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ABSTRACT 

Approximate nearest neighbour (ANN) search has been favourable for large-scale information retrieval in 
the recent past, and many hashing techniques for ANN have been proposed for retrieval of data in a large 
database, given a query. Hashing based indexing techniques are being mostly favoured for similarity search 
from huge database because of its efficiency in retrieval accuracy and low memory requirements. The long 
code length of randomised hashing based indexing techniques gives good precision but required more 
computational cost and high memory cost. DSH uses K-means algorithm to partition n data points into k 
groups for quantisation of data. This paper addresses the problem of long hash codes, computational cost, 
long convergent time and high memory requirements to achieve efficient similarity searching. Experiment 
was setup and Geo-SPEBH was evaluated on SIFT 1B based on MAP, precision-recall metrics and Geo-
SPEBH outperformed the state-of-the-art techniques. 
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1 INTRODUCTION 

The rapid advances of communication devices such 
as smartphones used in a variety of applications [1], 
coupled with the affordability and availability of 
broadband internet [2], provides an easy collection 
of digital information in form of structured and 
unstructured [3] data, has contributed to accruing of 
huge amount of data or big data. These large-scale 
databases give a big problem in terms of scalability, 
and needed to be indexed for efficient retrieval and 
management of data. Information extracting 
technologies, in the recent past, have been employed 
to extract meaningful information from raw or 
unstructured data [4]. The unstructured data being 
generated data need to be structuralised by extracting 
information so that the extracted information can be 
used by analysis algorithm [5]. Technologies are 
needed for proper processing of these data to open 
new discoveries and knowledge [6]. Less time and 
cost are needed indexing moving objects to analyse 
big data with indexing techniques thus efficiently 
indexing of big data results to reduce time while still 
tolerating high cost when designing such indexing 
methods [7]. Effective schemes for indexing, 
updating and querying this dataset were developed. 
Such effective schemes are evident in the field of car 

tracking [8], gaming engines [9], and tracking of 
mobile phones [10]. Content based image indexing 
and retrieval, video indexing audio indexing aims at 
obtaining a structured indexing of the original video 
content and get familiar with its embedded semantics 
just as with human beings [11]. 

    Binary code embedding techniques provide 
efficient alternative for similarity search and 
compact data representations that is most suited to 
handle huge databases in the field of information 
retrieval, computer vision and pattern recognition.  

    The similarity search and nearest neighbour 
search such as the tree-based indexing techniques 
have been numerously proposed by [12], [13], [14], 
[15], [16], [17], [18]. The tree based indexing 
techniques is efficient in low dimensional data and 
are not scalable to high-dimensional datasets. For 
these, the vision community has in the recent past 
put a lot of efforts to the challenges of learning 
similarity preserving binary codes for representing 
large-scale database as a solution to the tree based 
methods. ANN methods [19], [20], [21], are 
proposed for approximate nearest searches. Many 
other hashing approaches [22], [23], [24], [25], [26], 
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[27], [28], [29],[30], [31], [32], [33], [34], [35], [36], 
[37], [38], [39], [40], [41], [42], [43], [44], and [45],  
have also been proposed to provide solutions to high 
dimensional datasets. High-dimensional data points 
are encoded into binary codes based on binary code 
embedding methods to achieve a higher scalability 
through compact representation of data and efficient 
indexing technique. In hashing based indexing 
techniques, similar data points are mapped to similar 
binary codes to achieve low memory requirement.  

    Hashing based indexing techniques can broadly 
be classified into data-independent indexing 
techniques [26], [35], [46], [27], also known as 
randomised hashing techniques because they do not 
make any prior assumption about the data 
distribution. These categories of hashing based 
indexing methods generate their projections 
randomly and, the data-dependent binary code 
embedding techniques [47], uses the data 
distribution to generate the hash function.  

    However, the long hash codes generated by data-
independent based indexing techniques is usually 
very high and thus very expensive foe large scale 
database. Long codewards results to high storage 
cost. This reduce the number of data stored in a 
database. If the data to be stored is very large and the 
memory cannot longer accommodate the binary hash 
codes generated by the randomised indexing 
approaches, the alternative is to frequently access a 
distributed system which is of course slower than the 
direct memory access [48]. When this occurs, query 
may collapse due to long response time. On the other 
hand, the data-dependent, also known as learning-
based hashing techniques makes use of the structure 
of the data with respect to data distribution to 
generate the hash functions (hash table).  

    To address the problem of long hash codes and 
maintaine a trade-off between precision-recall, for 
efficient retrieval accuracy and storage 
requirements, we propose a similarity preserving and 
independent hashing function scheme. The data 
points are evenly distributed in a balanced 
proportion to binary hash codes while preserving the 
similarity between the data points.   

    The remaining of this paper is organized as 
follows. Section 2 presents literature related to the 
work, section 3 presents the methodology used while 
section 4 presents the results of the proposed system. 

We presents the discussion and conclusion in section 
5.  

2 RELATED WORKS.  

 The most popular scheme among the class of 
randomised hashing based indexing scheme is the 
LSH [20], which has since been developed to many 
variants such as the 𝑙௣norm LSH [30], KLSH [47], 
learning to hash with binary [49], locality sensitive 
binary code [35], uses random linear projections to 
map to map data into binary codes. In data-
independent hashing techniques, the Hamming 
distance between two binary codes asymptotically 
approaches the distance in the original feature space 
as the code length increases [50], which results to 
generating of long codes to achieve satisfactory 
performance.  

    The data-independent hashing techniques on the 
other hand learn compact binary codes from training 
data. It generates its projections using the prior 
knowledge of data distribution. The data-dependent 
hashing techniques can be grouped into three 
category according to the level of semantic labels 
used: supervised, semi-supervised and unsupervised 
hashing methods. The supervised data-dependent 
hashing methods learn their hash functions using 
labelled data while the supervised hashing 
techniques generated their projections using 
unlabelled information of training data that seek to 
propagate neighbourhood similarity of samples from 
a certain metric space into the hamming space [32], 
[51], [52], [53], [54]. The unsupervised category of 
learning based indexing techniques does not require 
label information of training data in projection 
generating process but tries to keep the similarity 
information between training samples in the original 
space as the data points samples are projected into 
the hamming distance space. Categories of these 
unsupervised hashing algorithms also includes KMH 
[56], which normally give satisfactory performance. 
The GSPEBH method exploits the structure property 
of the data to efficient binary codes. SH [32], uses 
the graph partitioning to generate good binary codes. 
[50], proposed a deep convolutional neural network 
to be able to encode similar images to similar binary 
codes by minimising the distance between the 
Euclidean distance to Hamming space. [57], 
proposed a Bit-Scalable Deep Hashing with 
Regularised Similarity Learning for Image Retrieval 
and Person Re-identification to address the problem 
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of neglecting the significance level of different bits 
and restricting their practical flexibility by analysing 
the training images into a batch of triplet samples. 
The triplet samples are then maximised between 
matched pairs and mismatched pairs in the Hamming 
space.  

    [58], proposed an asymmetric hashing technique 
based on random projection to improve the search 
accuracy of images. Their proposed method, uses the 
real-valued output of the hash function to compute a 
weighted Hamming distance based lower bound of 
the Euclidean distance between the query and the 
stored data in the database. [59], made an 
improvement by generalising to a broader class of 
binary embedding by computing the weighted 
Hamming distance based on the lower bound of 
Euclidean distances between the real-valued outputs 
of hash function of the query and the binary hash 
codes of the stored data in the database to improve 
on the precision of retrieved information in the 
database. [44], proposed an Asymmetric Cyclical 
hashing based indexing technique for efficient 
retrieval of large-scale images in a database by using 
two distinct hash codes of different length for query 
and stored data in a database that is the asymmetric 
cyclical hashing. They seek a compact hash code to 
reduce the storage requirement while the long hash 
code is used for the query. Information retrieval is 
performed by computing the Hamming distance of 
the long hash code and of the query and the 
cyclically concatenating compact hash codes of the 
stored data for efficient retrieval in terms of 
precision and recall. The challenges of these 
methods are that they incur high computational cost 
in addition to the computation of the Hamming 
distance between the stored data in the data base and 
the query. In [60], a density sensitive hashing 
technique was proposed to generate projections by 
exploring the structure of data to generate hash 
function and employ only those projective functions 
that best agreed with the data distribution.   

3 THE PROPOSED SYSTEM.  

Here we present our proposed system and its 
working principle. The proposed system is 
composed of four components that perform a 
particular function to achieve retrieval accuracy and 
minimal storage requirement. The purpose of 
learning hashing-based methods is to use the 
mapping function that projects m-dimensional real 
valued feature vector to n-dimensional binary hash 

codes and still preserve the similarity among the 
feature vector and the data set. The system explores 
the magnitude structure of geometric features of 
data. Here the image features are indexed from the 
quantised hashing results. The Geo-SPEBH uses 
hypersphere-based hashing function for computing 
the binary hash codes with a joint algorithm that 
optimise search accuracy and search time 
simultaneously. We have sample of data points 
contained in a database, we will index the data to 
reduce storage cost, computational cost and optimise 
the search accuracy and time simultaneously. Here 
we represent the data points’ samples as 
𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥ே, and the database is represented as 
𝑋 given below: 

𝑋 ൌ ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … 𝑥௡, … , 𝑥ேሽ ∈  𝑅ௗ ൈ ே denotes the 
data points contained in the database. Where 𝑋 is the 
database and 𝑅ௗ ൈ ே represents the dimensional 
space of size 𝑁. Then we design our hash function 
that will map these data points to a k-bit binary hash 
code by equation (1) 

 𝐻ሺ𝑥ሻ ൌ ሼℎଵሺ𝑥ሻ, … ℎ௞ሺ𝑥ሻሽ  ∈ ሼെ1, 1ሽ௞ (1) 

Where 𝑁 is the number of samples of the data points, 
and 𝑘 is the length of the binary hash code.  

    Figure 1 gives the conceptual framework of the 
proposed system. The working principle of the 
proposed system is given in details with a detailed 
explanation of the responsibilities of each of the 
component that made up the model. This 
architecture incorporates the solutions to the 
identified problems in the various components that 
made up the proposed system.   

3.1 Hash Function 

This component of the proposed system, is 
responsible for hashing high-dimensional data into 
compact hash codes to minimise storage cost. The 
goal of designing the hash function is to preserve the 
similarity information of the original descriptor 
vector in a high-dimensional hamming space for 
better precision and recall. Here, the hash function of 
the proposed system compresses the original 
descriptor of the stored images in the database to a 
low-dimensional k-bit compact binary hash codes 
with high compression ratio for small storage cost. 
We therefore construct our hash function using the 
geometric structure properties of the data based on 
the data distribution framework, and the hashing 
coding is dependent on the data points. We use 𝐾 
hash functions based on hypersphere to preserve the 
similarity among data point samples. The 
constructed hash function is then used to generate 
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binary hash codes 𝐻 ሺ𝑥௜ ሻ ൌ ሾℎଵሺ𝑥௜ ሻ, … , ℎ௞ሺ𝑥௜ ሻሿ by 
compressing points in high-dimensional space into 
the binary hash codes of 𝐻 ሺ𝑥௜ ሻ ൌ ሼെ1, ൅1ሽ. The 
samples in the original database of images which 
correspond to the non-negative entries are used to 
approximate the given data vector. To achieve this 
efficiently, a geometrical hashing function that 
utilised the hypersphere-based hashing function 
design in equation (1) is used to define a pivot in a 
D-dimensional vector space with a distance 
threshold. Hashing function will show that the 
values represented by each of the geometrical 
hashing function 𝐻 ሺ𝑥௜ ሻ will then determine whether 
a data point say 𝑥, is within the range inside the 
hypersphere with the centre as 𝑐௜ and it radius as 𝑤௜. 
The hash function is effective in that a higher 
number of region that are closed can be created using 
multiple hyperspheres, with distances between the 
points that are located in each of the region are 
bounded.  To locate a nearest neighbour from a query 
point ANN search, closed regions are formed with 
tight bounded distances. With this tighter regions, 
effective candidates for the nearest neighbours can 
be found within the range or region that has been 
indexed by the binary code of the query point.  

    We exploit the distribution of data using the 
geometric properties among data points to design in 
our hash function which takes a linear form as in 
equation (1) and equation (2) [28], is where the hash 
codes are generated. 

𝑦௞ ൌ
ଵ

ଶ
 ሺ1 ൅ ℎ௞ሺ𝑥ሻሻ  (2) 

    We use the hypersphere to define a geometrical 
hashing function. Here, a pivot  𝑃௜ ∈ 𝑅஽ as a 
distance threshold 𝑡௜ ∈ 𝑅ା as the following equation 
(3) as ሼℎ௫ሽ௞ୀଵ

௄  

ℎ௜ ൌ  ൜
0 𝑖𝑓 ሺ𝑝௜, 𝑥ሻ  ൐  𝑡௜

1 𝑖𝑓 ሺ𝑝௜, 𝑥ሻ  ൑  𝑡௜
                (3) 

Where 𝑑ሺ.  , . ሻ denotes the Euclidean distance 
between two data points in 𝑅஽. To map similar 
feature vectors into the same hash bucket, every bit 
must have the opportunity of becoming one or zero. 
Here, similar bits are mapped into same bucket with 
high probability of having a 50% chance of 
becoming one (1) by defining independence of each 
bit. Equation (4), is used to balance the partitioning 
of data points for each bit for each data point 𝑥 [28].  

     𝑝௥ሾℎ௜ሺ𝑥௜ሻ ൌ 1ሿ ൌ  
ଵ

ଶ
, 𝑥 ∈ 𝑋, 1 ൑ 𝑖 ൑ 𝑡 (4) 

To achieve independence between two bits given 
that 𝑥 ∈ 𝑋 and 1 ൑ 𝑖 ൏ 𝑗 ൑ 𝑡 

𝑝௥ൣℎ௜ሺ𝑥ሻ ൌ 1, ℎ௝ሺ𝑥ሻ ൌ  1൧ ൌ  𝑝௥ሾℎ௜ሺ𝑥ሻ ൌ

1ሿ . 𝑝௥ൣℎ௝ሺ𝑥ሻ ൌ 1൧ = 
ଵ

ଶ
 . 

ଵ

ଶ
 =

ଵ

ସ
          (5) 

3.2 Geometric Similarity Preserving 

This component of the proposed system is 
responsible for preserving the similarities of two 
sample data points in the training data set in our 
propose system. Given a database 𝑋, two data 
samples 𝑋௜ and 𝑋௝  contained in the training set of 
data. Extracting the similarity between the two data 
samples as 𝑄௜௝ from the similar geometric feature 
points of image data is done. Hashing methods 
require geometric coordinate properties for 
similarity preserving. Next, the data points that are 
similar are ensured to have similar hash codes with 
small hamming distance.  

    The Hamming distance is then minimised 
between similar data points and the corresponding 
similar binary hash codes. The similarity preserving 
term, and Hamming distance minimisation between 
similar data points and it corresponding similar 
binary hash code are represented in equations (6) and 
(7) respectively. We sum the similarity preserving 
term as the summation of 𝑥௜ samples of data points 
from 1 to 𝑁 plus the summation of 𝑥௝ corresponding 
similar binary hash code from 1 to 𝑁 as in equation 
(6). Hamming distance is minimised by taking the 
absolute values of the of the similarity term as in 
equation (7) [29].  

Hamming distance = taking the absolute (abs) values 
of Similarity term. 

𝑄ሺ𝑦ሻ ൌ  ∑ 𝑥௜ୀଵ,…,ே  ∑ 𝑥௜ୀଵ,…,ே ൌ  ∑ 𝑥௜௝ୀଵ,…,ே  (6) 

𝑄𝐻ሺ𝑦ሻ ൌ  ∑ ∑ 𝑄௜௝||𝑌௜ െ 𝑌௝||ଶ
௝ୀଵ,…,ே௜ୀଵ,…,ே  (7)  

where 𝑄௜௝ is the sample data that has similarity, 𝑄ሺ𝑦ሻ 
is the similarity preserving term and 𝑄𝐻ሺ𝑦ሻ is the 
absolute value of the similarity term 𝑄ሺ𝑦ሻ.  

    For efficient search accuracy with respect to 
similarity search, similar data points are mapped to 
similar binary hash codes for similarity preserving. 
The Hamming distance to minimised with respect to: 

𝑦𝑖 ∈  ሼ0, 1ሽ௞ ∑ 𝑦𝑖 ൌ 0 ௜    (8) 

ଵ

௡
 ∑ 𝑦𝑖𝑦𝑖் ൌ 𝐼௜     (9) 

Where the constraints (8) require each bit to fire 50% 
of the time, and the constraint (9) requires the bits to 
be uncorrelated. And, y is the set of all 𝑌௜. Then from 
equation (7), samples with high similarity or with 
bigger similarity 𝑄௜௝ will have similar binary hash 
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codes with smaller Hamming distance ||𝑌௜ െ 𝑌௝||ଶ. 
𝑌௜ and 𝑌௝ are the similar hash codes.  

3.3 Balance Partitioning for independence. 

To have uniform distribution of data points in hash 
bucket, we make each hash function independent of 
one another. That is the functionality of one hash 
function does not depend on the other one to 
function. Each hash function is given the opportunity 
of becoming 0 or 1 since binary digits are 
represented by zeros (0’s) and ones (1’s). This mean 
that for hash functions to be independent, each hash 
function should have the chance of being one or zero 
and the different binary hash codes are independent 
of each other as in equation (4) above. 

    Independence of hash functions is demonstrated 
in a scenario as follows: As a typical scenario, the 
probability that an event say 𝐵௜ be a hash function 
that is one (1). 𝐵௜ is the event that ℎ௜ሺ𝑥ሻ ൌ 1. Then 
define two events 𝐵௜and 𝐵௝, next to be independent 
if and only if the probability of 𝐵௜ ൌ 1 and the 
probability of 𝐵௝ ൌ 1is equivalent to the probability 
of 𝐵௜ ൌ 1 multiply by the probability of 𝐵௝ ൌ 1 as in 
equation (10). Here, similar bits are mapped into 
same bucket with high probability of having equal 
chance of becoming one (1) by defining 
independence of each bit. Any of equation (4) and 
(5) is used to balance the partitioning of data points 
for each bit.  

𝑝௥ሾℎ௜ሺ𝑥௜ሻ ൌ 1ሿ ൌ  
ଵ

ଶ
, 𝑥 ∈ 𝑋, 1 ൑ 𝑖 ൑ 𝑡    (4) 

              𝑁௜ ൌ ∑ 𝑁௜
ଶಾ

௜ୀଵ                   (11) 

Where 𝑁௜ is the number of training samples in the 
𝑖𝑡ℎ bucket and 𝑀 is the number of buckets. To 
achieve independence between two bits given that 
𝑥 ∈ 𝑋 and 1 ൑ 𝑖 ൏ 𝑗 ൑ 𝑡 where 𝑖 and 𝑗 are the 
𝑖𝑡ℎ and 𝑗𝑡ℎ data points, and 𝑡 is the threshold, hash 
functions are design to be independent and the data 
points are distributed equally to each hash bucket.  

𝑝௥ൣℎ௜ሺ𝑥ሻ ൌ 1, ℎ௝ሺ𝑥ሻ ൌ  1൧ ൌ  𝑝௥ሾℎ௜ሺ𝑥ሻ ൌ

1ሿ . 𝑝௥ൣℎ௝ሺ𝑥ሻ ൌ 1൧ = 
ଵ

ଶ
 . 

ଵ

ଶ
 =

ଵ

ସ
          (5) 

𝑃𝑟ሾ𝐵𝑖 ∩ 𝐵𝑗ሿ ൌ 𝑃𝑟ሾ𝐵𝑖ሿ . Pr ሾ𝐵𝑗ሿ  (10) 

𝑝௥ሾℎ௜ሺ𝑥௜ሻ ൌ 1ሿ ൌ  
ଵ

ଶ
, 𝑥 ∈ 𝑋, 1 ൑ 𝑖 ൑ 𝑡 

The intersection is the equal chance of the code bit 
being a binary hash code 1.  

    The next is to incorporate the similarity preserving 
term with the balance partitioning components or 
terms together to simultaneously improve the search 
accuracy and search time. We insert the data points 
into each bucket as 

 𝑁𝑖 ൌ
ே

ଶಾ .   (11) 

3.4 Joint Optimisation.  

In this section, we integrate the similarity preserving 
term 𝑄ሺ𝑌ሻ for search accuracy and the minimum 
information criterion for the search time to form a 
single entity. To enable a high search accuracy with 
fast search time, the joint optimisation component of 
the proposed system is formulated and is responsible 
for the simultaneous optimisation of the search 
accuracy and search time. A parametrisation of a 
linear function is performed for easy optimisation, 
and a relaxation is performed.  

    The joint optimisation is responsible for the 
computation of the hash bit that will be used for 
query and the identification of the bucket with the 
same hash bits with the query, and to also oversee 
the loading of data samples from the selected 
buckets into the memory.  Here, the hash function 
independent is made to be independent to distribute 
data points evenly or equally to different binary hash 
codes. To minimise the time complexity, each 
bucket will contain equal number of samples to have 
a balanced buckets. This is done to minimise the 
search time. To have equal number of samples in 

each bucket to balance the buckets,  𝑁 ൌ
ே

ଶಾ  [29], 

equation  (11) Here, the search accuracy is improved 
by minimising the Hamming distance between 
similar data points.  

𝑄ሺ𝑦ሻ ൌ  𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑁 + 
𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑗 𝑡𝑜 𝑁. 
Mathematically, this can be expressed as: 

𝑄ሺ𝑦ሻ ∑ 𝑥௜ୀଵ,…ே ൅ ∑ 𝑥௝ୀଵ,…ே   (12) 

    The similarity preserving term and the balance 
partitioning are incorporated together for 
simultaneous improvement in search accuracy and 
search time, [29]. 
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Algorithm 1: Geo-SPEBH 

1. Start 
2. Input: the training dataset𝑋௜, 𝑖 ൌ

1,2,3, … , 𝑁, similarity matrix 𝑊 and 𝑊 ൌ
𝑊௜௝; the number of required bits 𝐾 to map 
the full dataset as hash codes; BP; N; M; 
TP; FP; FN; Get equation (7); 

3. Initialise: Sum = 0; Sim = 0; SimM = 0; BP 
= 0; V = 2**M; yi = 0; JointO = 0 

4.                 𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑐 
5.                        𝑓𝑜𝑟 𝑗 ൌ 1 𝑡𝑜 𝑐 
6.                        Get y(𝑖ሻ, y(𝑗ሻ, x(𝑖, 𝑗ሻ 
7. Sum = Sum + ሺ𝑦ሺ𝑖ሻ െ 𝑦ሺ𝑗ሻ)**2 
8.                        j = j + 1  
9.                      𝑖𝑓 𝑗 ൑ 𝑐 goto step 6 
10.                        end if 
11.                                𝑖 ൌ 𝑖 ൅ 1 
12.                                𝑖𝑓 𝑖 ൑ 𝑐 goto step 17 
13.                                end if  
14.                         end for 
15.                 end for 
16.  Sim = Sum 
17.                    break; 
18.                         𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑉 
19.                              get 𝑁ሺ𝑖ሻ 
20.                            BP = N(𝑖ሻ ∗∗ 2 
21.                            𝑖 ൌ 𝑖 ൅ 1  
22.                            𝑖𝑓 𝑖 ൑ 𝑉 goto step 40 
23.                            end if 
24.                      end for 
25.  Print Sim, BP 
26.  //Incorporating similarity preserving term 

and balanced partitioning// 
27. JointO = Sim + BP 
28. //computing 𝑢௜// 
29. 𝑇ሺ𝑎, 𝑏ሻ = 0, swap = 0 
30.  Get x 
31.  Get b 
32.                      𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑎 
33.                             𝑓𝑜𝑟 𝑗 ൌ 𝑖 ൅ 1 𝑡𝑜 𝑏 
34.                                 Get 𝑇ሺ𝑖, 𝑗ሻ 
35.                                 j = j + 1  
36.                                𝑖𝑓 𝑗 ൑ 𝑏 goto step 55 
37.                                i = i + 1 
38.                                      𝑖𝑓 𝑖 ൑ 𝑎 goto step  
39.                                      end if  
40.                                  end if 
41.                              end for 
42.                       end for 
43.        𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑎 
44.              𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑏 

45. Swap = 𝑇ሺ𝑖, 𝑗ሻ 
46. 𝑇ሺ𝑖, 𝑗ሻ ൌ 𝑇ሺ𝑗, 𝑖ሻ 
47. 𝑇ሺ𝑗, 𝑖ሻ ൌ 𝑠𝑤𝑎𝑝 
48. ℎሺ𝑖ሻ = 𝑠𝑖𝑔𝑛ሺ𝑇ሺ𝑗, 𝑖ሻ ∗ 𝑥ሺ𝑖ሻ െ 𝑏 
49.             𝑗 ൌ 𝑗 ൅ 1 
50.                   𝑖𝑓 𝑗 ൑ 𝑏 goto step 66 
51.                    end if   
52.            𝑖 ൌ 𝑖 ൅ 1 
53.                   𝑖𝑓 𝑖 ൑ 𝑎 goto step 65 
54.                                  end if 
55.                              end for 
56.                       end for 
57. for i = 1 
58. Print h(i) 
59. 𝑖 ൌ 𝑖 ൅ 1 
60.            𝑖𝑓 𝑖 ൑ 𝑎 goto step 78 
61.             end if 
62.  end for         
63. //computing Binary hash code// 
64. Get k 
65.                       𝑓𝑜𝑟 𝑖 ൌ 1 𝑡𝑜 𝑘 
66.                             𝑓𝑜𝑟 𝑗 ൌ 𝑖 ൅ 1 𝑡𝑜 𝑘 
67.                  𝑦ሺ𝑗ሻ ൌ ሺ1 ൅ ℎሺ𝑗ሻሻ/2 
68. Print 𝑦ሺ𝑗ሻ// for any sample𝑥௜in the 

database, compute its K hash bits 𝑌௜ ൌ
𝐻ሺ𝑌௜ሻ = 𝑠𝑖𝑔𝑛 ሺ𝑇்𝑥௜ െ 𝑏ሻ// 

69.  
70.  
71.                       𝑗 ൌ 𝑗 ൅ 1 
72.                                    𝑖𝑓 𝑗 ൑ 𝑘 goto step 89 
73.                                      end if 
74.                                end for 
75.                        end for 
76.  Print JointO 
77. //computing precision// 
78. //TP is the true positive i.e. document 

relevant to the user// 
79. //FP is the false positive i.e. documents 

retrieved but not needed// 
80. Sum = 0 
81. Get TP, FP, FN 
82. Pr = sum + (TP/(TP + FP)) 
83. Re  = sum + (TP/(TP + FN)) 
84. Print Pr, Re//output Precision, Recall// 
85. //computing mean average precision// 
86.            Sum = 0 
87.               Get R, L//L is the number of the 

retrieved data// 
88.                       for 𝑖 ൌ 1 𝑡𝑜 𝑅 
89.                         Get y(i)                        
90.  MAP = sum + 𝑦ሺ𝑖ሻ( 𝑃ሺ𝑟ሻ ∗ 𝛿ሺ𝑟ሻሻ/𝐿ሻ 
91.                             𝑖 ൌ 𝑖 ൅ 1 



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
384 

 

The Cloud  

Database 
Query 

Database

User  

Features 

Extraction 

Hash Function 

Design 

Similarity 

Preserving 
Balance 

Partitioning 
Joint 

Optimisation 

 

Search/Retrieval 

101010010101 

Query Dataset

92.                              if 𝑖 ൑ 𝑅 goto step 87 
93.                               end if 
94.                          end for 
95. Print MAP//output Mean Average 

Precision// 
96.  Stop  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Architecture Of The Proposed System Model 
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4 EXPERIMENTAL SETUP 

This section provides and avenue for evaluating the 
proposed technique and make a comparison to the 
state-of-the-art-techniques.  

4.1 Performance metrics 

The Geo-SPBH will be compared with state-of-the-
art-techniques to obtain the mean average precision 
based on parameter analysis, the precision-recall 
rate, and the search accuracy and search time trade-
off. We implement our method to measure the 
performance of retrieval result on the mean average 
precision (MAP) and precision/recall using the SIFT 
1B dataset. The MAP measures the average of 
precision scores for the queries. It is the area under 
the precision-recall curve for a set of queries. A large 
value of MAP will indicate a better performance, and 
the precision/recall measures the precision by recall 
per code lengths for each code bits of 8, 16, 32, 48, 
64, 96.  

4.2 Evaluation Techniques. 

The algorithms used in the evaluation of the 
proposed system are the DSH, SHD, AGH, SpH, 
PCAH.  

DSH: Density sensitive hashing is a semi-supervised 
based hashing techniques that combined the 
characteristics of data-independent and data-
dependent hashing techniques. The projections are 
generated based on selective principles. This 
technique avoids the complete random selection and 
generates the projections based on selective 
principles [59]. It is an extension of LSH. 

Spherical Hamming Distance: SHD is a hashing 
based technique that uses spherical Hamming 
distance [28]. 

Principal Component Analysis Hashing: PCAH is 
a classic indexing method for big data that utilises 
the core principal directions as projective vectors to 
obtain binary hash codes [60].  

Spectral Hashing: SpH is a classic approach that 
quantised the values of analytical Eigen functions 
computed along the principal component analysis of 
the data [32]. The PCA is conducted on original data. 

Anchor Graph Hashing: AGH approaches is a 
classic technique design an anchor graph to 
accelerate the speed of the spectral analysis 
procedures [52]. 

Geo-SPEBH: This is the proposed method to be 
compared with the above mentioned algorithms. 

4.3 Programming tools used 

All the experiments were conducted and run on a 
3.40 GHz CPU with four cores and 16 G RAM, in a 
Java software tool built on CloudSim for 
experimentation, simulation and implementation. 
The CloudSim is configured with 1 data centre on 
100 cloudlets with the capacity of accepting input a 
output size of 300 each  and length of 5000.  
4.4 Preliminary Results 

To generate discriminative binary hash codes that 
need only small number bits to code a huge amount 
of data in a database to yield high search accuracy 
and an improved search time with less memory 
consumption.  

4.5 Tools to be used 

The dataset used for the evaluation of our technique 
is the SIFT-1B-128D [61], which contains one 
billion SIFT features. Each of the SIFT features is 
represented by a 128-dim vectors.  

Table 1. Sift 1billion Data Set 

Dataset Dimension No. of base 
vectors 

No. of 
query 
vectors 

No. of learn 
vectors 

SIFT 
1B 

128 1,000,000,000 10,000 100,000,000 

Our ground truth is defined by k-nearest neighbours 
computed be exhaustive, linear scan base on the 
Euclidean distance. For each query, the ground truth 
contain the vector numbers which begins at 0 of its 
k-nearest neighbours, ordered by increasing 
Euclidean distance.   

4.6 Simulation Results 

We use the SIFT 1B dataset to implement our USPH 
algorithm and compared our result with state-of-the-
art-techniques. The existing algorithms are run and 
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results are obtained and recorded. The base 
algorithm (DSH) is run without the new components 
and results are obtained. The new algorithm is run 
with the new components and the results are 
obtained and compared with the base algorithm and 
other existing state-of-the-art techniques. The results 
obtained show that the proposed system outperform 
the existing techniques based on the mean average 
precision results as shown in Table 2. 

Table 2. Simulation Results For The Proposed And 
Existing Methods 

  SIFT 1B Mean Average Precision (%) 

 Code length (bits)  

METH
ODS 

8 16 32 48 64 80 96 

DSH 0.0
600 

0.1
250 

0.3
434 

0.1
300 

0.1
507 

0.1
616 

0.25
01 

SHD 0.0
245 

0.0
439 

0.0
685 

0.0
945 

0.1
000 

0.1
547 

O.1
843 

SpH 0.1
824 

0.1
131 

0.2
588 

0.1
448 

0.1
589 

0.1
696 

0.17
11 

AGH 0.0
521 

0.0
895 

0.1
445 

0.1
546 

0.1
585 

0.1
598 

0.16
53 

PCAH 0.0
555 

0.0
695 

0.1
958 

0.1
250 

0.1
605 

0.1
698 

0.17
42 

Geo-
SPEB
H 

0.0
688 

0.1
299 

0.3
906 

0.1
414 

0.1
677 

0.1
916 

0.26
05 

 

Figure 2. The Mean Average Precision Of Data-
Dependent Hashing Algorithms On SIFT 1B Dataset. 

Table 3. Simulation Results For The Proposed And 
Existing Methods 

  SIFT 1B Precision 

 Code length (bits)  

METHODS 8 16 32 48 64 80 96 

DSH 0.0600 0.1250 0.3434 0.1300 0.1507 0.1616 0.2501 

SHD 0.0245 0.0439 0.0685 0.0945 0.1000 0.1547 O.1843 

SpH 0.1824 0.1131 0.2588 0.1448 0.1589 0.1696 0.1711 

AGH 0.0521 0.0895 0.1445 0.1546 0.1585 0.1598 0.1653 

PCAH 0.0555 0.0695 0.1958 0.1250 0.1605 0.1698 0.1742 

Geo-
SPEBH 

0.0688 0.1299 0.3906 0.1414 0.1677 0.1916 0.2605 

Table 3. Simulation Results For The Proposed And 
Existing Methods 

  SIFT 1B Recall (%) 

 Code length (bits)  

METHODS 8 16 32 48 64 80 96 

DSH 0.4060 0.3838 0.3550 0.3500 0.3454 0.3400 0.3323 

SHD 0.2505 0.3788 0.3854 0.3900 0.4545 0.4860 O.4880 

SpH 0.4545 0.4055 0.4045 0.4011 0.4145 0.4400 0.4520 

AGH 0.3000 0.3113 0.3380 0.3455 0.3600 0.3775 0.3855 

PCAH 0.3900 0.3865 0.3845 0.3825 0.3810 0.3785 0.3735 

Geo-
SPEBH 

0.5383 0.5200 0.5064 0.5179 0.5153 0.5152 0.5150 
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Figure 3. The Precision/Recall Of Algorithms On SIFT 
1B Dataset With Code 32 Bits. 

 

Figure 4. The Precision/Recall Of Algorithms On SIFT 
1B Dataset With Code 48 Bits. 

 

Figure 5. The Precision/Recall Of Algorithms On SIFT 
1B Dataset With Code 64 Bits. 

4.8 Discussion 

The SIFT 1B dataset is a dataset that consist of one 
million SIFT features represented by 128 dimension 
vectors. The number of base vectors is 
1,000,000,000 while the query vectors 10, 000, 
100,000,000 vectors are used for learning. This 
dataset is run with the old algorithm (DSH) with 
varied number of bits, 8, 16, 34, 48, 64, 80, 96 to 
obtain the mean average precision (MAP) for each 
query. We select 1K data points as the queries and 
the remaining are used to form the gallery database. 
The point retrieved is seen as the true neighbour if it 
lies in the top 2 percentile points closest to the query. 
It is measured by the Euclidean distance in the 
original space. The data points in the database for 
every query are ranked according to their Hamming 
distances to the query.  

In Table 2, It can be seen that the data-dependent 
based methods recorded a very low performance 
when the code length is short but achieved high 
performance when the code length is long. The data-
dependent techniques, PCAH, SpH, SHD, and AGH 
semi-supervised technique which is DSH recorded a 
high MAP performance when the code length is 
short but drops when the code length increases. From 
table 3 above, it can be seen that our proposed 
method outperform the compared methods as it 
recorded high MAP when the code length is short 
and still maintain performance when the code length 
increases, and the memory cost is low compared to 
the base-line methods on the SIFT 1B dataset for all 
code lengths. The low memory cost recoded by our 
proposed algorithm indicate that it can handle large 
amount of data (huge database). Table 2 gives the 
MAP results for the SIFT dataset for all the 
compared methods. Given 0.3 MAP obtain from the 
results above, our Geo-SPEBH requires 64 bits to 
encode each image in the sample dataset. On the 
other hand, the compared methods requires more 
than 64 bits up to 80 bits to encode each image in the 
database.  

The higher the value of precision-recall, the better 
the performance in terms of efficiency in retrieval 
accuracy. From figure 3, it can be seen that at the 
code length of 32 bits, the Geo-SPEBH which is the 
proposed system recorded a precision/recall rate of 
0.3906 and 0.5064 respectively as against 0.3434 
and 0.3550 recorded by DSH method which is our 
based research paper. It clearly shows that the 
proposed system has a better precision/recall which 
gives better retrieval accuracy than the compared 
algorithms. Figures 3, 4 and 5, presented the 
simulation results for all the algorithms with respect 
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to codes bits of 32, 48 and 64. It is well suited to 
point out that the utilisation of the geometric 
properties of data in generating hash functions, 
preserving similarity between the data points and the 
balance partitioning of data to have equally 
distributed data points in each hash table by the 
proposed system produce better performance to the 
compared algorithms for all the code lengths.    

The codes lengths represented by code lengths of 
32, 48 and 64 bits represented the memory (storage) 
requirement for each data stored in the database in 
bits.  

5 CONCLUSION 

The performance has showed that the data-
dependent based methods recorded a very low 
performance when the code length is short but 
achieved high performance when the code length is 
long. This methods are PCAH, DSH, SHD, SpH and 
KLSH. From table 2 above, it can be seen that our 
proposed method outperform the compared methods 
as it recorded high MAP when the code length is 
short and still maintain performance when the code 
length increases, and the memory cost is low 
compared to the base-line methods on the SIFT 1B 
dataset for all code lengths. The low memory cost 
recoded by our proposed algorithm indicate that it 
can handle large amount of data (huge database). 
Table 2 gives the Mean Average Precision results for 
the SIFT dataset for all the compared methods. 
Given 0.3 Mean Average Precision obtain from the 
results above, our Geo-SPEBH requires 64 bits to 
encode each image in the sample dataset. On the 
other hand, the compared methods requires more 
than 64 bits up to 80 bits to encode each image in the 
database.  

Further research should be directed towards finding 
a solution to balancing the trade-off between 
precision-recall, and the measure the performance 
based on search time. Furthermore, the data 
collected from different sources in a raw form such 
as student records, health records, mathematical and 
statistical analysis cannot be effectively analysed. 
An advanced technique is required so that data can 
be extracted from different sources to structure them 
in a format that can be used for analysis. 

 

 

 

REFERENCE 

[1] T. S. C. Danan, N. Surya, C. Rafael, and A. 
Leila,."A platform for monitoring and sharing 
of generic health data in the cloud", Future 
generation computer system, 35, 2014, 102-
113. 

[2] Z. Huang, T. S. Heng, and J. Shao, "Bounded 
Coordinate System Indexing for Real-time", 
ACM Transactions on Information Systems, 
10(10), 2010, 1-32. 

[3] M. Gartner, A. Rauber, and H. Berger, "Briging 
structured and unstructured data via hybrid 
semantic search and interactive ontology-
enhanced query formulation", Knowledge 
information system, 2013, 1-32. 

[4] A. H. Doan, J. F. Naughton, A. Baid, X. Chai, F. 
Chen, T.  Chen, E. Chu, P. DelRose, B. Gao, 
C. Gokhale, J. Huang, W. Shen, and B. Q. 
Vuong, "Information extraction challenges in 
managing unstructured data", ACM SIGMOD, 
37(4), December, 2008, 14-20. 

[5] C. Chang, M. Kayed, M. R. Girgis, and K. F. 
Shaalam, "A survey of web information 
extraction system", IEEE Transaction on 
Knowledge and Data Engineering, 18(10), 
2006, 1411-1428. 

[6] J. Cheng, C. Yuegue, E. Lia, I. L. Cuiping, and 
U. L. Jiaheng, "Big Data Challenges: A data 
Management Perspective", Higher education 
press and springer verlag Berlin Heidelberg, 
7(2), 2013, 157-164. 

[7] S. Kadiyala, and N. Shiri, "A compact multi-
resolution indedx for variable length queries in 
time series database", Knowledge information 
system, 15(2), 2008, 131-147. 

[8] C. Jensen, and S. Pakalnis, "TRAX—real-world 
tracking of moving objects", n: VLDB, 2007, 
1362-1365. 

[9] W. White, A. Demers, C. Koch, J. Gehrke, and 
R. Rajagopalan, "Scaling games to epic 
proportion. In SIGMOD, June, 2007, 31-42.. 

[10] E. A. Anderson, "Shakra: tracking and sharing 
daily activity levels with unaugmented mobile 
phones", mobile network application, 12(2-3), 
2007, 185-199. 

[11] B. B. Meshram, and G. P. Gaikwad, "Different 
indexing techniques", International Journal of 
Engineering Research and Application, 3(2), 
April, 2013, 1230-1235. 

[12] M. Muja, and D. G. Lowe, "Fast Approximate 
Nearest Neighbours with Automatic 
Algorithm Configuration", VISAPP, 2009, 
331-340. 

[13] L. Arge, M. Berg., H. Haverkort., & K. Yi, "The 
priority R-tree: a practically efficient and 



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
389 

 

worse case optimal R-tree", in SIGMOD., 
April, 2004, 1-30. 

[14] J. Bentley, "Multidimensional binary search 
trees used for associative searching", 
Communication of the ACM, 18, September, 
1975, 509-517. 

[15] A. Guttman, "R-trees: A dynamic index 
structurefor special searching",  SIGMOD, 
14(2), June, 1984, 47-57. 

[16] J. H. Friedman, J. L. Bentley and R. A. Finkel, 
"An algorithm for finding best matches in 
logarithmic expected time", ACM. TOMS, 
3(3), 1977, 209-226. 

[17] C. Silpa-Anan, and R. Hartley, "Optimised KD-
trees for fast image descriptor matching", In 
Proceedings of IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), 2008, 
1-8. 

[18] A. Beygelzimer, S. Kakade, and J. Langford, 
"Cover Trees for Nearest Neighbour", In 
Proceedings of 23rd International Conference 
on Machine Learning, 2006, 97-104. 

[19] Y. Gao, B. Zheng, G. Chen, Q. Li, X. Guao, 
"Continuous visible nearest neighbour query 
processing in spatial databases", Very Large 
Data Base, 20(3), 2011, 371-396. 

[20] A. Andoni & P. Indyk., "Near-optimal hashing 
algorithms for approximate nearest neighbour 
in high dimensions", Communication of ACM, 
51(1), 2008, 117-122. 

[21] J. Brandt, "Transform coding for fast 
approximate nearest neighbour search in high 
dimensions", In IEEE conference on computer 
vision and pattern recognition, 2010, 1805-
1822. 

[22] C. Strecha, A. M. Bronstein, M. M. Bronatein, 
and P. Fua, "Ldahash: Improved matching with 
smaller descriptors", TPAMI, 34(1), January, 
2012, 66-76. 

[23] W. Liu, J. Wang, R. J. Y-G. Jang, and S-F 
Chang., "Supervised hashing with kernels. In 
computer vision and pattern recognition. 2012, 
2074-3081 

[24] A. Jolly & O. Buisson. (2011). Random 
maximum margin hashing. in proc. of Comp. 
Vis. Pat. Recog, 2011, 873-880. 

[25] P. Indyk and R. Motwani, "Approximate nearest 
neighbours towards removing the cures of 
dimensionality", In STOCK, 1998, 604-613. 

[26] M. S. Charkar, "Similarity estimation 
techniques from rounding algorithms", In 
Proceedings of Annual ACM Symposium on 
Theory of Computation, 2002, 380-388. 

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. 
Mirrokni, "Locality sensitive hashing 

schemebased on p-stable distribution", In 
Proceedings of 2oth Annual Symposium on 
Computational Geometry, 2004, 253-262. 

[28] H. Jae-Pil, L. Youngwoon, H. Junfeng, C. Shih-
Fu, Y. Sung_Eui, "Spherical Hashing: Binary 
Code Embedding with Hyperspheres", IEEE 
transaction on Pattern Analysis and Machine 
Intelligent, 2015, 1-14. 

[29] J. He, R. Rhadhakrishnan, S-F Chang and C. 
Bauer, "Compact hashing with joint 
optimisation of search accuracy and time", 
CVPR. 2011, 753-760. 

[30] Y. Gong and S. Lazebnik, "Itetrative 
Quantisation: a procrustean approach to 
learning binary codes for large-scale image 
retrieval", IEEE transaction on pattern 
analysis and machine inteliigence, 35(12), 
December, 2013, 2916-2929. 

[31] A. Torralba, R. fergus, and Y. Weiss, (2008). 
Small codes and large image databases for 
recognition.CVPR,  
doi:10.1109/cvpr.2008.4587841 

[32] Y. Weiss, A. Torralba, and R. fergus, "Spectral 
Hashing", in proceedings of Neural 
Information Processing System, 2008, 1-8. 

[33] O. Chum, J. Philbin, and A. Zisseman, "Near 
duplicate image detectionmin-hash and tf-idf 
weighting", BMVC, doi:10.5244/C.22.50 

[34] P Jain, B. kulia, K. Grauman, (2008). Fast 
image search for learned metrics. CVPR. 
doi:10.1109/cvpr.2008.4587841. 

[35] M. Rangisky and S. Lazebnik, "Locality 
sensitive binary codes from shift-invariant 
kernels", in proceedings od NIPS, 2009, 1509-
1517. 

[36] R. Salakhutdinov and G. Hinton, "Semantic 
Hashing", International Journal of 
Approximate reasoning, July, 2009, 969-978. 

[37] B. Souley and A. U. Othman, "Geometric 
Similarity Preserving Embedding based 
Hashing for big data in Clou Computing", 
International Journal of Research and 
Scientific Innovation, 2019, 10. 

[38] J. Wang, S. Kumar and S-F Chang, "Sequential 
projection learning for hashing with compact 
codes",  in proc. 27th Int. Conf. Mach. Learn 
(ICML), 2010, 1127-1134.  

[39] L. Pauleve, H. Jegou and L. Amsaleg, "Locality 
sensitive Hashing: A comparison of hash 
function types and queryong mechanism", 
Pattern recognition Letters, 31(11), August, 
2010, 1348-1358. 

[40] J. Wang, S. Kumar, and S-F Chang, "Semi-
supervised hashing for scalable image 
retrieval", CVPR, 2010, 3424-3431. 



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
390 

 

[41] R-S Lin, D. Rose and J. Yangik, "Spec Hashing: 
Similarity preserving algorithm for entropy-
base coding", VPR, June, 2010, 848-854. 

[42] R. Ye, and Z. Li, "Compact structure hashing 
via sparse and similarity preserving 
embedding", IEEE transaction on cybernatics, 
46(3), 2016, 718-729. 

[43] H. Zhang, L. Liu, Y. Yong, and L. Shao, 
"Unsupervised deep hashing with pseudo 
labels for scalable image retrieeval", IEEE 
transaction on image processing, April, 2018, 
1626-1638. 

[44] Y. Lv, W. Y. Ng Wing, Z. Zeng, S. D. 
Yeung,and P. K. Patrick, "Asymmetric 
Cyslical Hashing for Large Scale Image 
Retrieval", IEEE transaction on multimedia, 
17(8), 2015, 1225-1235. 

[45] M. Norouzi and D. J. Fleet. (2011). Minimal 
Hashing for Compact binary codes. ICML. 

[46] B. Kulis, K. Grauman, "Kernelised Locality-
sensitive hashing for scalable image search", In 
Proceedings of IEEE conference on computer 
vision and pattern recognition, 2009, 2130-
2137. 

[48] A. Gordo, F. Perronmini, Y. Gong, and S. 
Lazebnik, "Asymmetric distances for binary 
embedding", IEEE Transaction on Pattern 
Analysis and Machine Intelligence, 36-(1), 
January, 2014, 33-47. 

[49] B. Kulis and T. Daniel, "Learning to hash with 
binary reconstructive embeddings", In 
Proceedings of NIPS, 2009, 1042-1050. 

[50] C. Yan, H. Xie, D. Yang, J. Yin, and Y. Zhang, 
"Supervised hash coding with deep neural 
network for environment perception of 
intelligent vehicles", IEEE transaction on 
intelligent transportation systems, 19(1), 2018, 
284-295. 

[51] W. X-M. G. Irie, Z. Li, S-F. Chang, "Locality 
Linear Hashing for Extracting Non-linear 
Manifold", in CVPR, 2014, 2115-2122. 

[52] W. Liu, J. Wang, S. Kumar and S. Chang, 
(2011). Hashing with graphs. ICML. 

53] J. Shao, F. Wu. C. Ouyang and X. Zhang, 
"Sparse spectral hashing", Pattern Recognition 
Letters, 33(3), 2012, 271-277. 

[54] D. Zhang, J. Wang, D. Cai, and J. Lu, "Self-
taught hashing for fast similarity search", in 
Proceedings of the 33rd international ACM 
SIGIR conference on Research and 
development in information retrieval, July, 
2010, 18-25. 

 

 [55] K. He, F. Wen, and I. Sun, "K-means Hashing: 
An affinity-preserving quantisation method for 
learning binary compact codes", in IEEE 
conference on computer vision and pattern 
recognition, June, 2013, 2938-2945. 

 [56] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. 
Zhang, "Bit Scalable Deep Hashing with 
Regularised Similarity Learning for Image 
retrieval and Person Re-identification", IEEE 
transaction on image processing, August, 
2015, 1-14. 

[57] W. Dong, M. Charikar, and K. Li, "Asymetric 
distance estimation with sketchess for 
similarity search in high-dimensional spaces. 
in proceedings of 31st annual international 
ACM SIGIR conf. Res. Develop. inf. retrieval, 
2008, 123-130. 

[58] A. Gordo and F.perronmin. "Asymmetric 
distances for binary embeddings", In 
Proceedings of IEEE Conference on Computer 
Vision and Pattern Recognition, June, 2011, 
729-736. 

[59] Z. Jin, C. Li. Y. Lin, & D. Cai, "Density 
Sensitive Hashing",  IEEE transactions on 
Cybernetics, 44(8), August, 2014, 1362-1371. 

 [60] X-J, Wang, I. Zhang, F. Jing, and W-Y. Ma, 
(2006). Annosearch: Image auto-annotation by 
search. In EEE computer society conference on 
computer vision and pattern recognition. 
doi:10:1109/CVPR 2006.58  

[61] H. Jagou, R. Tavenard, M. Douze and L. 
Amsaleg, "Set SIFT 1B", IEEE Trans. Int. 
Conf. Acoustic, Speech and Signal Processing. 
May, 2011, 861-864. 

 

 

 

 

 

 

 

 

.

 


