
Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3932

RESEARCH OF APPROACHES AND METHODS FOR
ORGANIZATION OF COMPUTATIONAL PROCESSES IN

THE CLOUD ENVIRONMENT

1RAISSA USKENBAYEVA, 2ZHULDYZ KALPEYEVA, 3AIZHAN KASSYMOVA

1Professor, International Information Technology University, Almaty, Kazakhstan
2Assistant-professor, International Information Technology University, Almaty, Kazakhstan
3Assistant-professor, International Information Technology University, Almaty, Kazakhstan

E-mail: 1ruskenbayeva@iitu.kz

*Corresponding Author E-mail: 2zh.kalpeyeva@iitu.kz
E-mail: 3u.aizhan@gmail.com

ABSTRACT

Today, in the context of a constant increase in the number of solved scientific and applied problems and a
significant increase in the load on computing systems, cluster systems, grid systems and cloud systems are
widely used. Providers of network, information and computing services, relying on large consolidated data
centers, began to pay special attention to improving methods of organizing the computing process, which
includes planning and allocating suitable resources to meet the resource needs of users, as well as the
discipline of servicing tasks with computing resources.
An overview of modern approaches and methods of organizing the computational process in distributed
systems is given. Based on the results of the analysis of the current situation in the studied area, the
formulation of the research problem. The essence and mathematical models of the organization of the
computational process are proposed.
Keywords: Cloud Computing, Grid, Distributed Computing Systems (DCS), Iaas (Infrastructure As A

Service), Task Scheduling

1. INTRODUCTION

 One of the main trends in the development

of information technology at the present time is
the massive introduction of cloud computing
technologies. Thanks to the development of
hardware computing and network technologies, it
has become possible to combine heterogeneous
distributed computing resources, data storages,
and corresponding software into a single
computing environment, access to which is
provided via the Internet.

The main advantage of cloud computing is
the ability to dynamically manage resources
depending on their demand.

However, with its practical
implementation, a number of still unsolved
scientific problems arise that impede the full use
of all the potential advantages of this approach.

The creation of a cloud infrastructure
inevitably faces the need to work in a
heterogeneous environment, to organize the
access of users with their individual applications

to computing resources without reducing the
overall performance of the system.

To enable the practical use of a
heterogeneous cloud environment, it is necessary
to organize a universal system for scheduling and
allocating resources for user requests.

The issues of planning and managing
computing resources are among the most difficult
to organize distributed dynamically scalable
systems such as Cloud Computing. It is necessary
to take into account the heterogeneity, dynamic
composition and scale of the distributed
environment. The solution to this problem
requires new research and development of
planning tools and efficient allocation of
resources to fulfill the tasks of users, but already
based on the characteristics of current
technologies for the creation and operation of
modern distributed computing systems.

Modern distributed computing systems are
heterogeneous, multiarchitectural, dynamically
scalable information processing systems, which
complicates the organization of their functioning,
scheduling and distribution of tasks between

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3933

computing resources. The issues of planning and
managing computing resources are among the
most complex distributed dynamically scalable
systems such as Cloud Computing in the
organization. It is necessary to take into account
the heterogeneity, dynamic composition and scale
of the distributed environment. The solution to
this problem requires new research and
development of planning tools and effective
allocation of resources to fulfill the tasks of users,
but already based on the characteristics of current
technologies for the creation and operation of
modern distributed systems.

Taking into account that the listed
problems have not yet been finally resolved, we
can assume that the topic of this paper is relevant
and practically significant.

In this paper, models and methods of
organizing computational processes in a
distributed cloud environment will be considered.
The proposed models take into account the
peculiarities of the operation of the components
of the "cloud" system and their main
characteristics.

2. ANALYSIS OF METHODS AND

ALGORITHMS FOR ORGANIZING
COMPUTATIONAL PROCESSES IN
DISTRIBUTED COMPUTING SYSTEMS

In a distributed environment such as cloud

computing, the efficient organization of
computing processes is an important task. The
process of organizing computing processes in a
distributed cloud environment consists of a
number of tasks, the main of which are:

In a priori (before the start of computing
processes):

- determination of the location of
information resources, data and application
packages required for the execution of user
applications and tasks;

- determination of discipline and method
of interaction of tasks with environmental
resources;

In a posteriori (during or during a task
execution session):

- determination of the discipline of
selection of tasks from the input stream of tasks
for servicing by the system;

- determination of the order of distribution
(appointment) of tasks by performers;

- ensuring the uniformity of the load on
load balancing resources;

- determination of the moment of
completion of the computational process of the
current session.

In some cases, the tasks or the process of
assigning tasks to performers and the process of
scheduling the execution of tasks by individual
performers are combined and called the process
of scheduling computational processes.

There are many works in the literature on
dynamic resource allocation in cloud computing,
addressing the issue from a variety of angles.
Therefore, we can not provide a comprehensive
treatment of related work, but focus mainly on
aspects of determining the discipline of selecting
tasks from the input stream of tasks for servicing
by the system, determining the order of
distribution (assignment) of tasks by executors,
taking into account the uniformity of the load on
computing resources.

Let us consider further the existing
methods of organizing computational processes
in distributed systems.

There are a number of fairly simple
scheduling algorithms that allow you to select a
job to assign to a freed processor from the list of
ready jobs, which include list algorithms [1].

List scheduling algorithms order the tasks
entering the queue by some of their parameters,
for example, by the number of processors
required for execution or the time of its
execution. And then they look through it, starting
from the head, and assign tasks to free computing
resources [2].

The most famous list scheduling
algorithms are FCFS (First Come First Served),
SJF (Shortest Job First) (Shortest Job First), LJF
(Longest Job First) (Longest Job First), RJF
(Random Job First) (the random problem is
served first), etc.

The simplest to implement is the FCFS
(First Come First Served) discipline, according to
which tasks are serviced "in the first place", that
is, in the order of their appearance. Those tasks
that were blocked in the course of work (got into
any of the waiting states, for example, due to I /
O operations), after entering the ready state, are
put into this ready queue before those tasks that
have not yet been executed. In other words, two
queues are formed: one queue is formed from
new tasks, and the second queue is formed from
previously executed, but in the waiting state. This
approach makes it possible to implement the
servicing strategy “finish computations in the
order of their appearance, if possible”. This
service discipline does not require external

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3934

intervention in the course of computations, and it
does not redistribute processor time [3]. The
advantages of this discipline, first of all, can be
attributed to the simplicity of implementation and
low consumption of system resources for the
formation of the task queue, and there is no need
for information about the duration of the tasks.
An example of the implementation of this method
can be found in [4]. In practice, FCFS is often
complemented by modifications to other
algorithms.

However, along with ease of use, the
FCFS discipline leads to the fact that with an
increase in the load of the computing system, the
average waiting time for service also grows, and
short jobs (requiring little computer time) have to
wait as much as labor-intensive jobs. The SJN
and SRT disciplines allow avoiding this
disadvantage.

Service discipline SJF (Shortest Job First)
which means: the shortest job will be executed
next, requires that for each job the estimate in
machine time needs is known. The need to
communicate to the scheduler the characteristics
of tasks that would describe the needs for
computing resources led to the development of
appropriate language tools. In particular, JCL
(Job Control Language) [5] was one of the best
known. Users were forced to indicate the
estimated execution time, and so that they did not
abuse the opportunity to indicate a deliberately
lower execution time (in order to get results
earlier than others), they introduced a calculation
of real needs. The task manager compared the
ordered time and the execution time, and if the
specified estimate in this resource was exceeded,
it put this task not at the beginning, but at the end
of the queue. In some operating systems, in such
cases, a system of penalties was used, in which,
if the ordered computer time was exceeded, the
payment for computing resources was carried out
at different rates.

The SJF service discipline assumes that
there is only one queue of jobs ready to run. And
the tasks that were temporarily blocked during
their execution (for example, were waiting for the
completion of I / O operations), again fall into the
end of the queue ready for execution along with
the new ones. This leads to the fact that jobs that
take very little time to complete, have to wait for
the processor along with long jobs, which is not
always good.

To eliminate this shortcoming, the SRT
discipline (Shortest Remaining Time, the next

task takes the least time to complete) was
proposed.

All these service disciplines can be used
for batch processing modes, when the user is not
forced to wait for the system's response, but
simply surrenders his task and receives his
calculation results in a few hours. For interactive
computations, it is desirable, first of all, to
provide an acceptable system response time and
equality in service [3].

Quite popular is the algorithm where the
processors form a virtual ring with a marker and
the next ready-to-run job is assigned to the
processor that has the marker, and then the
marker is transferred to the next processor
(Round Robin, RR, circular, carousel). The
carousel scheduling discipline is best suited when
all tasks have the same rights to use CPU
resources. However, as we know, equality in life
is much less than inequality. Some tasks always
need to be solved first, while others can wait. This
can be done due to the fact that we (or the task
manager) assign one priority to one task, and
another task to another. Tasks in the queue will
be ranked according to their priorities.

At present, algorithms such as process and
work migration, joint scheduling (Gang-
scheduling) and the Backfilling algorithm, or
filling [6], are actively used to plan computations
in scalable systems.

The Backfilling algorithm requires
information about the duration of the tasks. The
goal of the algorithm is to fill the resulting
windows as densely as possible. For this, among
the available windows, the widest window is
selected, that is, with the maximum number of
processors, and the next jobs that fall into the
queue will be assigned to the processors of this
window. If the new job does not fit in any of the
available windows, then it is placed at the end of
the queue. Thus, the works are propagated in the
opposite direction relative to the timeline. The
backfilling algorithm is quite often used in queue
systems that provide "fair" access for user tasks
to the resources of multiprocessor systems.

Advantages of the backfill algorithm [7]:
- allows you to create schedules for

heterogeneous DCS;
- avoids hanging low-priority jobs in

queues, guaranteeing their launch;
- can be quite time-dense schedules;
- has acceptable performance

characteristics.

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3935

Systems that implement the backfilling
algorithm include, for example, the Maui
scheduler [8].

The Gang-scheduling algorithm allocates
the resources of the multiprocessor system among
the work groups. The works are grouped into
priority groups. Jobs in one group share multiple
processors in the same way as in the case of the
Backfill algorithm, but work interruption is
allowed if a group of jobs with a high priority
arrives at the multiprocessor system [9]. Gang-
scheduling is included in the IBM LoadLeveler
queue management system [10].

The scheduling problem belongs to the
class of NP-complete problems with exponential
growth of the complexity of the solution with
respect to the dimension [11]. Existing exact
methods for solving in the worst case, during the
search, enumerate all possible options for
distributing work by performer, which requires
large computational costs for high-dimensional
problems. Therefore, finding the optimal solution
to the distribution problem in a reasonable time
becomes difficult to achieve [11].

The solution of this class of problems
requires large computational and, accordingly,
time resources to find the optimal solution to the
problem, as a result of which the gain from using
the found solution does not cover the huge costs
of obtaining it. In practice, to solve NP-hard
problems, heuristic methods are often used that
do not guarantee finding the optimal solution, but
allow one to quickly obtain solutions of
acceptable quality.

Heuristic optimization methods are based
on the use of various reasonable, in most cases
based on life, natural analogies, considerations,
habits, and rules aimed at achieving a
compromise between striving for the best result
of actions and reducing the time-consuming
direct enumeration of options for these actions.
Despite the insufficient theoretical validity, these
methods make it possible to obtain acceptable
solutions with a relatively small investment of
time and other resources [11].

The advantages of heuristic methods can
also be attributed to the convenience of their
implementation on a computer, even when
solving high-dimensional problems.

The disadvantages of these methods lie in
the complexity of assessing their actual
effectiveness, i.e. the proximity of the obtained
solutions to the optimal ones. In addition, for each
heuristic approach, there are problems for which
the application of this approach is either

impossible or leads to frankly bad results. This
requires a thorough experimental study of
heuristic methods with the aim of identifying
classes of problems in the solution of which these
methods are most effective [11].

The most effective and popular heuristic
methods include the so-called metaheuristics -
generalized strategies for finding the optimum in
the solution space. Examples include:

- algorithms for simulating annealing
(Simulated Anneal, SA) [12],

- genetic and evolutionary algorithms
(Genetic Algorithms, GA),

- ant algorithms (Ant colony optimization,
ACO) [13].

Algorithm for simulating annealing.
Annealing method (synonyms: firing method,
simulated annealing method, model hardening
method, simulated annealing) is an optimization
technique that uses an ordered random search
based on analogy with the formation of a
crystalline structure in a substance with a
minimum energy upon cooling [14].

In practice, the simulated annealing
method shows good results, but setting it up for a
specific task can be time-consuming. The
effectiveness of the method significantly depends
on the chosen scheme, in particular, on the initial
temperature and the cooling function.

The greedy algorithm consists of making
locally optimal decisions at each stage, assuming
that the final solution is also optimal. The
procedure starts from the vertex with the smallest
degree. All neighboring vertices are marked, and
then the vertices adjacent to the neighbors. The
first n / p labeled vertices are assigned to one
subdomain, and the procedure is applied to the
rest of the graph until all vertices are labeled.

Genetic algorithm. A genetic algorithm is
a technique for solving certain problems by
imitating the processes observed during the
evolution of natural nature. For the first time, the
paradigm of the genetic algorithm was proposed
in [15], but it took another ten years for it to be
noticed in wide scientific and research circles. In
its purest form, a genetic algorithm is a general
technique for solving problems, for the
implementation of which a relatively small
amount of information about the subject area is
required. As a consequence, this approach can be
used for a fairly large number of poorly structured
problems, where specialized methods do not
show successful results.

Genetic algorithms are based on the use of
mechanisms of natural evolution. Evolution,

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3936

according to Darwin, is carried out as a result of
the interaction of three main factors: variability,
heredity, natural selection. Variability serves as
the basis for the formation of new signs and
features in the structure and functions of the
body.

Heredity reinforces these characteristics.
Natural selection eliminates organisms that are
poorly adapted to the conditions of existence.

 Genetic and evolutionary computing
gained widespread acceptance after the
publication of Holland's book [15]. The concept
of constructing genetic algorithms proposed in
this work turned out to be extremely effective for
solving many problems that cannot be solved by
traditional methods.

In its work, a genetic algorithm tries to
develop a population of bitstrings or
“chromosomes”, where each chromosome
encodes a solution to a problem in a certain
specific formulation. This evolution is realized
through the use of several operators imitating the
phenomena of living nature (reproduction,
modification, etc.).

As noted in [16], the decisive factor for
assessing the practical suitability and
effectiveness of evolutionary genetic algorithms
are speed (the time required to perform a user-
specified number of iterations) and search
stability (the ability to constantly increase quality
from generation to generation). An attempt made
in [98] to comparatively analyze competing
heuristic algorithms from the point of view of
their efficiency revealed the following advantages
and disadvantages of evolutionary computations
[17].

The Benefits of Evolutionary Computing:
- wide range of applications;
- the possibility of problem-oriented

coding of solutions, selection of the initial
population;

- suitability for searching solutions of
large-scale problems in a complex space;

- no restrictions on the type of objective
function;

- the ability to easily parallelize
computations (for example, you can split a
generation into several groups and work with each
of them independently, exchanging several
chromosomes from time to time);

- clarity of the scheme and basic principles
of evolutionary computing;

- the ability to combine evolutionary
computations with non-evolutionary algorithms.

Disadvantages of Evolutionary
Computing:

- the heuristic nature does not guarantee
the optimality of the solution obtained (however,
it is often important to obtain one or several
suboptimal alternative solutions in a given time,
especially since the initial data in the problem
may dynamically change, be inaccurate or
incomplete);

- evolution can "wedge" on an
unproductive branch (as in real life). The converse
is also true: two unpromising parents, who will be
excluded from evolution when the GA works, are
capable of producing a highly efficient offspring.
This becomes especially noticeable when solving
high-dimensional problems with complex internal
connections;

- relatively high computational
complexity, which is overcome due to
parallelization at the level of organization of
evolutionary computations and their direct
implementation in a computing system;

- relatively low efficiency at the final
phases of evolution modeling (search operators in
evolutionary algorithms are not focused on
quickly reaching the local optimum);

- unresolved issues of self-adaptation.
In [18], the possibility of using genetic

algorithms for computational scheduling
problems was considered, and problems arising
when using genetic algorithms to solve such
problems were described.

There are also a large number of examples
of using GA to solve the scheduling problem [19-
21]. In [21], a controlled genetic algorithm (CAA)
is proposed, which makes it possible to adjust the
parameters of the algorithm at all stages of solving
the problem.

The use of genetic algorithms for finding
the optimal schedule of tasks in GRID is
considered in [22]. In [.23], the use of GA for
solving the problem of scheduling training
sessions is considered.

The range of problems solved using
genetic algorithms is expanding every year. As a
consequence, the scope of GA is gradually
shifting from theoretical problems, such as the
Traveling Salesman Problem, to real-world
applications. This shift is an important
confirmation of the effectiveness of GA work in
solving complex practical problems.

Over the past decade, a large number of
genetic operators and functions have been
developed, the combination of which gives rise to
many genetic methods [24]. Practice has shown

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3937

that for the successful application of the genetic
approach, it is necessary to modify the basic
genetic algorithm and adjust its parameters to
solve specific problems.

Ant algorithm. Ant algorithms are based
on imitating the self-organization of social insects
through the use of dynamic mechanisms by
which the system achieves a global goal as a
result of local low-level interaction of elements.
An ant colony can be viewed as a multi-agent
system in which each agent (ant) functions
autonomously according to simple rules. The
basis of the "social" behavior of ants is self-
organization. A fundamental feature of such
interaction is the use of only local information by
the system elements, and any centralized control
is excluded. Self-organization is the result of the
interaction of the following four components
[13]:

- randomness;
- multiple;
- positive feedback;
- negative feedback.
The interaction is determined through a

special chemical substance, pheromone,
deposited by ants along the path traveled. The
higher the concentration of pheromone on the
trail, the more ants will move along it. Over time,
the pheromone evaporates, which allows ants to
adapt their behavior to changes in the external
environment [13,25].

In [25], the solution of the classical NP-
hard traveling salesman problem based on ant
algorithms is considered. Computer experiments
show that ant algorithms find good traveling
salesman routes much faster than exact
combinatorial optimization methods. The
efficiency of ant algorithms increases with an
increase in the dimension of the optimization
problem.

The ant algorithm can be used to solve
various combinatorial problems: Quadratic
Assignment Problem, Vehicle Routing Problem,
Job-Shop Schedule Planing, Graph Coloring
Problem and others. Ant algorithms find
solutions to discrete optimization problems no
worse than other general metaheuristic
technologies and some problem-oriented
methods [13].

Most of the methods considered assumed
that the resources are homogeneous. In particular,
in most cases it is assumed that they all have the
same performance and the same cost. In this case,
the task of selecting resources is greatly
simplified, since resources are interchangeable.

At the same time, in a real environment, resources
are heterogeneous and differ from each other in
architecture, performance, memory, price,
bandwidth, etc. Selecting the right resource for a
custom job becomes a multi-parameter task, with
the individual parameters being interdependent.
Accordingly, the task of organizing the
computing process becomes more complicated,
taking into account both the interests of users and
consumers.

When using these approaches, resources
are used inefficiently in cases where the
computing nodes of the cloud data center differ in
capacity (resource heterogeneity), user tasks are
heterogeneous and have very different resource
requirements;

And also the existing "system-centric"
(system-centric) approaches to planning [26-27]
do not take into account the requirements of
consumers for the quality of service. Scheduling
methods like these place jobs according to system
parameters, such as resource utilization or system
throughput. Schedulers focus on either
minimizing response time, the sum of the wait
time and the actual job execution time, or
maximizing the overall resource utilization. In
this situation, the goal of planning is to improve
the situation of the system as a whole, but not the
requirements imposed by individual consumers
[27].

Traditional approaches to resource
management focus on system-wide criteria such
as infrastructure utilization or bandwidth. At the
same time, the needs of cloud infrastructures
require the development of such models that
would more reflect the interests of users. In other
words, it is required to create such job
distribution algorithms that would provide
maximum utility for an individual consumer.
However, due to the fundamentally selfish
behavior of the participants, it is impossible to
force them to objectively take into account
system-wide criteria otherwise than by
organizing incentive, stimulating mechanisms. A
promising approach in this direction includes the
use of economic mechanisms to organize
resource management. Market value
considerations are an important part of modern
computing resource allocation research [27].

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3938

3. THE COMPLEXITY OF THE
ORGANIZATION OF THE COMPUTING
PROCESS IN CLOUD SYSTEMS

It should be noted that the use of known

algorithms for organizing the computational
process in traditional distributed environments is
not possible in cloud systems due to a number of
factors [28]:

- a random change in the number of users,
which results in unpredictable dynamics of
demand / supply / availability of resources. This
feature requires dynamic resource scalability;

- a change in the number of users and the
structure of demand makes it necessary to make
adjustments to the calculation plans;

- multifactoriality, i.e. the presence of
many different criteria, policies, preferences and
restrictions on computing work leads to the need
for balancing between them;

- a variety of requirements and preferences
of users of a computing system requires an
individual approach to service consumers;

- due to the inaccuracy of knowledge about
the characteristics of physical nodes, virtual
machines, tasks, the load is unbalanced during the
execution of tasks. The resource system must be
balanced, that is, resources must correspond to the
general planning strategy in terms of quantity,
quality of service, and productivity.

All these factors determine the specifics of
the formulation of the problem of organizing
computational processes in distributed cloud
environments (DCE) with a dynamic structure.

4. STATEMENT OF THE RESEARCH

PROBLEM

The scheduling system in the cloud

infrastructure must be ready to accept the flow of
user requests for the allocation of computing
resources in the form of virtual machines to
process their tasks, generate schedules and set
tasks for execution in accordance with them.

The computing environment consists of a
dispatcher (scheduler) D and computational nodes
P1,i, P2,i, …, Pm,.i The task flow Zd, sent by users
is placed in the queue Q of dispatcher D.

Tasks submitted by users through the
cloud interface are placed in a global queue
maintained by a central cloud scheduler. This
scheduler, implementing the scheduling
algorithm embedded in it, makes a decision on
assigning tasks to computational clusters,

computational nodes, to their virtual machine
instances [28].

Each physical compute node does not use
an on-premises task scheduler, and its compute
resources are completely dedicated to the cloud
dispatcher. Thus, the planning system is based on
a hierarchical principle.

Each compute node is characterized by the
number of processors and cores, the size of
memory, the size of free storage, and the cost of
computation.

The task is described by the parameters of
the waiting time and execution time, arrival time
and resource requirements. The task also has a
priority.

A feature of cloud tasks is the ability to
migrate tasks between nodes and a data
processing center (DPC). Data transfer between
nodes in the clouds is based on the principle of a
separate network data storage and dedicated
information exchange services [28].

5. GENERAL METHOD FOR SOLVING

THE RESEARCH PROBLEM

It follows from the review that the

principle of organizing calculations in the DCS of
the Cloud computing type is built on economic
principles. The goal of organizing the
computational process will be to minimize the
total cost of performing user tasks, while the
requirement for maximum load of physical nodes
should be taken into account, or in the literature
there is a definition of maximum utilization of
resources. Filling servers with virtual machines as
densely as possible leads to a reduction in energy
and maintenance costs by shutting down idle
servers, or allows you to serve more customers
with the same server park.

We will assume that there are two types of
resource requests from users: static and dynamic.
A static request assumes the provision of services
according to the "subscription price" method, in
other words, when the user predetermines his
resource requests. A pool of input requests is
formed, as in the case of batch processing of
requests, and the supplier has time to preliminary
plan its resources, taking into account all time
constraints, cost constraints, etc.

A little more complicated is the situation
with a dynamic request for the allocation of the
required amount of resources, when the system
needs to be triggered "on the fly" to allocate or
suspend the work of certain resources. At the
same time, take into account the current state of

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3939

the system and make adjustments to the current
schedule of the computing environment, in this
case it is important to take into account such
features as "live migration" of virtual machines
from one physical host to another, dynamic load
balancing of computing resources.

In this paper, a two-fold resource
allocation is proposed: first, a schedule is
constructed for static queries using well-proven
metaheuristic algorithms, in particular a genetic
algorithm. A certain set of resources is selected
that corresponds to the characteristics of user
tasks, among this set of resources, tasks are
distributed according to the corresponding
criteria, in this case, the criterion will mean the
"importance" of the task. When specifying a
resource request or a job passport, the user
indicates the sign of "importance" or "urgency" of
the job, based on this parameter, the total cost of
the job or resource lease will be calculated. And
also on the basis of this criterion, the selection of
certain physical nodes will be made, since they are
heterogeneous, i.e. heterogeneous and differ in the
degree of performance, speed, amount of RAM,
etc.

Processing a dynamic request involves the
second stage of resource allocation, we called this
stage "improving the existing schedule". It is
necessary to take into account the fact that the
distribution of user tasks is done, the computing
environment is working, virtual machines are
distributed among physical nodes. It is necessary
to monitor the resources involved, identify the
percentage of system utilization and, if possible,
use all the resources of the physical nodes to the
maximum.

For dynamic requests, we propose to
maintain an additional queue of input requests,
select several from this pool of requests and place
them in an intermediate buffer. Having
information about the current state of the
computational nodes, we select the most
appropriate task for the resource from the buffer
and place it on it. In this case, list algorithms such
as FCFS, SJF, LJF, Backfill, etc. can be used to
retrieve a task from the buffer. Or, the genetic
algorithm can be used again.

For the pricing policies of the provided
cloud services, it is proposed to introduce a bonus
pricing system when the consumer is credited
with additional bonuses or conventional units to
pay for consumed resources.

The method described in the work is
intended to increase the rationality of using the
hardware resources of the DCS (resource

utilization) and to reduce the total cost of
performing the flow of tasks, provided that the
processing nodes are heterogeneous.

6. FORMALIZATION OF THE STUDIED

SUBJECT AREA

The development of methods and models
for organizing computing processes in cloud
environments based on market mechanisms
requires the elaboration of issues such as
delineating the roles of system users, assigning a
bonus calculation system for consumed
computing resources according to user roles,
billing services per unit of time of use, and the
procedure for collecting payments for services
(prepayment or subscription price for services),
regulation of disputable situations in case of
failure of one of the parties to fulfill its
obligations, accounting for technical failures in
the system in case of failure of a certain subset of
computing resources or in case of refusal to
suspend the services provided by the user. In
practice, these aspects are pre-written in the
service layer agreement (SLA).

6.1. Features of modern distributed cloud

systems
Before starting the analysis of the features

of distributed cloud systems, it should be noted
that the following terms exist simultaneously with
this term: complex computing systems, corporate
computing systems, distributed computing
systems, distributed information systems,
distributed computing network, etc. We will
consider them identical, since they all denote the
same class of distributed computing systems, but
have different properties.

Different names emphasize different
aspects of the application or definition of the
properties of distributed cloud systems. For
example, if the main feature (characteristic) of the
system is the ability to provide ubiquitous and
convenient network access on demand to a
common pool of computing resources, the system
can be called a cloud system.

If we take the provision of user
information (i.e. logistics with information) as the
purpose of the system, the system can be called an
information system. In the case of considering the
main feature (characteristic) of the system, the
computing processes performed by the system for
the purpose of data processing, then the system
can be called computational.

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3940

Thus, the system is cloud or computational
depends on the look. Moreover, in modern
component technologies (and architectures), the
components from which the system itself is
constructed merge data, computational
procedures (their programs), access and
interaction protocols.

6.2 Scenario of using computing resources of

DCS
In the cloud computing environment there

are two parties or actors: One of the parties is
represented by “cloud” providers who provide
cloud services and computing resources located in
data centers to users on a rental basis or in another
form, depending on the type of “cloud”. The other
side is represented by users who rent computing
resources from vendors to carry out their
applications and tasks.

Both parties, consumers and providers,
have different goals. The goal of cloud providers
is to maximize profits, maximize resource
utilization, minimize resource idleness, and
balance the load on physical servers.

Users pursue other goals - minimizing the
cost and overhead of performing their tasks in
order to meet the resource performance
requirements.

The required level of service provision is
pre-negotiated in a service level agreement (SLA)
between the actors.

7. MATHEMATICAL MODEL OF THE

ORGANIZATION OF COMPUTING
PROCESS

"Job" or "operation" are the basic concepts

of a distributed computing system.
A job is an elementary task to be

performed in some "computing system". In the
general case, a computing system can be
considered as a set of interconnected "executors".
It is customary to call an executor a server, a
computing node capable of performing all the
necessary actions to complete a task.

Certain relationships may exist between
tasks, i.e. some tasks require other prior tasks to
be completed. Having this kind of relationship
between jobs means defining an ordering
relationship on a set of jobs. Otherwise, the tasks
are independent and can be executed in any order.

Accordingly, tasks are executed in parallel
if they are independent, or sequentially if there are
dependencies. Dependencies determine the order

in which work is performed and the flow of data
between tasks.

A computing system can consist of both
identical and different components. In the first
case, the executive system is usually called
homogeneous, in the other - heterogeneous. In a
homogeneous system, the efficiency of
performing the same task on different performers
is the same, while in a heterogeneous system it is
different. For example, if a multiprocessor system
consists of processors of the same model, then
such a system is homogeneous. Since the
processors have the same clock frequency, cache
memory size and other technical characteristics,
as a result of which the speed of execution of an
individual program is the same on any processor
of the computing system and does not depend on
the processor on which it is executed.
Accordingly, an example of a heterogeneous
system is a computing system, which includes
processors of different performance. This leads to
additional difficulties in drawing up an execution
plan for a complex of programs, since it is
necessary to take into account the speed of their
execution on various processors.

By the nature of the receipt of tasks in the
computing system, static and dynamic
distribution tasks are distinguished. In static tasks,
the executive system simultaneously receives a
certain set of tasks, for which a schedule is drawn
up and executed. At the same time, during the
implementation of the previously drawn up plan,
new tasks do not enter the system, i.e. the schedule
is formed for a certain and known number of tasks
in advance. Thus, in static problems, all input
parameters of the problem are assumed to be
given before starting to solve it.

In dynamic tasks, tasks are performed
continuously. Tasks enter the computer system at
unknown moments in time, which can only be
predicted in a statistical sense. The schedule is
built in parts as jobs arrive in the service system.
Thus, schedules for dynamic tasks are built in real
time, i.e. the input parameters of the distribution
problem are unknown until the start of its solution.

We have chosen a dynamic problem and
methods for its solution for the study. This choice
is due to the widespread occurrence of this class
of problems in distributed computing systems.

7.1 Mathematical model of a user task
 We define the mathematical model of the user
task as follows [30-31]:

 Let the computing environment consist of i
heterogeneous, parallel working performers:

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3941

),....,(21 iNNNN  (1)

 A set of independent tasks (jobs) j are

received at the input of the computing
environment:

)...,(21 jZdZdZdZd  (2)

which must be distributed among the performers.
 Since the construction of the hardware part of
cloud infrastructures is based on server
virtualization technology, m virtual machines
can act as executors:

),....,(21 mVMVMVMVM 

 (3)

The resource requirements ir
 for each task

jZd
 are known.

As resource requirements ir
for tasks

jZd
, we will consider processor time or CPU

time - the time spent by the processor to process
the task and random access memory (RAM),
assuming other types of computing system
resources such as: disk memory, data storage,
bandwidth ability of communication
environment, etc. sufficient.

The essence of the organization of the
computational process lies in the fact that each

task)...,(21 jZdZdZdZd  is assigned a

performer
),....,(21 mVMVMVMVM 

. Thus,
the distribution will result in any set:

 m
Zd ZdZdD ,...,1 (4)

a subset of jobs

  jkZdzdzdZd kkn ,1,,  that

matches the following property:

  



kj
kn

m

j
n ZdZdZdZdmkn ;,1,

1

 (5)

Condition (1) is interpreted that all tasks
must be distributed (but not all performers in the
used computing system can be busy).

Also, additional restrictions can be defined
for the tasks performed, described in the work:

- the moment of receipt of the task for

service it - this parameter determines the

moment of receipt of the task jZd in the

computing environment;

- deadline for completion of service id -

this value is the moment in time by which the task
is completed and the computing resource is
released;

- rate of a job or rent of a virtual machine

ic - the unit cost of a job being in a computing

environment.

7.2 Mathematical model of the computing

environment
The computing environment (CE) is

designed to process the flows of jobs arriving at
it. A computing environment built on the basis of
distributed cloud computing technology is a set of
computing resources in the form of physical
servers and virtual machines on which tasks are
performed, a control center (scheduler), as well as
a telecommunications transmission medium
through which communication between the
control center and computing knots.

Let's describe the structure and
architecture of the given aircraft through a tuple:

),,,,,(ZdStVMRNDC  (6)

where,),....,(21 iNNNN  is a set of

physical servers or computational nodes, which
can be either of the same type or heterogeneous.

),....,(21 nRRRR  - a set of

communication (telecommunications
environment) between physical servers.

),....,(21 mVMVMVMVM  - many virtual

machines (VMs) that need to be distributed across
physical servers.

),....,(21 iStStStSt  - a set of data storage

systems (DSS) that store VM images, data,
application packages.

)...,(21 jZdZdZdZd  - the set of tasks for

which the given system is intended.
Each computational node can

simultaneously run several instances of virtual
machines described by a tuple:

 miiii VMVMVMN ,2,1, ,...., (7)

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3942

where, m is the number of virtual machines on

the i -th computing node, ni ,1 (n is the

total number of computing nodes).
Each virtual machine contains a set of

applications and programs that provide the
execution of custom tasks:

 njjjjVM ,2,1, Pr,....Pr,Pr (8)

where, n is the number of applications of the j

-th virtual machine, kj ,1 (k is the total

number of virtual machines).
The types of possible instances of virtual

machines are specified by the set:

 phhhh VMimgVMimgVMimgSt ,2,1, ,...., (9)

where, p is the number of types of images

(images) of virtual machines containing the
required operating system with preinstalled

software, zh ,1 (z is the number of data

stores).
Each type of participants or classes in the

cycle of the computational process of servicing
requests is characterized by certain properties,
attributes, characteristics, which can be formally
represented as features.

Each physical server iN is specified by a

model from a tuple of characteristics:

))(),...,(),...,(),...,(),(()(21 imihikiii NNNNNN   (10)
where,

)(1 iN - an indication of the performance or

speed of the processor iN ;

)(2 iN - an indication of the capacity \ volume

of the server's iN RAM, the additional

designation of this sign is set as)(iNMr ;

)(3 iN - an indication of the server iN cache

memory size;

 - an indication of the server iN hard disk

volume;

)(4 iN - an indication of server iN
availability;

)(5 iN - an indication of server reliability;

)(6 iN - an indication of server security;

A virtual machine iVM is characterized by the

following features:

𝜒ሺ𝑉𝑀௜ሻ ൌ

ሺ𝜒ଵሺ𝑉𝑀௜ሻ, 𝜒ଶሺ𝑉𝑀௜ሻ,… , 𝜒௞ሺ𝑉𝑀௜ሻ,… , 𝜒௛ሺ𝑉𝑀௜ሻ, . . . , 𝜒௠ሺ𝑉𝑀௜ሻሻ (11)

where,

)(1 iVM - the number of VM iVM cores;

)(2 iVM - an indication of the capacity \

volume of the VM iVM RAM;

)(2 iVM - an indication of the volume of the

hard disk of the VM iVM ;

)(3 iVM - an indication of a pre-installed

server operating system;

)(4 iVM - an indication of server reliability;

)(5 iVM - an indication of VM iVM
security;

)(6 iVM - an indication of the cost per unit of

time of VM
iVM operation;

The task iZd is characterized by the

following features: - the sign of the capacity \
volume of the server's RAM, the additional
designation of this sign is set as:

))(),...,(),...,(),...,(),((21 imihikiii ZdZdZdZdZdZd  (12)

 where,

)(1 iZd - an indication of the time of receipt

of the task iZd for service;

)(2 iZd - an indication of the urgency of the

task iZd , the additional designation of the sign

of the urgency of the task iZd is set as:

)(iZdSh ;

)(3 iZd - an indication of the permissible

duration of execution;

)(4 iZd - an indication of the acceptable cost

of execution;

)(5 iZd - an indication the required level of

continuity;

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3943

)(6 iZd - an indication required level of

security;

)(7 iZd - an indication of the required

amount of memory for execution, the additional
designation of the sign of the required amount of

memory for the task is denoted as:)(iZdMr ;

The total amount of memory required to
complete all tasks:





m

i
iZdMrZdMr

1

)()(
 (13)

When solving tasks in a computing
environment, a parameter that is significant for
the user is its "importance" or "urgency." Such
characteristic of the task as "urgency" for the user
means the latest "acceptable time" for receiving
the results of the task.

The variant of the organization of
computing processes in a distributed cloud
environment proposed in this work is based on the
market-value method, which allows users to make
an individual assessment of the informational
importance of a task, expressing it in conventional
units that determine the availability of computing
resources.

The value of a characteristic or an

indication of urgency of task iZd can be as

follows:

))(),...,(),(()(112111 ijiii ZdZdZdZd   , ,,1 nj  (14)
where,

)(11 iZd = 1 - an indication of the urgency

of execution - not urgent;

)(12 iZd = 2 - an indication of the urgency

of implementation iZd - not very urgent;

)(13 iZd = 3 - an indication of urgency iZd
- a little urgent;

)(14 iZd = 4 - an indication of the urgency

of execution iZd - urgent;

)(15 iZd = 5 - an indication of the urgency of

execution iZd - extra urgent.

It is assumed that among all physical
servers, there will always be one or more physical
servers that satisfy the requirements of any
arbitrary job.

Thus, we have determined the composition
of the computing environment of the distributed

cloud environment, described the interaction
mechanisms of the main components of the cloud
system. The organization of the computational
process for servicing the heterogeneous requests
of users of such a system is a non-trivial task. It is
also worth considering the limited computing
resources.

7.3 Rules for setting tasks for processing with

the market-value method
Determination of the set of performers,

tasks (operations) and the rules for assigning tasks
to the appropriate performers is called the
organization of the computing process.

To organize the computational process, it
is necessary to find suitable resources, select the
required number of them, and establish the order
in which tasks from the input queue will be
executed on these resources. If the resources
requested by jobs exceed the available resources,
this leads to conflicts that must be resolved by the
scheduling algorithm.

Based on the fact that the provision of
cloud services is regulated by market
mechanisms, i.e. payment for services occurs
upon use according to the established tariffs, in
this work we will rely on the market-value method
(MVM).

 A model using the market-value method
for resource allocation is understood as a model of
competitive access to computing resources by
user tasks based on a notional value calculus.

The actors (parties) of such market
relations are resource providers and service
consumers. This approach makes it possible to
organize taking into account the balance of
interests of consumers of computing resources
and their suppliers in the same way as it happens
in the context of economic relations.

Step 1. Prioritizing the “importance” of the
task.

At the stage of scheduling tasks and
placing them in the queue for execution, the
procedure for calculating the priority of a task
based on the "importance" parameter, the urgency
specified by the user, is applied. The user is
provided with a mechanism that allows them to
raise or lower the priorities of their jobs, thereby
affecting the processing time of a job in the queue.

Step 2. Establishing the "role" priority of
the task.

In addition to the "importance" parameter
set by the user, the task priority is influenced by
the "role" priority of the user of the computing
environment.

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3944

Users of the computing environment are
divided into role categories:

- administrators of the computing
environment manage the functioning of the
computing environment;

- privileged users who get access to
computing resources of the ROS on a paid basis;

- authorized users who get free access to
the computing resources of the environment. This
category of users includes members of the
organization that owns the cloud infrastructure.
For the case of a private university cloud, these
can be researchers, teachers, students.

- guest access. This group includes users
who have not been authorized and authenticated
in the system and have only limited guest access
to the computing environment.

At the stage of scheduling jobs and placing
them in a queue for execution, the procedure for
calculating the priority of a job based on the user's
“role” priority is applied. By allocating a larger
budget to a job, the user increases the priority
value. At the same time, it is not true that the task
with a larger budget is a higher priority in
planning. If the priorities of the jobs are equal, the
job with the longer waiting time in the service
queue is the first to enter the execution queue.

A high-budget "urgent" task is first sent to
the queue for distribution, then tasks of authorized
users with a dedicated budget are selected for
processing.

To ensure the distribution of all jobs with
each new scheduling cycle, the priority of the job
is increased by one value. The dynamic priority
mechanism is flexible enough to arrange the jobs
in the queue. The method eliminates the
possibility of an endless waiting for some task to
start for execution (the longer the task is in the
queue, the higher the priority becomes).

In order to prevent the monopolization of
computing resources, authorized users who
receive free access to computing resources are
allocated a limited budget (bonuses), within
which they can rent computing resources. The
introduction of such a bonus calculation system
allows the user to subjectively order the priorities
of his own tasks and acts as a universal metric for
the mutual ranking of incoming tasks in the
system.

The user's budget (bonuses) is determined
for the reporting period, measured in arbitrary
units and is intended to be distributed among the
user's tasks to ensure the use of computing
resources.

8 . TASK SCHEDULING STRATEGIES
AND POLICIES

The process of organizing the computing

process in the a distributed cloud environment
should take into account the following
components:

- Various planning strategies or policies.
- Criteria for optimality or objective

function.
- Algorithm for scheduling.
A task scheduling policy is a set of rules by

which the final application-level plan of that task
should be built. A strategy is also nothing more
than a set of planning parameters for each specific
task submitted by the user. The selection of a task
for execution is based on the procedure for sorting
tasks in accordance with their priorities. The
following can be cited as examples of the
formation of typical strategies:

 Fair distribution of resources (fairshare)
- guarantee each job a certain amount of time
using the computing resources of the
environment, trying to avoid a situation where the
job of one user constantly occupies the resource,
while the job of another user has not actually
started to run.

 Efficiency in the use of computing
resources (resource utilization) - it is necessary to
occupy a resource for 100% of the working time,
not allowing it to stand idle while waiting for tasks
ready to be executed. In real computing systems,
the processor load ranges from 40 to 90%.

- Reducing the total turnaround time - to
ensure the minimum time between the start or
queue of a task for downloading and its
completion.

- Reduction of waiting time - reduce the
time that tasks spend in the queue for loading.
User tasks with time requirements for the task will
be guaranteed to be completed by the required
deadline. In this case, the resulting plan will have
the minimum cost and will be executed in the
maximum possible time (within the specified
period).

- Reduced response time - to minimize the
time it takes for a process in interactive systems to
respond to a user request.

- Reducing the total cost of performing
tasks (budget constraint) - tasks of users with a
limited budget are planned within this budget with
the cost as close as possible to it.

Actually, the choice of a particular strategy
and a specific resource allocation depends on
many factors: the load state of nodes, the policy

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3945

of storing and moving data in the environment, the
structure of tasks and user estimates of their
execution time. When choosing any of the
strategies, one should also take into account the
possibility of varying the direction of resource
load optimization in order to take into account the
requirements of the owners of computing nodes.

Planning models should adequately and at
the same time reflect the interests of users and
owners of resources, the policy of providing and
consuming resources and formalized by a set of
criteria, which makes the strategy multi-criteria.

Based on the interests of both actors of the
cloud environment, we will choose the following
goals as a strategy for organizing the computing
process:

- Strategy 1: minimizing the total cost of
performing user tasks;

- Strategy 2: maximize the balanced load
of physical nodes;

- Strategy 3: maximally dense filling of
servers with virtual machines;

- Mixed strategies from strategies 1, 2, 3.
To evaluate the schedule, the criteria of

optimality are used, otherwise the objective
function, which ensures their unambiguous
comparison. The objective function is the function
of evaluating the schedule according to a given
criterion. Thus, it is possible to rank schedules
according to their effectiveness. The objective
function can contain one or several criteria. The
objective function can be based on different
criteria: the average execution time of all tasks,
the length of the schedule, the average waiting
time for the launch of tasks, resource utilization,
and others.

9. DISCUSSION

Application of the developed models and

methods for organizing computing processes in a
distributed cloud environment will provide the
required quality of service for resource requests of
users in terms of minimizing the total cost of
renting computing resources and balancing the
load of server resources.

The results obtained in this work are a
contribution to the theory of constructing
planning systems and organizing computing
processes in distributed cloud environments.

The practical significance of the results
obtained lies in the fact that the developed
comprehensive approach to the process of
organizing computational processes in modern
types of DCS, such as cloud computing, makes it

possible to increase the efficiency of resource use,
taking into account the interests of users and
resource providers.

Specific practical results form a software
complex for remote access to distributed
computing resources of a private university cloud,
modified to practical use, which implements the
methods and algorithms proposed in this work.

The following results were obtained:
1. A model of the organization of the

computing process in a distributed environment
by distributing virtual machines formulated for
the characteristics of individual tasks from the
task pool.

2. Rules for setting tasks for the scheduler
processing in a distributed environment.

3. Algorithmically developed, software
implemented and experimentally investigated
version of the modified genetic algorithm.

4. An experimental prototype of a private
cloud deployed with the direct participation of the
authors, within the framework of which the
approbation and implementation of scientific
provisions were carried out.

10. CONCLUSION

In this paper, the following results were

obtained.
The analysis of modern models of the

organization of distributed computing: cluster,
peer-to-peer and Grid systems, leased
infrastructure of cloud environments. The features
(characteristics) of modern types of distributed
systems are considered.

An overview of various approaches and
methods of resource allocation in distributed
computing environments is given.

The drawbacks of the existing methods
and algorithms for organizing the computing
process in distributed systems are revealed and
their inapplicability for organizing computing
processes in cloud DCS is indicated.

Based on the results of the analysis of the
current situation in the research area, a
meaningful formulation of the research problem
was formulated, which will be investigated and
solved.

A general technique for solving the
research problem is proposed.

The essence and mathematical models of
the organization of the computational process are
proposed.

The basic concepts of the organization of
the computing process are determined.

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3946

Mathematical models of user tasks and
computing environment are proposed.

The rules for setting tasks for processing
with the market-value method (MVM) have been
formulated.

ACKNOWLEDGMENT

This research has been/was/is funded by
the Science Committee of the Ministry of
Education and Science of the Republic of
Kazakhstan (Grant No. AP05134071).

REFERENCES:

[1] E. Ilavarasan. Task scheduling algorithms for

distributed heterogeneous computing
systems.- Thesis of Doctor of Philosophy,
2007.

[2] V.P. Gergel',, P.N. Polezhaev.- Issledovanie
algoritmov planirovanija parallel'nyh
zadach dlja klasternyh vychislitel'nyh
sistem s pomoshh'ju simuljatora.-Vestnik
Nizhegorodskogo universiteta, 2010 №5(1),
p.201-208.

[3] Gordeev A. V. Operacionnye sistemy:
Uchebnik dlja vuzov. 2-e izd. —- SPb.:
Piter, 2007. - 416 s.: il.

[4] Uwe Schwiegelshohn and Ramin Yahyapour.
Analysis of First-Come-First-Serve Parallel
Job Scheduling. In Proceedings of the 9th
SIAM Symposium on Discrete Algorithms,
pages 629{638, January 1998.

[5] Karl Czajkowski, Ian Foster, Nick Karonis,
Carl Kesselman, Stuart Martin, Warren
Smith, Steven Tuecke. A resource
management architecture for
metacomputing systems // Lecture Notes in
Computer Science Volume 1459, 1998, pp
62-82.

[6] Toporkov V.V. Modeli raspredelennyh
vychislenij.- M.: Fizmatlit, 2004.-320 p.

[7] Shapovalov T.S.. Planirovanie vypolnenija
zadanij v raspredelennyh vychislitel'nyh
sistemah s primeneniem geneticheskih
algoritmov: dissertacija kandidata
tehnicheskih nauk.- Habarovsk, 2011.- 146
s.: il. RGB OD, 61 11-5/1758.

[8] D. Jackson. The Maui Scheduler. Technical
report.

[9] Kovalenko V.N., Semjachkin D.A.
Ispol'zovanie Alogritma Backfill v GRID //
Institut prikladnoj matematiki im.
M.V.Keldysha RAN.

[10] IBM LoadLeveler for AIX 5L using and
Administrating Version 3 Release 1,pp.381-
394, 2001.

[11] Zhikulin A.A. Metody vysokojeffektivnoj
resursnoj modifikacii algoritma
Romanovskogo dlja reshenija odnorodnyh
raspredelitel'nyh zadach: dis. k-ta tehn.
nauk: 05.13.01 / A.A. Zhikulin; DGTU.
– Rostov n/D, 2008. – 325 p.

[12] Uossermen F. Nejrokomp'juternaja tehnika.
Teorija i praktika.- M.: Mir, 1992. – 240p.

[13] Shtovba S.D. Murav'inye algoritmy: teorija i
primenenie// Programmirovanie. 2005. №4.

[14] Lopatin, A.S. Metod otzhiga / A.S. Lopatin //
Stohasticheskaja optimizacija v
informatike, 2005. - № 1. – S. 133-149.

[15] Holland J.H. Adaptation in Natural and
Artificial Systems: An introductory
Analysis with application to biology,
control, and artificial intelligence. – USA:
University of Michigan, 1975. – p. 211.

[16] Kurejchik, V.M. Jevoljucionnye
vychislenija: geneticheskoe i jevoljucionnoe
programmirovanie / V.M. Kurejchik, S.I.
Rodzin // Novosti iskusstvennogo intellekta.
– 2003. – № 5. – S. 13-19.

[17] Gorobec V.V. Matematicheskie modeli i
algoritmy optimizacii razmeshhenija
dannyh billingovyh OLTP-sistem:
dissertacija kandidata tehnicheskih nauk.-
Novocherkassk, 2014.- 191 s.

[18] Kostenko V.A. Vozmozhnosti geneticheskih
algoritmov dlja reshenija zadach sinteza
arhitektur i planirovanija parallel'nyh
vychislenij.

[19] A.B. Gavriljuk, V.A. Alekseev. Metod
optimal'nogo staticheskogo planirovanija
zadach v raspredelennyh vychislitel'nyh
sistemah s ispol'zovaniem geneticheskogo
algoritma,

[20] R.M. Alguliev. Geneticheskij podhod k
optimal'nomu naznacheniju zadanij v
raspredelennoj sisteme.

[21] Telenik S.F. Upravljaemyj geneticheskij
algoritm v zadachah raspredelenija
virtual'nyh mashin v COD / S.F. Telenik,
A.I. Rolik, P.S. Savchenko, M.E. Bodanjuk
// Vіsnik ChDTU. — 2011. — № 2. —pp.
104—113.

[22] T.S. Shapovalov. Primenenie geneticheskih
algoritmov dlja poiska optimal'nogo
raspisanija zadanij v GRID .

[23] H. Glibovec, S.A. Medvid'. Geneticheskie
algoritmy i ih ispol'zovanie dlja reshenija
zadachi sostavlenija raspisanija.

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3947

[24] Gorbachev V.N. Optimizacija struktury
gibridnogo geneticheskogo algoritma dlja
reshenija zadach sinteza raspisanij i
raspredelenija resursov. Avtoreferat.

[25] M. Kurejchik, A.A. Kazharov. O nekotoryh
modifikacijah murav'inogo algoritma.-
Izvestija JuFU. Tehnicheskie nauki.
Tematicheskij vypusk «Intellektual'nye
SAPR». – Taganrog: Izd-vo TTI JuFU,
2008, № 4(81). – 268 p.- pp.7-12.

[26] Konovalov, M. G. Upravlenie zadanijami v
geterogennyh vychislitel'nyh sistemah / M.
G. Konovalov, Ju. E. Malashenko, I. A.
Nazarova // Izvestija RAN. Teorija i sistemy
upravlenija: [nauch. zhurn.]. - 2011. - № 2.
- S. 43-61.- ISSN 0002-3388.

[27] Konovalov M.G., Malashenko Ju.E.,
Nazarova I.A. Modeli i metody upravlenija
zadanijami v sistemah raspredelennyh
vychislitel'nyh resursov. M.: VC RAN,
2009.

[28] Prohorov A.V., Pahnina E.M. Mul'tiagentnye
tehnologii upravlenija resursami v
raspredelennyh vychislitel'nyh sredah //
Second International Conference «Cluster
Computing» CC 2013 (Ukraine, Lviv, June
3-5, 2013). p.184-190.

[29] Konnov A.L. Modelirovanie oblachnyh
tehnologij v vychislitel'nyh sistemah //
Informacionno- kommunikacionnye
tehnologii v obrazovanii i nauke, p. 1854.
2012.

[30] R. K. Uskenbayeva, A. A. Kuandykov, Y. I.
Cho and Z. B. Kalpeyeva, "Tasks
scheduling and resource allocation in
distributed cloud environments," 2014 14th
International Conference on Control,
Automation and Systems (ICCAS 2014),
Seoul, 2014, pp. 1373-1376, doi:
10.1109/ICCAS.2014.6987770.

[31] R. K. Uskenbayeva, J. B. Kalpeyeva and A.
B. Kassymova, "Organization of
computational processes in distributed
cloud environments," 2015 54th Annual
Conference of the Society of Instrument and
Control Engineers of Japan (SICE),
Hangzhou, 2015, pp. 947-952, doi:
10.1109/SICE.2015.7285564.

