
Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

378

PERFORMANCE EVALUATION OF GEOMETRIC
SIMILARITY PRESERVING EMBEDDING-BASED HASHING

FOR BIG DATA IN CLOUD COMPUTING.

ABUBAKAR USMAN OTHMAN, BOUKARI SOULEY, ABDULSALAM YA’U GITAL, HAUWA
ABUBAKAR.

Faculty of Science, Department of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi,
Nigeria.

E-mail: othman80s@yahoo.com

ABSTRACT

Approximate nearest neighbour (ANN) search has been favourable for large-scale information retrieval in
the recent past, and many hashing techniques for ANN have been proposed for retrieval of data in a large
database, given a query. Hashing based indexing techniques are being mostly favoured for similarity search
from huge database because of its efficiency in retrieval accuracy and low memory requirements. The long
code length of randomised hashing based indexing techniques gives good precision but required more
computational cost and high memory cost. DSH uses K-means algorithm to partition n data points into k
groups for quantisation of data. This paper addresses the problem of long hash codes, computational cost,
long convergent time and high memory requirements to achieve efficient similarity searching. Experiment
was setup and Geo-SPEBH was evaluated on SIFT 1B based on MAP, precision-recall metrics and Geo-
SPEBH outperformed the state-of-the-art techniques.

Keywords- Hashing, Similarity Preserving, Binary Codes, Indexing, Bid Data, Cloud Computing.

1 INTRODUCTION

The rapid advances of communication devices such
as smartphones used in a variety of applications [1],
coupled with the affordability and availability of
broadband internet [2], provides an easy collection
of digital information in form of structured and
unstructured [3] data, has contributed to accruing of
huge amount of data or big data. These large-scale
databases give a big problem in terms of scalability,
and needed to be indexed for efficient retrieval and
management of data. Information extracting
technologies, in the recent past, have been employed
to extract meaningful information from raw or
unstructured data [4]. The unstructured data being
generated data need to be structuralised by extracting
information so that the extracted information can be
used by analysis algorithm [5]. Technologies are
needed for proper processing of these data to open
new discoveries and knowledge [6]. Less time and
cost are needed indexing moving objects to analyse
big data with indexing techniques thus efficiently
indexing of big data results to reduce time while still
tolerating high cost when designing such indexing
methods [7]. Effective schemes for indexing,
updating and querying this dataset were developed.
Such effective schemes are evident in the field of car

tracking [8], gaming engines [9], and tracking of
mobile phones [10]. Content based image indexing
and retrieval, video indexing audio indexing aims at
obtaining a structured indexing of the original video
content and get familiar with its embedded semantics
just as with human beings [11].

 Binary code embedding techniques provide
efficient alternative for similarity search and
compact data representations that is most suited to
handle huge databases in the field of information
retrieval, computer vision and pattern recognition.

 The similarity search and nearest neighbour
search such as the tree-based indexing techniques
have been numerously proposed by [12], [13], [14],
[15], [16], [17], [18]. The tree based indexing
techniques is efficient in low dimensional data and
are not scalable to high-dimensional datasets. For
these, the vision community has in the recent past
put a lot of efforts to the challenges of learning
similarity preserving binary codes for representing
large-scale database as a solution to the tree based
methods. ANN methods [19], [20], [21], are
proposed for approximate nearest searches. Many
other hashing approaches [22], [23], [24], [25], [26],

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

379

[27], [28], [29],[30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], and [45],
have also been proposed to provide solutions to high
dimensional datasets. High-dimensional data points
are encoded into binary codes based on binary code
embedding methods to achieve a higher scalability
through compact representation of data and efficient
indexing technique. In hashing based indexing
techniques, similar data points are mapped to similar
binary codes to achieve low memory requirement.

 Hashing based indexing techniques can broadly
be classified into data-independent indexing
techniques [26], [35], [46], [27], also known as
randomised hashing techniques because they do not
make any prior assumption about the data
distribution. These categories of hashing based
indexing methods generate their projections
randomly and, the data-dependent binary code
embedding techniques [47], uses the data
distribution to generate the hash function.

 However, the long hash codes generated by data-
independent based indexing techniques is usually
very high and thus very expensive foe large scale
database. Long codewards results to high storage
cost. This reduce the number of data stored in a
database. If the data to be stored is very large and the
memory cannot longer accommodate the binary hash
codes generated by the randomised indexing
approaches, the alternative is to frequently access a
distributed system which is of course slower than the
direct memory access [48]. When this occurs, query
may collapse due to long response time. On the other
hand, the data-dependent, also known as learning-
based hashing techniques makes use of the structure
of the data with respect to data distribution to
generate the hash functions (hash table).

 To address the problem of long hash codes and
maintaine a trade-off between precision-recall, for
efficient retrieval accuracy and storage
requirements, we propose a similarity preserving and
independent hashing function scheme. The data
points are evenly distributed in a balanced
proportion to binary hash codes while preserving the
similarity between the data points.

 The remaining of this paper is organized as
follows. Section 2 presents literature related to the
work, section 3 presents the methodology used while
section 4 presents the results of the proposed system.

We presents the discussion and conclusion in section
5.

2 RELATED WORKS.

 The most popular scheme among the class of
randomised hashing based indexing scheme is the
LSH [20], which has since been developed to many
variants such as the 𝑙௣norm LSH [30], KLSH [47],
learning to hash with binary [49], locality sensitive
binary code [35], uses random linear projections to
map to map data into binary codes. In data-
independent hashing techniques, the Hamming
distance between two binary codes asymptotically
approaches the distance in the original feature space
as the code length increases [50], which results to
generating of long codes to achieve satisfactory
performance.

 The data-independent hashing techniques on the
other hand learn compact binary codes from training
data. It generates its projections using the prior
knowledge of data distribution. The data-dependent
hashing techniques can be grouped into three
category according to the level of semantic labels
used: supervised, semi-supervised and unsupervised
hashing methods. The supervised data-dependent
hashing methods learn their hash functions using
labelled data while the supervised hashing
techniques generated their projections using
unlabelled information of training data that seek to
propagate neighbourhood similarity of samples from
a certain metric space into the hamming space [32],
[51], [52], [53], [54]. The unsupervised category of
learning based indexing techniques does not require
label information of training data in projection
generating process but tries to keep the similarity
information between training samples in the original
space as the data points samples are projected into
the hamming distance space. Categories of these
unsupervised hashing algorithms also includes KMH
[56], which normally give satisfactory performance.
The GSPEBH method exploits the structure property
of the data to efficient binary codes. SH [32], uses
the graph partitioning to generate good binary codes.
[50], proposed a deep convolutional neural network
to be able to encode similar images to similar binary
codes by minimising the distance between the
Euclidean distance to Hamming space. [57],
proposed a Bit-Scalable Deep Hashing with
Regularised Similarity Learning for Image Retrieval
and Person Re-identification to address the problem

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

380

of neglecting the significance level of different bits
and restricting their practical flexibility by analysing
the training images into a batch of triplet samples.
The triplet samples are then maximised between
matched pairs and mismatched pairs in the Hamming
space.

 [58], proposed an asymmetric hashing technique
based on random projection to improve the search
accuracy of images. Their proposed method, uses the
real-valued output of the hash function to compute a
weighted Hamming distance based lower bound of
the Euclidean distance between the query and the
stored data in the database. [59], made an
improvement by generalising to a broader class of
binary embedding by computing the weighted
Hamming distance based on the lower bound of
Euclidean distances between the real-valued outputs
of hash function of the query and the binary hash
codes of the stored data in the database to improve
on the precision of retrieved information in the
database. [44], proposed an Asymmetric Cyclical
hashing based indexing technique for efficient
retrieval of large-scale images in a database by using
two distinct hash codes of different length for query
and stored data in a database that is the asymmetric
cyclical hashing. They seek a compact hash code to
reduce the storage requirement while the long hash
code is used for the query. Information retrieval is
performed by computing the Hamming distance of
the long hash code and of the query and the
cyclically concatenating compact hash codes of the
stored data for efficient retrieval in terms of
precision and recall. The challenges of these
methods are that they incur high computational cost
in addition to the computation of the Hamming
distance between the stored data in the data base and
the query. In [60], a density sensitive hashing
technique was proposed to generate projections by
exploring the structure of data to generate hash
function and employ only those projective functions
that best agreed with the data distribution.

3 THE PROPOSED SYSTEM.

Here we present our proposed system and its
working principle. The proposed system is
composed of four components that perform a
particular function to achieve retrieval accuracy and
minimal storage requirement. The purpose of
learning hashing-based methods is to use the
mapping function that projects m-dimensional real
valued feature vector to n-dimensional binary hash

codes and still preserve the similarity among the
feature vector and the data set. The system explores
the magnitude structure of geometric features of
data. Here the image features are indexed from the
quantised hashing results. The Geo-SPEBH uses
hypersphere-based hashing function for computing
the binary hash codes with a joint algorithm that
optimise search accuracy and search time
simultaneously. We have sample of data points
contained in a database, we will index the data to
reduce storage cost, computational cost and optimise
the search accuracy and time simultaneously. Here
we represent the data points’ samples as
𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥ே, and the database is represented as
𝑋 given below:

𝑋 ൌ ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … 𝑥௡, … , 𝑥ேሽ ∈ 𝑅ௗ ൈ ே denotes the
data points contained in the database. Where 𝑋 is the
database and 𝑅ௗ ൈ ே represents the dimensional
space of size 𝑁. Then we design our hash function
that will map these data points to a k-bit binary hash
code by equation (1)

 𝐻ሺ𝑥ሻ ൌ ሼℎଵሺ𝑥ሻ, … ℎ௞ሺ𝑥ሻሽ ∈ ሼെ1, 1ሽ௞ (1)

Where 𝑁 is the number of samples of the data points,
and 𝑘 is the length of the binary hash code.

 Figure 1 gives the conceptual framework of the
proposed system. The working principle of the
proposed system is given in details with a detailed
explanation of the responsibilities of each of the
component that made up the model. This
architecture incorporates the solutions to the
identified problems in the various components that
made up the proposed system.

3.1 Hash Function

This component of the proposed system, is
responsible for hashing high-dimensional data into
compact hash codes to minimise storage cost. The
goal of designing the hash function is to preserve the
similarity information of the original descriptor
vector in a high-dimensional hamming space for
better precision and recall. Here, the hash function of
the proposed system compresses the original
descriptor of the stored images in the database to a
low-dimensional k-bit compact binary hash codes
with high compression ratio for small storage cost.
We therefore construct our hash function using the
geometric structure properties of the data based on
the data distribution framework, and the hashing
coding is dependent on the data points. We use 𝐾
hash functions based on hypersphere to preserve the
similarity among data point samples. The
constructed hash function is then used to generate

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

381

binary hash codes 𝐻 ሺ𝑥௜ ሻ ൌ ሾℎଵሺ𝑥௜ ሻ, … , ℎ௞ሺ𝑥௜ ሻሿ by
compressing points in high-dimensional space into
the binary hash codes of 𝐻 ሺ𝑥௜ ሻ ൌ ሼെ1, ൅1ሽ. The
samples in the original database of images which
correspond to the non-negative entries are used to
approximate the given data vector. To achieve this
efficiently, a geometrical hashing function that
utilised the hypersphere-based hashing function
design in equation (1) is used to define a pivot in a
D-dimensional vector space with a distance
threshold. Hashing function will show that the
values represented by each of the geometrical
hashing function 𝐻 ሺ𝑥௜ ሻ will then determine whether
a data point say 𝑥, is within the range inside the
hypersphere with the centre as 𝑐௜ and it radius as 𝑤௜.
The hash function is effective in that a higher
number of region that are closed can be created using
multiple hyperspheres, with distances between the
points that are located in each of the region are
bounded. To locate a nearest neighbour from a query
point ANN search, closed regions are formed with
tight bounded distances. With this tighter regions,
effective candidates for the nearest neighbours can
be found within the range or region that has been
indexed by the binary code of the query point.

 We exploit the distribution of data using the
geometric properties among data points to design in
our hash function which takes a linear form as in
equation (1) and equation (2) [28], is where the hash
codes are generated.

𝑦௞ ൌ
ଵ

ଶ
 ሺ1 ൅ ℎ௞ሺ𝑥ሻሻ (2)

 We use the hypersphere to define a geometrical
hashing function. Here, a pivot 𝑃௜ ∈ 𝑅஽ as a
distance threshold 𝑡௜ ∈ 𝑅ା as the following equation
(3) as ሼℎ௫ሽ௞ୀଵ

௄

ℎ௜ ൌ ൜
0 𝑖𝑓 ሺ𝑝௜, 𝑥ሻ ൐ 𝑡௜

1 𝑖𝑓 ሺ𝑝௜, 𝑥ሻ ൑ 𝑡௜
 (3)

Where 𝑑ሺ. , . ሻ denotes the Euclidean distance
between two data points in 𝑅஽. To map similar
feature vectors into the same hash bucket, every bit
must have the opportunity of becoming one or zero.
Here, similar bits are mapped into same bucket with
high probability of having a 50% chance of
becoming one (1) by defining independence of each
bit. Equation (4), is used to balance the partitioning
of data points for each bit for each data point 𝑥 [28].

 𝑝௥ሾℎ௜ሺ𝑥௜ሻ ൌ 1ሿ ൌ
ଵ

ଶ
, 𝑥 ∈ 𝑋, 1 ൑ 𝑖 ൑ 𝑡 (4)

To achieve independence between two bits given
that 𝑥 ∈ 𝑋 and 1 ൑ 𝑖 ൏ 𝑗 ൑ 𝑡

𝑝௥ൣℎ௜ሺ𝑥ሻ ൌ 1, ℎ௝ሺ𝑥ሻ ൌ 1൧ ൌ 𝑝௥ሾℎ௜ሺ𝑥ሻ ൌ

1ሿ . 𝑝௥ൣℎ௝ሺ𝑥ሻ ൌ 1൧ =
ଵ

ଶ
 .

ଵ

ଶ
 =

ଵ

ସ
 (5)

3.2 Geometric Similarity Preserving

This component of the proposed system is
responsible for preserving the similarities of two
sample data points in the training data set in our
propose system. Given a database 𝑋, two data
samples 𝑋௜ and 𝑋௝ contained in the training set of
data. Extracting the similarity between the two data
samples as 𝑄௜௝ from the similar geometric feature
points of image data is done. Hashing methods
require geometric coordinate properties for
similarity preserving. Next, the data points that are
similar are ensured to have similar hash codes with
small hamming distance.

 The Hamming distance is then minimised
between similar data points and the corresponding
similar binary hash codes. The similarity preserving
term, and Hamming distance minimisation between
similar data points and it corresponding similar
binary hash code are represented in equations (6) and
(7) respectively. We sum the similarity preserving
term as the summation of 𝑥௜ samples of data points
from 1 to 𝑁 plus the summation of 𝑥௝ corresponding
similar binary hash code from 1 to 𝑁 as in equation
(6). Hamming distance is minimised by taking the
absolute values of the of the similarity term as in
equation (7) [29].

Hamming distance = taking the absolute (abs) values
of Similarity term.

𝑄ሺ𝑦ሻ ൌ ∑ 𝑥௜ୀଵ,…,ே ∑ 𝑥௜ୀଵ,…,ே ൌ ∑ 𝑥௜௝ୀଵ,…,ே (6)

𝑄𝐻ሺ𝑦ሻ ൌ ∑ ∑ 𝑄௜௝||𝑌௜ െ 𝑌௝||ଶ
௝ୀଵ,…,ே௜ୀଵ,…,ே (7)

where 𝑄௜௝ is the sample data that has similarity, 𝑄ሺ𝑦ሻ
is the similarity preserving term and 𝑄𝐻ሺ𝑦ሻ is the
absolute value of the similarity term 𝑄ሺ𝑦ሻ.

 For efficient search accuracy with respect to
similarity search, similar data points are mapped to
similar binary hash codes for similarity preserving.
The Hamming distance to minimised with respect to:

𝑦𝑖 ∈ ሼ0, 1ሽ௞ ∑ 𝑦𝑖 ൌ 0 ௜ (8)

ଵ

௡
 ∑ 𝑦𝑖𝑦𝑖் ൌ 𝐼௜ (9)

Where the constraints (8) require each bit to fire 50%
of the time, and the constraint (9) requires the bits to
be uncorrelated. And, y is the set of all 𝑌௜. Then from
equation (7), samples with high similarity or with
bigger similarity 𝑄௜௝ will have similar binary hash

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

382

codes with smaller Hamming distance ||𝑌௜ െ 𝑌௝||ଶ.
𝑌௜ and 𝑌௝ are the similar hash codes.

3.3 Balance Partitioning for independence.

To have uniform distribution of data points in hash
bucket, we make each hash function independent of
one another. That is the functionality of one hash
function does not depend on the other one to
function. Each hash function is given the opportunity
of becoming 0 or 1 since binary digits are
represented by zeros (0’s) and ones (1’s). This mean
that for hash functions to be independent, each hash
function should have the chance of being one or zero
and the different binary hash codes are independent
of each other as in equation (4) above.

 Independence of hash functions is demonstrated
in a scenario as follows: As a typical scenario, the
probability that an event say 𝐵௜ be a hash function
that is one (1). 𝐵௜ is the event that ℎ௜ሺ𝑥ሻ ൌ 1. Then
define two events 𝐵௜and 𝐵௝, next to be independent
if and only if the probability of 𝐵௜ ൌ 1 and the
probability of 𝐵௝ ൌ 1is equivalent to the probability
of 𝐵௜ ൌ 1 multiply by the probability of 𝐵௝ ൌ 1 as in
equation (10). Here, similar bits are mapped into
same bucket with high probability of having equal
chance of becoming one (1) by defining
independence of each bit. Any of equation (4) and
(5) is used to balance the partitioning of data points
for each bit.

𝑝௥ሾℎ௜ሺ𝑥௜ሻ ൌ 1ሿ ൌ
ଵ

ଶ
, 𝑥 ∈ 𝑋, 1 ൑ 𝑖 ൑ 𝑡 (4)

 𝑁௜ ൌ ∑ 𝑁௜
ଶಾ

௜ୀଵ (11)

Where 𝑁௜ is the number of training samples in the
𝑖𝑡ℎ bucket and 𝑀 is the number of buckets. To
achieve independence between two bits given that
𝑥 ∈ 𝑋 and 1 ൑ 𝑖 ൏ 𝑗 ൑ 𝑡 where 𝑖 and 𝑗 are the
𝑖𝑡ℎ and 𝑗𝑡ℎ data points, and 𝑡 is the threshold, hash
functions are design to be independent and the data
points are distributed equally to each hash bucket.

𝑝௥ൣℎ௜ሺ𝑥ሻ ൌ 1, ℎ௝ሺ𝑥ሻ ൌ 1൧ ൌ 𝑝௥ሾℎ௜ሺ𝑥ሻ ൌ

1ሿ . 𝑝௥ൣℎ௝ሺ𝑥ሻ ൌ 1൧ =
ଵ

ଶ
 .

ଵ

ଶ
 =

ଵ

ସ
 (5)

𝑃𝑟ሾ𝐵𝑖 ∩ 𝐵𝑗ሿ ൌ 𝑃𝑟ሾ𝐵𝑖ሿ . Pr ሾ𝐵𝑗ሿ (10)

𝑝௥ሾℎ௜ሺ𝑥௜ሻ ൌ 1ሿ ൌ
ଵ

ଶ
, 𝑥 ∈ 𝑋, 1 ൑ 𝑖 ൑ 𝑡

The intersection is the equal chance of the code bit
being a binary hash code 1.

 The next is to incorporate the similarity preserving
term with the balance partitioning components or
terms together to simultaneously improve the search
accuracy and search time. We insert the data points
into each bucket as

 𝑁𝑖 ൌ
ே

ଶಾ . (11)

3.4 Joint Optimisation.

In this section, we integrate the similarity preserving
term 𝑄ሺ𝑌ሻ for search accuracy and the minimum
information criterion for the search time to form a
single entity. To enable a high search accuracy with
fast search time, the joint optimisation component of
the proposed system is formulated and is responsible
for the simultaneous optimisation of the search
accuracy and search time. A parametrisation of a
linear function is performed for easy optimisation,
and a relaxation is performed.

 The joint optimisation is responsible for the
computation of the hash bit that will be used for
query and the identification of the bucket with the
same hash bits with the query, and to also oversee
the loading of data samples from the selected
buckets into the memory. Here, the hash function
independent is made to be independent to distribute
data points evenly or equally to different binary hash
codes. To minimise the time complexity, each
bucket will contain equal number of samples to have
a balanced buckets. This is done to minimise the
search time. To have equal number of samples in

each bucket to balance the buckets, 𝑁 ൌ
ே

ଶಾ [29],

equation (11) Here, the search accuracy is improved
by minimising the Hamming distance between
similar data points.

𝑄ሺ𝑦ሻ ൌ 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑁 +
𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑗 𝑡𝑜 𝑁.
Mathematically, this can be expressed as:

𝑄ሺ𝑦ሻ ∑ 𝑥௜ୀଵ,…ே ൅ ∑ 𝑥௝ୀଵ,…ே (12)

 The similarity preserving term and the balance
partitioning are incorporated together for
simultaneous improvement in search accuracy and
search time, [29].

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

383

Algorithm 1: Geo-SPEBH

1. Start
2. Input: the training dataset𝑋௜, 𝑖 ൌ

1,2,3, … , 𝑁, similarity matrix 𝑊 and 𝑊 ൌ
𝑊௜௝; the number of required bits 𝐾 to map
the full dataset as hash codes; BP; N; M;
TP; FP; FN; Get equation (7);

3. Initialise: Sum = 0; Sim = 0; SimM = 0; BP
= 0; V = 2**M; yi = 0; JointO = 0

4. 𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑐
5. 𝑓𝑜𝑟 𝑗 ൌ 1 𝑡𝑜 𝑐
6. Get y(𝑖ሻ, y(𝑗ሻ, x(𝑖, 𝑗ሻ
7. Sum = Sum + ሺ𝑦ሺ𝑖ሻ െ 𝑦ሺ𝑗ሻ)**2
8. j = j + 1
9. 𝑖𝑓 𝑗 ൑ 𝑐 goto step 6
10. end if
11. 𝑖 ൌ 𝑖 ൅ 1
12. 𝑖𝑓 𝑖 ൑ 𝑐 goto step 17
13. end if
14. end for
15. end for
16. Sim = Sum
17. break;
18. 𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑉
19. get 𝑁ሺ𝑖ሻ
20. BP = N(𝑖ሻ ∗∗ 2
21. 𝑖 ൌ 𝑖 ൅ 1
22. 𝑖𝑓 𝑖 ൑ 𝑉 goto step 40
23. end if
24. end for
25. Print Sim, BP
26. //Incorporating similarity preserving term

and balanced partitioning//
27. JointO = Sim + BP
28. //computing 𝑢௜//
29. 𝑇ሺ𝑎, 𝑏ሻ = 0, swap = 0
30. Get x
31. Get b
32. 𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑎
33. 𝑓𝑜𝑟 𝑗 ൌ 𝑖 ൅ 1 𝑡𝑜 𝑏
34. Get 𝑇ሺ𝑖, 𝑗ሻ
35. j = j + 1
36. 𝑖𝑓 𝑗 ൑ 𝑏 goto step 55
37. i = i + 1
38. 𝑖𝑓 𝑖 ൑ 𝑎 goto step
39. end if
40. end if
41. end for
42. end for
43. 𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑎
44. 𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑏

45. Swap = 𝑇ሺ𝑖, 𝑗ሻ
46. 𝑇ሺ𝑖, 𝑗ሻ ൌ 𝑇ሺ𝑗, 𝑖ሻ
47. 𝑇ሺ𝑗, 𝑖ሻ ൌ 𝑠𝑤𝑎𝑝
48. ℎሺ𝑖ሻ = 𝑠𝑖𝑔𝑛ሺ𝑇ሺ𝑗, 𝑖ሻ ∗ 𝑥ሺ𝑖ሻ െ 𝑏
49. 𝑗 ൌ 𝑗 ൅ 1
50. 𝑖𝑓 𝑗 ൑ 𝑏 goto step 66
51. end if
52. 𝑖 ൌ 𝑖 ൅ 1
53. 𝑖𝑓 𝑖 ൑ 𝑎 goto step 65
54. end if
55. end for
56. end for
57. for i = 1
58. Print h(i)
59. 𝑖 ൌ 𝑖 ൅ 1
60. 𝑖𝑓 𝑖 ൑ 𝑎 goto step 78
61. end if
62. end for
63. //computing Binary hash code//
64. Get k
65. 𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑘
66. 𝑓𝑜𝑟 𝑗 ൌ 𝑖 ൅ 1 𝑡𝑜 𝑘
67. 𝑦ሺ𝑗ሻ ൌ ሺ1 ൅ ℎሺ𝑗ሻሻ/2
68. Print 𝑦ሺ𝑗ሻ// for any sample𝑥௜in the

database, compute its K hash bits 𝑌௜ ൌ
𝐻ሺ𝑌௜ሻ = 𝑠𝑖𝑔𝑛 ሺ𝑇்𝑥௜ െ 𝑏ሻ//

69.
70.
71. 𝑗 ൌ 𝑗 ൅ 1
72. 𝑖𝑓 𝑗 ൑ 𝑘 goto step 89
73. end if
74. end for
75. end for
76. Print JointO
77. //computing precision//
78. //TP is the true positive i.e. document

relevant to the user//
79. //FP is the false positive i.e. documents

retrieved but not needed//
80. Sum = 0
81. Get TP, FP, FN
82. Pr = sum + (TP/(TP + FP))
83. Re = sum + (TP/(TP + FN))
84. Print Pr, Re//output Precision, Recall//
85. //computing mean average precision//
86. Sum = 0
87. Get R, L//L is the number of the

retrieved data//
88. for 𝑖 ൌ 1 𝑡𝑜 𝑅
89. Get y(i)
90. MAP = sum + 𝑦ሺ𝑖ሻ(𝑃ሺ𝑟ሻ ∗ 𝛿ሺ𝑟ሻሻ/𝐿ሻ
91. 𝑖 ൌ 𝑖 ൅ 1

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

384

The Cloud

Database
Query

Database

User

Features

Extraction

Hash Function

Design

Similarity

Preserving
Balance

Partitioning
Joint

Optimisation

Search/Retrieval

101010010101

Query Dataset

92. if 𝑖 ൑ 𝑅 goto step 87
93. end if
94. end for
95. Print MAP//output Mean Average

Precision//
96. Stop

Figure 1. Architecture Of The Proposed System Model

100110101000

101011000001

Training dataset

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

385

4 EXPERIMENTAL SETUP

This section provides and avenue for evaluating the
proposed technique and make a comparison to the
state-of-the-art-techniques.

4.1 Performance metrics

The Geo-SPBH will be compared with state-of-the-
art-techniques to obtain the mean average precision
based on parameter analysis, the precision-recall
rate, and the search accuracy and search time trade-
off. We implement our method to measure the
performance of retrieval result on the mean average
precision (MAP) and precision/recall using the SIFT
1B dataset. The MAP measures the average of
precision scores for the queries. It is the area under
the precision-recall curve for a set of queries. A large
value of MAP will indicate a better performance, and
the precision/recall measures the precision by recall
per code lengths for each code bits of 8, 16, 32, 48,
64, 96.

4.2 Evaluation Techniques.

The algorithms used in the evaluation of the
proposed system are the DSH, SHD, AGH, SpH,
PCAH.

DSH: Density sensitive hashing is a semi-supervised
based hashing techniques that combined the
characteristics of data-independent and data-
dependent hashing techniques. The projections are
generated based on selective principles. This
technique avoids the complete random selection and
generates the projections based on selective
principles [59]. It is an extension of LSH.

Spherical Hamming Distance: SHD is a hashing
based technique that uses spherical Hamming
distance [28].

Principal Component Analysis Hashing: PCAH is
a classic indexing method for big data that utilises
the core principal directions as projective vectors to
obtain binary hash codes [60].

Spectral Hashing: SpH is a classic approach that
quantised the values of analytical Eigen functions
computed along the principal component analysis of
the data [32]. The PCA is conducted on original data.

Anchor Graph Hashing: AGH approaches is a
classic technique design an anchor graph to
accelerate the speed of the spectral analysis
procedures [52].

Geo-SPEBH: This is the proposed method to be
compared with the above mentioned algorithms.

4.3 Programming tools used

All the experiments were conducted and run on a
3.40 GHz CPU with four cores and 16 G RAM, in a
Java software tool built on CloudSim for
experimentation, simulation and implementation.
The CloudSim is configured with 1 data centre on
100 cloudlets with the capacity of accepting input a
output size of 300 each and length of 5000.
4.4 Preliminary Results

To generate discriminative binary hash codes that
need only small number bits to code a huge amount
of data in a database to yield high search accuracy
and an improved search time with less memory
consumption.

4.5 Tools to be used

The dataset used for the evaluation of our technique
is the SIFT-1B-128D [61], which contains one
billion SIFT features. Each of the SIFT features is
represented by a 128-dim vectors.

Table 1. Sift 1billion Data Set

Dataset Dimension No. of base
vectors

No. of
query
vectors

No. of learn
vectors

SIFT
1B

128 1,000,000,000 10,000 100,000,000

Our ground truth is defined by k-nearest neighbours
computed be exhaustive, linear scan base on the
Euclidean distance. For each query, the ground truth
contain the vector numbers which begins at 0 of its
k-nearest neighbours, ordered by increasing
Euclidean distance.

4.6 Simulation Results

We use the SIFT 1B dataset to implement our USPH
algorithm and compared our result with state-of-the-
art-techniques. The existing algorithms are run and

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

386

results are obtained and recorded. The base
algorithm (DSH) is run without the new components
and results are obtained. The new algorithm is run
with the new components and the results are
obtained and compared with the base algorithm and
other existing state-of-the-art techniques. The results
obtained show that the proposed system outperform
the existing techniques based on the mean average
precision results as shown in Table 2.

Table 2. Simulation Results For The Proposed And
Existing Methods

 SIFT 1B Mean Average Precision (%)

 Code length (bits)

METH
ODS

8 16 32 48 64 80 96

DSH 0.0
600

0.1
250

0.3
434

0.1
300

0.1
507

0.1
616

0.25
01

SHD 0.0
245

0.0
439

0.0
685

0.0
945

0.1
000

0.1
547

O.1
843

SpH 0.1
824

0.1
131

0.2
588

0.1
448

0.1
589

0.1
696

0.17
11

AGH 0.0
521

0.0
895

0.1
445

0.1
546

0.1
585

0.1
598

0.16
53

PCAH 0.0
555

0.0
695

0.1
958

0.1
250

0.1
605

0.1
698

0.17
42

Geo-
SPEB
H

0.0
688

0.1
299

0.3
906

0.1
414

0.1
677

0.1
916

0.26
05

Figure 2. The Mean Average Precision Of Data-
Dependent Hashing Algorithms On SIFT 1B Dataset.

Table 3. Simulation Results For The Proposed And
Existing Methods

 SIFT 1B Precision

 Code length (bits)

METHODS 8 16 32 48 64 80 96

DSH 0.0600 0.1250 0.3434 0.1300 0.1507 0.1616 0.2501

SHD 0.0245 0.0439 0.0685 0.0945 0.1000 0.1547 O.1843

SpH 0.1824 0.1131 0.2588 0.1448 0.1589 0.1696 0.1711

AGH 0.0521 0.0895 0.1445 0.1546 0.1585 0.1598 0.1653

PCAH 0.0555 0.0695 0.1958 0.1250 0.1605 0.1698 0.1742

Geo-
SPEBH

0.0688 0.1299 0.3906 0.1414 0.1677 0.1916 0.2605

Table 3. Simulation Results For The Proposed And
Existing Methods

 SIFT 1B Recall (%)

 Code length (bits)

METHODS 8 16 32 48 64 80 96

DSH 0.4060 0.3838 0.3550 0.3500 0.3454 0.3400 0.3323

SHD 0.2505 0.3788 0.3854 0.3900 0.4545 0.4860 O.4880

SpH 0.4545 0.4055 0.4045 0.4011 0.4145 0.4400 0.4520

AGH 0.3000 0.3113 0.3380 0.3455 0.3600 0.3775 0.3855

PCAH 0.3900 0.3865 0.3845 0.3825 0.3810 0.3785 0.3735

Geo-
SPEBH

0.5383 0.5200 0.5064 0.5179 0.5153 0.5152 0.5150

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

8 16 32 48 64 80 96

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Code Length

The Mean Average Precision for learning
Algorithms on SIFT 1B

SHD

SpH

AGH

PCAH

Geo-SPEBH

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

387

Figure 3. The Precision/Recall Of Algorithms On SIFT
1B Dataset With Code 32 Bits.

Figure 4. The Precision/Recall Of Algorithms On SIFT
1B Dataset With Code 48 Bits.

Figure 5. The Precision/Recall Of Algorithms On SIFT
1B Dataset With Code 64 Bits.

4.8 Discussion

The SIFT 1B dataset is a dataset that consist of one
million SIFT features represented by 128 dimension
vectors. The number of base vectors is
1,000,000,000 while the query vectors 10, 000,
100,000,000 vectors are used for learning. This
dataset is run with the old algorithm (DSH) with
varied number of bits, 8, 16, 34, 48, 64, 80, 96 to
obtain the mean average precision (MAP) for each
query. We select 1K data points as the queries and
the remaining are used to form the gallery database.
The point retrieved is seen as the true neighbour if it
lies in the top 2 percentile points closest to the query.
It is measured by the Euclidean distance in the
original space. The data points in the database for
every query are ranked according to their Hamming
distances to the query.

In Table 2, It can be seen that the data-dependent
based methods recorded a very low performance
when the code length is short but achieved high
performance when the code length is long. The data-
dependent techniques, PCAH, SpH, SHD, and AGH
semi-supervised technique which is DSH recorded a
high MAP performance when the code length is
short but drops when the code length increases. From
table 3 above, it can be seen that our proposed
method outperform the compared methods as it
recorded high MAP when the code length is short
and still maintain performance when the code length
increases, and the memory cost is low compared to
the base-line methods on the SIFT 1B dataset for all
code lengths. The low memory cost recoded by our
proposed algorithm indicate that it can handle large
amount of data (huge database). Table 2 gives the
MAP results for the SIFT dataset for all the
compared methods. Given 0.3 MAP obtain from the
results above, our Geo-SPEBH requires 64 bits to
encode each image in the sample dataset. On the
other hand, the compared methods requires more
than 64 bits up to 80 bits to encode each image in the
database.

The higher the value of precision-recall, the better
the performance in terms of efficiency in retrieval
accuracy. From figure 3, it can be seen that at the
code length of 32 bits, the Geo-SPEBH which is the
proposed system recorded a precision/recall rate of
0.3906 and 0.5064 respectively as against 0.3434
and 0.3550 recorded by DSH method which is our
based research paper. It clearly shows that the
proposed system has a better precision/recall which
gives better retrieval accuracy than the compared
algorithms. Figures 3, 4 and 5, presented the
simulation results for all the algorithms with respect

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

0 0.2 0.4 0.6

Pr
ec

is
io

n

Recall

Precision-Recall for all algorithms on SIFT 1B
with 36 bits

DSH

SHD

SpH

AGH

PCAH

GSPEBH

0

0.05

0.1

0.15

0.2

‐0.4 0.1 0.6

P
re

ci
si

on

Recall

Precision/Recall on all algorithms on SIFT 1B
with code 48 bits

DSH

SHD

SpH

AGH

PCAH

GSPEBH

‐0.15

0.05

0.25

0.45

‐0.4 0.1 0.6

P
re
ci
si
o
n

Recall

Precision‐Recall for all algorithms on SIFT 1B with
64 bits

DSH

SHD

SpH

AGH

PCAH

GSPEB

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

388

to codes bits of 32, 48 and 64. It is well suited to
point out that the utilisation of the geometric
properties of data in generating hash functions,
preserving similarity between the data points and the
balance partitioning of data to have equally
distributed data points in each hash table by the
proposed system produce better performance to the
compared algorithms for all the code lengths.

The codes lengths represented by code lengths of
32, 48 and 64 bits represented the memory (storage)
requirement for each data stored in the database in
bits.

5 CONCLUSION

The performance has showed that the data-
dependent based methods recorded a very low
performance when the code length is short but
achieved high performance when the code length is
long. This methods are PCAH, DSH, SHD, SpH and
KLSH. From table 2 above, it can be seen that our
proposed method outperform the compared methods
as it recorded high MAP when the code length is
short and still maintain performance when the code
length increases, and the memory cost is low
compared to the base-line methods on the SIFT 1B
dataset for all code lengths. The low memory cost
recoded by our proposed algorithm indicate that it
can handle large amount of data (huge database).
Table 2 gives the Mean Average Precision results for
the SIFT dataset for all the compared methods.
Given 0.3 Mean Average Precision obtain from the
results above, our Geo-SPEBH requires 64 bits to
encode each image in the sample dataset. On the
other hand, the compared methods requires more
than 64 bits up to 80 bits to encode each image in the
database.

Further research should be directed towards finding
a solution to balancing the trade-off between
precision-recall, and the measure the performance
based on search time. Furthermore, the data
collected from different sources in a raw form such
as student records, health records, mathematical and
statistical analysis cannot be effectively analysed.
An advanced technique is required so that data can
be extracted from different sources to structure them
in a format that can be used for analysis.

REFERENCE

[1] T. S. C. Danan, N. Surya, C. Rafael, and A.
Leila,."A platform for monitoring and sharing
of generic health data in the cloud", Future
generation computer system, 35, 2014, 102-
113.

[2] Z. Huang, T. S. Heng, and J. Shao, "Bounded
Coordinate System Indexing for Real-time",
ACM Transactions on Information Systems,
10(10), 2010, 1-32.

[3] M. Gartner, A. Rauber, and H. Berger, "Briging
structured and unstructured data via hybrid
semantic search and interactive ontology-
enhanced query formulation", Knowledge
information system, 2013, 1-32.

[4] A. H. Doan, J. F. Naughton, A. Baid, X. Chai, F.
Chen, T. Chen, E. Chu, P. DelRose, B. Gao,
C. Gokhale, J. Huang, W. Shen, and B. Q.
Vuong, "Information extraction challenges in
managing unstructured data", ACM SIGMOD,
37(4), December, 2008, 14-20.

[5] C. Chang, M. Kayed, M. R. Girgis, and K. F.
Shaalam, "A survey of web information
extraction system", IEEE Transaction on
Knowledge and Data Engineering, 18(10),
2006, 1411-1428.

[6] J. Cheng, C. Yuegue, E. Lia, I. L. Cuiping, and
U. L. Jiaheng, "Big Data Challenges: A data
Management Perspective", Higher education
press and springer verlag Berlin Heidelberg,
7(2), 2013, 157-164.

[7] S. Kadiyala, and N. Shiri, "A compact multi-
resolution indedx for variable length queries in
time series database", Knowledge information
system, 15(2), 2008, 131-147.

[8] C. Jensen, and S. Pakalnis, "TRAX—real-world
tracking of moving objects", n: VLDB, 2007,
1362-1365.

[9] W. White, A. Demers, C. Koch, J. Gehrke, and
R. Rajagopalan, "Scaling games to epic
proportion. In SIGMOD, June, 2007, 31-42..

[10] E. A. Anderson, "Shakra: tracking and sharing
daily activity levels with unaugmented mobile
phones", mobile network application, 12(2-3),
2007, 185-199.

[11] B. B. Meshram, and G. P. Gaikwad, "Different
indexing techniques", International Journal of
Engineering Research and Application, 3(2),
April, 2013, 1230-1235.

[12] M. Muja, and D. G. Lowe, "Fast Approximate
Nearest Neighbours with Automatic
Algorithm Configuration", VISAPP, 2009,
331-340.

[13] L. Arge, M. Berg., H. Haverkort., & K. Yi, "The
priority R-tree: a practically efficient and

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

389

worse case optimal R-tree", in SIGMOD.,
April, 2004, 1-30.

[14] J. Bentley, "Multidimensional binary search
trees used for associative searching",
Communication of the ACM, 18, September,
1975, 509-517.

[15] A. Guttman, "R-trees: A dynamic index
structurefor special searching", SIGMOD,
14(2), June, 1984, 47-57.

[16] J. H. Friedman, J. L. Bentley and R. A. Finkel,
"An algorithm for finding best matches in
logarithmic expected time", ACM. TOMS,
3(3), 1977, 209-226.

[17] C. Silpa-Anan, and R. Hartley, "Optimised KD-
trees for fast image descriptor matching", In
Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2008,
1-8.

[18] A. Beygelzimer, S. Kakade, and J. Langford,
"Cover Trees for Nearest Neighbour", In
Proceedings of 23rd International Conference
on Machine Learning, 2006, 97-104.

[19] Y. Gao, B. Zheng, G. Chen, Q. Li, X. Guao,
"Continuous visible nearest neighbour query
processing in spatial databases", Very Large
Data Base, 20(3), 2011, 371-396.

[20] A. Andoni & P. Indyk., "Near-optimal hashing
algorithms for approximate nearest neighbour
in high dimensions", Communication of ACM,
51(1), 2008, 117-122.

[21] J. Brandt, "Transform coding for fast
approximate nearest neighbour search in high
dimensions", In IEEE conference on computer
vision and pattern recognition, 2010, 1805-
1822.

[22] C. Strecha, A. M. Bronstein, M. M. Bronatein,
and P. Fua, "Ldahash: Improved matching with
smaller descriptors", TPAMI, 34(1), January,
2012, 66-76.

[23] W. Liu, J. Wang, R. J. Y-G. Jang, and S-F
Chang., "Supervised hashing with kernels. In
computer vision and pattern recognition. 2012,
2074-3081

[24] A. Jolly & O. Buisson. (2011). Random
maximum margin hashing. in proc. of Comp.
Vis. Pat. Recog, 2011, 873-880.

[25] P. Indyk and R. Motwani, "Approximate nearest
neighbours towards removing the cures of
dimensionality", In STOCK, 1998, 604-613.

[26] M. S. Charkar, "Similarity estimation
techniques from rounding algorithms", In
Proceedings of Annual ACM Symposium on
Theory of Computation, 2002, 380-388.

[2] M. Datar, N. Immorlica, P. Indyk, and V. S.
Mirrokni, "Locality sensitive hashing

schemebased on p-stable distribution", In
Proceedings of 2oth Annual Symposium on
Computational Geometry, 2004, 253-262.

[28] H. Jae-Pil, L. Youngwoon, H. Junfeng, C. Shih-
Fu, Y. Sung_Eui, "Spherical Hashing: Binary
Code Embedding with Hyperspheres", IEEE
transaction on Pattern Analysis and Machine
Intelligent, 2015, 1-14.

[29] J. He, R. Rhadhakrishnan, S-F Chang and C.
Bauer, "Compact hashing with joint
optimisation of search accuracy and time",
CVPR. 2011, 753-760.

[30] Y. Gong and S. Lazebnik, "Itetrative
Quantisation: a procrustean approach to
learning binary codes for large-scale image
retrieval", IEEE transaction on pattern
analysis and machine inteliigence, 35(12),
December, 2013, 2916-2929.

[31] A. Torralba, R. fergus, and Y. Weiss, (2008).
Small codes and large image databases for
recognition.CVPR,
doi:10.1109/cvpr.2008.4587841

[32] Y. Weiss, A. Torralba, and R. fergus, "Spectral
Hashing", in proceedings of Neural
Information Processing System, 2008, 1-8.

[33] O. Chum, J. Philbin, and A. Zisseman, "Near
duplicate image detectionmin-hash and tf-idf
weighting", BMVC, doi:10.5244/C.22.50

[34] P Jain, B. kulia, K. Grauman, (2008). Fast
image search for learned metrics. CVPR.
doi:10.1109/cvpr.2008.4587841.

[35] M. Rangisky and S. Lazebnik, "Locality
sensitive binary codes from shift-invariant
kernels", in proceedings od NIPS, 2009, 1509-
1517.

[36] R. Salakhutdinov and G. Hinton, "Semantic
Hashing", International Journal of
Approximate reasoning, July, 2009, 969-978.

[37] B. Souley and A. U. Othman, "Geometric
Similarity Preserving Embedding based
Hashing for big data in Clou Computing",
International Journal of Research and
Scientific Innovation, 2019, 10.

[38] J. Wang, S. Kumar and S-F Chang, "Sequential
projection learning for hashing with compact
codes", in proc. 27th Int. Conf. Mach. Learn
(ICML), 2010, 1127-1134.

[39] L. Pauleve, H. Jegou and L. Amsaleg, "Locality
sensitive Hashing: A comparison of hash
function types and queryong mechanism",
Pattern recognition Letters, 31(11), August,
2010, 1348-1358.

[40] J. Wang, S. Kumar, and S-F Chang, "Semi-
supervised hashing for scalable image
retrieval", CVPR, 2010, 3424-3431.

Journal of Theoretical and Applied Information Technology
15th February 2020. Vol.98. No 03

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

390

[41] R-S Lin, D. Rose and J. Yangik, "Spec Hashing:
Similarity preserving algorithm for entropy-
base coding", VPR, June, 2010, 848-854.

[42] R. Ye, and Z. Li, "Compact structure hashing
via sparse and similarity preserving
embedding", IEEE transaction on cybernatics,
46(3), 2016, 718-729.

[43] H. Zhang, L. Liu, Y. Yong, and L. Shao,
"Unsupervised deep hashing with pseudo
labels for scalable image retrieeval", IEEE
transaction on image processing, April, 2018,
1626-1638.

[44] Y. Lv, W. Y. Ng Wing, Z. Zeng, S. D.
Yeung,and P. K. Patrick, "Asymmetric
Cyslical Hashing for Large Scale Image
Retrieval", IEEE transaction on multimedia,
17(8), 2015, 1225-1235.

[45] M. Norouzi and D. J. Fleet. (2011). Minimal
Hashing for Compact binary codes. ICML.

[46] B. Kulis, K. Grauman, "Kernelised Locality-
sensitive hashing for scalable image search", In
Proceedings of IEEE conference on computer
vision and pattern recognition, 2009, 2130-
2137.

[48] A. Gordo, F. Perronmini, Y. Gong, and S.
Lazebnik, "Asymmetric distances for binary
embedding", IEEE Transaction on Pattern
Analysis and Machine Intelligence, 36-(1),
January, 2014, 33-47.

[49] B. Kulis and T. Daniel, "Learning to hash with
binary reconstructive embeddings", In
Proceedings of NIPS, 2009, 1042-1050.

[50] C. Yan, H. Xie, D. Yang, J. Yin, and Y. Zhang,
"Supervised hash coding with deep neural
network for environment perception of
intelligent vehicles", IEEE transaction on
intelligent transportation systems, 19(1), 2018,
284-295.

[51] W. X-M. G. Irie, Z. Li, S-F. Chang, "Locality
Linear Hashing for Extracting Non-linear
Manifold", in CVPR, 2014, 2115-2122.

[52] W. Liu, J. Wang, S. Kumar and S. Chang,
(2011). Hashing with graphs. ICML.

53] J. Shao, F. Wu. C. Ouyang and X. Zhang,
"Sparse spectral hashing", Pattern Recognition
Letters, 33(3), 2012, 271-277.

[54] D. Zhang, J. Wang, D. Cai, and J. Lu, "Self-
taught hashing for fast similarity search", in
Proceedings of the 33rd international ACM
SIGIR conference on Research and
development in information retrieval, July,
2010, 18-25.

 [55] K. He, F. Wen, and I. Sun, "K-means Hashing:
An affinity-preserving quantisation method for
learning binary compact codes", in IEEE
conference on computer vision and pattern
recognition, June, 2013, 2938-2945.

 [56] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L.
Zhang, "Bit Scalable Deep Hashing with
Regularised Similarity Learning for Image
retrieval and Person Re-identification", IEEE
transaction on image processing, August,
2015, 1-14.

[57] W. Dong, M. Charikar, and K. Li, "Asymetric
distance estimation with sketchess for
similarity search in high-dimensional spaces.
in proceedings of 31st annual international
ACM SIGIR conf. Res. Develop. inf. retrieval,
2008, 123-130.

[58] A. Gordo and F.perronmin. "Asymmetric
distances for binary embeddings", In
Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, June, 2011,
729-736.

[59] Z. Jin, C. Li. Y. Lin, & D. Cai, "Density
Sensitive Hashing", IEEE transactions on
Cybernetics, 44(8), August, 2014, 1362-1371.

 [60] X-J, Wang, I. Zhang, F. Jing, and W-Y. Ma,
(2006). Annosearch: Image auto-annotation by
search. In EEE computer society conference on
computer vision and pattern recognition.
doi:10:1109/CVPR 2006.58

[61] H. Jagou, R. Tavenard, M. Douze and L.
Amsaleg, "Set SIFT 1B", IEEE Trans. Int.
Conf. Acoustic, Speech and Signal Processing.
May, 2011, 861-864.

.

