in certain network topologies, 
such links are thus not allowed to be selected as 
actions, through the 𝑁 ൈ 𝑁 impossible link matrix. 
The SDN controller adds the non-selectable link 

information as a bias of the neural network through 
the adjacent matrix of current topology, so that the 
non-connectable links cannot be selected. As a 
result, the unconnected links are not selected as 
actions in the policy of the proposed method.  

The proposed method grants a reward only when 
all packets have reached the destination node. This 
ensures the shortest path by discount ratio. The 
discount ratio is calculated as γt at each time step t, 
and the final reward is determined by multiplying 
the discount ratio with the reward R. The final 
reward is expressed as γt ൈ 𝑅, meaning that after 
multiplying the discount factor γ by itself t  times, 
it is multiplied with the reward R. Because γ 
consists of a value between zero and one, and R is 
a constant larger than 0, the final value of the 
reward decreases as the time step t increases. 

The agent, which is the SDN controller, 
identifies the current network state by observing 

 

Figure 3: Example of state matrix for a topology 

 

Figure 4: Example of data correlation 
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the current network environment, and selects an 
action through the DQN. The reward is received for 
the selected action, and this process is repeated 
until the terminal state is reached.  

The correlation between previous state and 
current state is very high when a packet goes 
through a node at every time step, as shown in Fig. 
4. Furthermore, when the network learning is 
performed, the problem of the target network 
becoming non-stationary is same as the problem 
that occurs in Q-learning.  To resolve the data 
correlation problem, the DQN gathers the training 
data in the learning loop, and after saving the data 
in the replay buffer, it performs the training by 
extracting data randomly in a mini-batch format. 
Therefore, the non-stationary target network 
problem is solved by the following method: After 
the DQN generates a target network, it copies the 
training network every time a certain time step is 
passed. 

The proposed method performs the routing 
through the learned model after completion of 
learning. The whole process of routing is as follows. 
First, when a single multicast service is created, 
and a packet is generated, the corresponding 
information is forwarded to the controller. The 
SDN controller constructs a multicast tree that the 
DQN learned in advance; based on this, the 
switches send the flow table update command.  The 
packet is sent to the destination node via a switch 

that possesses the updated flow table.  

 

 

4. EXPERIMENTS 

The environment used in the experiments for the 
performance evaluation of the proposed method is 
shown in Table 1. In the experiments, the number 
of nodes was set to 10, and the number of links was 
randomly selected from 1 to 5 at each node. In the 
experiments, TensorFlow 1.2.1 GPU version was 
used for the DQN learning, and two layers of neural 
networks were used while the ReLU function was 
used as the activation function. The number of 
destination nodes was set to between 2 (minimum) 
and 8 (maximum) since it is from a single multicast. 
In the DQN, a tree without a loop was generated.  

The proportion of learning data was set to 30%, 
50%, and 70% of the total route cases, respectively. 
When the proportion of learning data is given, the 
history is created by selecting an action through the 
DQN with a source node and destination node pair 
for each learning case. Furthermore, when a 
multicast tree containing all destination nodes is 
constructed, one episode is completed. By 
performing such an episode a certain number of 
times, the value function is generated.  

In the case of using 70% of learning cases, the 
experiment was performed from 3,000 episodes to 
30,000 episodes in incremental steps of 3,000. The 
experimental results are shown in Fig. 5, and after 
going through 21,000 episodes, it was observed 
that the performance ratios were all similar.  

 

Figure 5: Performance ratio in 70% of learning cases up to 30,000 episodes 
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In the case of 21,000 episodes in 70% of learning 
cases, the average performance ratio was 1.24. Fig. 
6 shows the proportion of optimal length trees 
found according to the number of destinations 

using the value function that learned the episode 
21,000 times, and including the suboptimal length 
cases of a tree that is one more link in length than 
the optimal tree. On average, 38% of optimal trees 

 

Figure 6: Construction ratio of optimal and suboptimal trees in 70% of learning cases 

 

 

Figure 7: Performance ratio in 50% of learning cases up to 30,000 episodes 

 

 

Figure 8: Performance ratio in 50% of learning cases up to 111,000 episodes 
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were found, and it was confirmed that 75% were 
found on average when trees were included that 

have the additional cost of one more link than the 
optimal tree. 

 

Figure 9: Construction ratio of optimal and suboptimal trees in 50% of learning cases 

 

 

Figure 10: Performance ratio in 30% of learning cases up to 30,000 episodes 

 

 

Figure 11: Performance ratio in 30% of learning cases up to 900,000 episodes 
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Table 1: Experimental parameters 

Parameters Values 

Node 10 

Number of Source Node 1 

Number of Destination Node 2 - 8 

Number of Links per Node 1-5 

DQN Layer 2 

Activation Function ReLu 

Ratio of Learning Cases 30%, 50%, 70% 

 
In the case of using 50% of learning cases, the 

same experiments were performed as were done 
with 70% of learning cases. The experimental 
results are shown in Fig. 7, and there was no section 
in which the performance converged. In the case of 

30,000 learning episodes, the experiments were 
carried out again in the increment steps of 9,000 
episodes, as shown in Fig. 8. In the experimental 
results, the case of 75,000 episodes showed the best 

performance with the performance ratio of 1.21.  

Fig. 9 shows the proportion of optimal and 
suboptimal trees found according to the number of 
destinations using the value function that has 
learned the episode 75,000 times. On average, 42% 
of optimal trees were found, and 80% of 

suboptimal trees were found on average. 

In the case of using 30% of learning cases, the 
same experiments were performed as were done 
with 70% of learning cases. The experimental 
results are shown in Fig. 10, and there was no 
section in which the performance converged. 
Furthermore, in the case of learning 30,000, the 

 

Figure 12: Performance ratio in 30% of learning cases between 630,000 and 657,000 episodes 

 

 

Figure 13: Construction ratio of optimal and suboptimal trees in 30% of learning cases 
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performance decreased instead. In the case of 30% 
of learning cases, even when additional learning 
was performed up to 90,000 times, the learning 
performance was lower than that of the 70% and 
50% cases. Fig. 11 shows the results of learning 
630,000 times, in increments of 90,000 starting 
from 90,000. In the results of learning 630,000 
times, the average performance ratio was 1.25, 
indicating the best performance. Since an 
increasing trend of performance was shown from 
540,000 times to 630,000 times, the performance 
for the learning was investigated again starting 
from 630,000 and increased in incremental steps of 
3,000, as shown in Fig. 12. The performance was 
highest when the learning was performed 648,000 

times, and the performance ratio was 1.239. 

Fig. 13 shows the proportion of optimal and 
suboptimal trees found according to the number of 
destinations using the value function that has 
learned the episode 648,000 times. On average, 36% 
of optimal trees were found, and 72% of 

suboptimal trees were found on average. 

The method used for finding an optimal tree 
length was the brute force method. All paths of 
5,050 cases were searched based on the Breadth-
first search (BFS), and after finding an optimal tree 
length, the performance ratio was derived through 
the tree that was generated using the proposed 
method. The 50% learning case showed the best 
average performance ratio. The performance ratio 
was 1.21, which showed a maximum improvement 
in performance of 39.5% and a minimum of 24.2%, 
compared to that of conventional studies. The 
result for 50% learning was better than that for 70% 
learning, and it can be interpreted that in the case 
of 70%, overfitting occurred with many of the 

learning cases. 

In the 70% case and the 50% case, the frequency 
of learning that showed the best performance was 
21,000 times and 75,000 times, respectively. 
Moreover, it was confirmed that in the 50% case, 
learning has to be performed more than three times 
before it can show better performance than the 70% 
case. This implies that the learning case proportion 
and the frequency of learning should be adjusted 
appropriately according to the network situation in 

multicast routing. 

 

 

 

6. CONCLUSIONS 

This study proposed a single multicast tree 
construction method using DQN, which is a 
reinforcement learning method among machine 
learning methods in the SDN environment. The 
learning environment of this study had much 
learning data, and the situation is appropriate for 
application of a DQN because correlation between 
data is high. Therefore, through a DQN, a policy 
was learned, and it generated the value function, 
thereby constructing a multicast tree. Furthermore, 
after performing the learning according to the 
proportion of learning cases, the tree was created 
through the generated model, and the performance 
ratio was measured in the experiments. In the 
results, the 50% case showed the best performance 
when the episode was learned 75,000 times. The 
average performance ratio was 1.21, which showed 
an improvement of 24.2% minimum and 39.5% 

maximum over the conventional TM algorithm. 

This paper has also limitations. To resolve the 
limitations, there is a plan for a future study to 
analyze the performance change by learning rate. 
Furthermore, the experiments will be conducted 
with an increase the number of nodes from the 
current ten nodes. The plan is to perform the 
learning using two or more layers in the neural 
network. We also plan to study a method of setting 
and applying rewards for various cases, excluding 
the optimal case, and a method of generating 
multiple multicast trees instead of a single 
multicast tree.  An additional study will be 
conducted for a situation in which the topology 
changes dynamically.  
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