
Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4092

HARDWARE ACCELERATOR FOR COMPUTING DTCWT
SUB BANDS USING SPLIT LIFTING ALGORITHM

1SUNITHA . P.H , 2SREERAMA REDDY G. M, 3CYRIL PRASANNA RAJ. P

1Associate Professor, Department of ECE, M.S. Engineering College, Bangalore, India.

2Principal, C Byregowda Institute of Technology, Kolar, India.

3 Professor and Dean R & D, Department of ECE, M.S. Engineering College, Bangalore, India.

1sushreeanju@gmail.com, 2sreeramareddy99@gmail.com, 3cyrilyahoo@gmail.com

ABSTRACT

DTCWT based image processing is gaining popularity for its advantages such as shift invariance and
additional directional features compared with DWT. Computation complexity of DTCWT have limited its
use for real time image processing applications. Hardware accelerators for image processing algorithms
implemented on FPGA platform have demonstrated improvement in computation speed. In this work,
hardware accelerators for computing DTCWT based on split lifting scheme algorithm is designed and
implemented on FPGA. The number of arithmetic operations and complexity in performing multiplication
is reduced by multiplierless operations and reuse logic. The proposed design is implemented on FPGA and
is demonstrated to operate at maximum frequency of 333 MHz and power dissipation is limited to 56 W.
The DTCWT computation is reconfigurable to perform both forward and inverse transforms.

Keywords: Hardware Accelerator, DTCWT, Lifting Scheme, Multiplierless Logic, Reuse Logic .

1. INTRODUCTION

Over the last three decades Discrete Wavelet
Transform (DWT) has been widely used for
multiresolution image and signal processing
applications including image registration,
compression, fusion, classification and orthogonal
frequency division multiplexing. The popularity of
wavelet based algorithms is further to grow in
future with significant research progress in design
of filter banks for wavelet transforms. Lack of
directionality from wavelet sub bands, poor support
for shift invariant property and lack of phase
information are the major limitations of wavelet
based filtering. Dual Tree Complex Wavelet
Transform (DTCWT) has been carried out to
overcome the limitations of DWT and studies on
filter bank design are also being worked out by
many of the researchers [1]. Computation
complexity of DTCWT algorithm in decomposing
input images into multiple levels have constrained
use of DTCWT for real time image processing [2].
Image processing algorithms process input image
which is of 2D or more and processing is carried
out by grouping image into sub images of smaller
size and hence requires parallel processing
operations so that all the sub images can be
processed simultaneously. As the volume of data
that is acquired from imaging devices increases the

amount of data that need to be processed also
increases and processing huge volume of data in
real time requires multicore platforms that can
process data using parallel processing algorithms.
In CPU or GPU based processing platform the
concept of fetch-decode-execute operations delay
the process of executing introducing latency.
Fetching of data from the cache memory may miss
out and frames could be dropped during data access
when the processing speeds are fixed. In FPGA
based image data processing predictability is very
high with frames per second processing meeting the
requirements of real time image processing
specifications. Power consumption is another factor
that is advantageous in FPGA compared with CPU
or GPU. The work carried out by Fowers et al. in
2012 [3] have demonstrated that image processing
algorithm implemented on FPGA required only 20
Watts of power as compared with the same
algorithm implemented on CPU and GPU
consuming 130 Watts and 145 Watts respectively
[4]. In CPU and GPU dynamic memory allocation
concept is advantageous which is a limitation in
FPGA is because of limited availability of on-chip
memory. For portable medical devices power
dissipation by image processing module need to
limited to less than 5 Watts for durable operation of

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4093

the device. Xilinx Zedboards cannot accommodate
more than 4 images of size 1024 x 768 as compared
with Kintex 7 FPGA [5]. The processing power and
the features available on Zedboard need to be
utilized and customization in architecture is
required so as to meet the cost requirements. Next
generation FPGAs such as Ultrascale+ devices are
designed to support higher density memory options
supporting complex image processing applications
[6]. Even with increasing the memory storage on
FPGAs as claimed by new memory technologies
such as Hybrid Memory Cube (HMC) [7] and
High-Bandwidth memory (HBM) [8] will still not
support the memory requirements of complex
image processing algorithms. However, FPGAs
have large number of distributed memory units that
can be used as local memories. Utilizing the local
memory units on FPGA that are distributed
uniformly across the FPGA architecture is the right
way ahead for implementing complex image
processing applications which requires proper
architecture design and use of coding models.
Ioannis Stratakos et al. in 2019 [9] have presented
hardware accelerators for image registration on
FPGA platform with System on Chip approach.
Optimizing process is carried out using Downhill
simplex method and Powells direction method and
similarity measure is carried out using correlation
coefficient and mutual information techniques.
Robert Stewart et al. in 2018 [10] have presented
discussion on Rathlin Image Processing Language
(RIPL) a high level image processing language
specifically for modelling algorithms on FPGAs.
The concept of map and zip with inspired by
stream-based functional programming languages
and libraries are considered as primitives and called
as skeletons in RIPL. The skeletons capture the
basic image processing arithmetic operations, 1D
and 2D filtering operation, transformation
operations and image reduction operation.
Hardware pipelines are generated in RIPL to
improve latency of image processing algorithms.
The macro blocks and libraries in RIPL do not
support DTCWT architecture and it is required to
develop the architecture considering basic sub
systems. Hardware accelerators implemented on
FPGA have been demonstrated to achieve more
than 36X of speed improvement for the modules
such as affine transformation, similarity measure,
DCT, FFT etc. Very few literatures have been
reported on hardware accelerators for DTCWT
implementation for image processing applications.
In this paper, detailed discussion on design of high
speed architectures for performing arithmetic

operations and data movement operations in
computing complex wavelet sub bands is presented.

2. LIFTING SCHEME

One of the simplest methods for wavelet filter
bank implementation is using lifting scheme that
was first introduced by Sweldens in 1995 [11]. The
work carried out by Daubechies and Sweldens in
1998 [12] have implemented lifting scheme for FIR
filters. The lifting scheme coefficients are
determined using the process of factorization of
Polyphase matrix. Implementing filter bank
structure using lifting scheme reduces the
computation complexity on hardware platforms.
Both inverse and forward transforms can be carried
out by lifting scheme leading to perfect
reconstruction.

2.1 Lifting Scheme For DTCWT

DTCWT filters as discussed in previous chapters

for the analysis filter bank structure are represented
as {h0(n), h1(n)} and {g0(n), g1(n)} for the real and
imaginary tree respectively. The filter banks for the
synthesis filters are {f0(n), f1(0)} and {p0(n), p1(n)}
representing real and imaginary tree filter structure.
Polyphase notation for these filters are expressed as
in Eq. (1),

H0(z) = H00(z2) + z-1 H01(z2)
H1(z) = H10(z2) + z-1 H11(z2)
G0(z) = G00(z2) + z-1 G01(z2)
G1(z) = G10(z2) + z-1 G11(z2)

(1)
Expressing filters using Polyphase matrices of

{H0(z), H1(z)} and {G0(z), G1(z)} in terms of Hp(z)
and Gp(z) respectively and these parameters are
represented in terms of even and odd phases of
filters as in Eq. (2) for the filter Gp(z) and similarly
can be expressed for Hp(z).

Gp(z) = ൤
𝐺଴଴ሺ𝑧ሻ 𝐺଴ଵ ሺ𝑧ሻ
𝐺ଵ଴ሺ𝑧ሻ 𝐺ଵଵሺ𝑧ሻ ൨

(2)

Considering orthogonal filters for DTCWT

computation the length of filters for {h0(n), f1(0)}
and {h1(n), f0(0)} will be equal resulting in
satisfying para-unitary property as in Eq. (3) and
time reversal property as in Eq. (4).

∑ ℎ௜ ሾ𝑛ሿ ℎ௝ሾ𝑛 ൅ 2𝑘ሿ௡ = 𝛿 ሾ𝑖 െ 𝑗ሿ𝛿ሾ𝑘ሿ

∑ 𝑔௜ ሾ𝑛ሿ 𝑔௝ሾ𝑛 ൅ 2𝑘ሿ௡ = 𝛿 ሾ𝑖 െ 𝑗ሿ𝛿ሾ𝑘ሿ

(3)

h1[n] =(-1)nh0[L – n – 1]

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4094

g1[n] =(-1)ng0[L – n – 1]

(4)

L is the length of the filters and if the filters are

biorthogonal then the length of the filters are
different. One of the important properties of
biorthogonal properties are the time reversal
relation as in Eq. (5).

g0[n] = h0[L0- n – 1]
p0[n] = f0[L1 – n -1]

(5)

Considering the Kingsbury’s Q-shift filters

{G0(z), G1(z)} are time reversal of {H0(z), H1(z)}.
The Polyphase factorization for this filter as
presented by Adeel Abbas and Trac D. Tran in
2008 is given as in Eq. (6) for Hp(z) and Eq. (7) for
Gp(z) for the 14-tap Q-shift filter proposed by
Kingsbury[13].

HP(z) = ൥
െ5

64ൗ 0

0 െ5
64ൗ

൩ ൥
1 3

16ൗ
െ3

16𝑧ିଵൗ 𝑧ିଵ
൩

 ൥
1 െ37

8ൗ
37

8𝑧ିଵൗ 𝑧ିଵ
൩ ൥

1 െ5
2ൗ

5
2𝑧ିଵൗ 𝑧ିଵ

൩

(6)

GP(z) = ൥
െ1

64ൗ 0

0 െ1
64ൗ

൩ ൥
1 85

16ൗ
െ85

16𝑧ିଵൗ 𝑧ିଵ
൩

 ൥
1 37

8ൗ
െ37

8𝑧ିଵൗ 𝑧ିଵ
൩ ൥

1 5
2ൗ

െ5
2𝑧ିଵൗ 𝑧ିଵ

൩

(7)
Kingsburys 14-tap Q-shift filter is orthogonal

and the real part of this filter is time reverse of the
imaginary part satisfying Ψg(t) = Ψh(N-1-t) and
G0(z) is time-reversal of H0(z). Detailed discussion
on multiplierless approximation for lifting scheme
coefficients is presented by Ying-Jui Chen et al. in
2002 [14]. Considering 10-tap Qshift filters for
DTCWT polyphase factorization scheme is used to
arrive at lifting scheme coefficients.

2. DERIVING LIFTING SCHEME FOR 10-

TAP DTCWT FILTER

At every level of DTCWT decomposition row
processing and column processing is carried out
considering four filters representing real and
imaginary filter banks. For 2D image registration,

level-1 decomposition using DTCWT generated 16
sub bands of which 12 of them were high pass sub
bands and 4 of the were low pass sub bands. For 3D
image registration, level-1 decomposition generated
64 sub bands of which 56 of them were high pass
sub bands and 8 of them were low pass sub bands.
Computation complexity of filter banks
implementation on hardware platform is estimated
considering arithmetic units and memory units.
Figure 1 presents the filter bank for analysis and
synthesis filters for DTCWT. The analysis filters
are represented as {H0, H1, G0, G1} and the
synthesis filters are {H’0, H’1, G’0, G’1}. The
corresponding filter coefficients for analysis filters
are presented in Table 1.

 Figure 1: DTCWT analysis and synthesis filters

The 10-tap filter coefficients represent Kingsbury

Q-shift filters and it is required to design high speed
area efficient and low power architecture for
implementation of the filter structure on FPGA
platform. The synthesis filters coefficients for
Kingsbury Q-shift 10-tap filter is presented in Table
2. Based on the discussions presented in previous
section, lifting scheme based algorithm is designed
and suitable architecture is developed for FPGA
implementation.

Table 1: Analysis filter coefficients

Table 2: Synthesis filter coefficients

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4095

 The analysis filter coefficients simplified using

approximation algorithm in MATLAB and the
corresponding lifting scheme coefficients are
derived and is presented in Figure 2. The lifting
scheme method derived for the 10-tap filters
requires three stages of predict-update pair of
arithmetic operations and the final stage requires
scaling process to generate the filter coefficients

 Figure 2: Lifting scheme coefficients for 10-tap

filter

Predict and update filter coefficients obtained is
found to be in the range of |0.06746501| to
|12.26138873| with dynamic range variation of
99.44%. Using Laurent polynomial predict and
update expressions for lifting scheme is presented
in Eq. (8).
 P1(z) = 0.2733

P2(z) = - 0.2543 + 3.959*z^(-1)

P3(z) = - 0.08291*z^(+2) - 0.2394*z^(+1)

P4(z) = + 8.26*z^(-2) - 12.26*z^(-3)

P5(z) = - 0.255*z^(+4) + 0.06747*z^(+3)

P6(z) = 3.865*z^(-4)

 (8)

 K1 = -0.6836 and K2 = -1.4629

The polyphase factorization for the 10-tap
analysis filter Hp10(z) is presented in Eq. (9),
similarly the Polyphase factorization for 10-tap
filter Gp10(z) is also arrived at.

(9)

It is required to design efficient architecture for
implementation of DTCWT filters considering
lifting scheme algorithm. The filter coefficients are
fractional numbers and require 16 bit number
representation. Representing the filter coefficients
using integer number representation simplifies the
complexity of arithmetic unit. The lifting scheme
coefficients for both real tree and imaginary tree
(tree a and tree b) are scaled by a factor of 16 (24)
and rounded off to its nearest integer. The scaled
and rounded lifting scheme coefficients represented
as {HQ0, HQ1, GQ0, GQ1} are presented in Table 3
for the real tree filters and Table 4 for imaginary
tree filters. The maximum and minimum values of
filter coefficients after scaling are 196 and zero.
The dynamic range variation is approximately

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4096

99.999% after scaling and rounding. The dynamic
range before and after scaling and rounding is
changed by a factor of 0.00559, indicating a very
small change in magnitude variations

Table 3 :Quantized filter coefficients for real tree

Tree a

N Lifting coefficients Quantized lifting
coefficients

H0 H1 HQ0 HQ1
P1 4.3732 0 4 0

P2 -4.0692 63.3487 -4 63

P3 -1.3265 -3.8296 -1 -4

P4 132.1525 -196.1822 132 -196

P5 -4.0803 1.0794 -4 1

P6 61.8352 0 62 0

Ka -10.9370 -23.4067 -11 -23

Table 4: Quantized filter coefficients for imaginary

tree

Tree B
N Lifting coefficients Quantized

lifting
coefficients

G0 G1 GQ0 GQ1
Q1 -0.2733 0 -4 0
Q2 0.2543 -3.9592 4 -63
Q3 0.0829 0.2393 1 4
Q4 -8.2595 12.2613 -132 196
Q5 -0.0037 -0.0674 0 -1
Q6 3.8647 0 62 0
Kb 5.6537 0.1768 90 3

Figure 3 is the lifting scheme structure for the real
tree filter bank of DTCWT. The input sequence
x(n) is split into even and odd samples and is
processed by the three stages of predict-update
arithmetic operation and then is finally processed
by the scaling operations. The terms s(z) and t(z)
are generically used for representation for predict
and update operations respectively. The Polyphase

factorization for the structure is expressed in terms
of s(z) and t(z) as in Eq.(10).

Figure 3: Generic representation of 10-tap lifting scheme
structure

P (2) = ℿ௜ୀଵ
௡ ቂ1 Sᵢሺzሻ

0 1
ቃ ൤

1 0
tᵢሺzሻ 1൨ ൤

K 0
0 1/𝐾൨

(10)

Figure 4 presents the proposed lifting scheme
structure derived from the generic structure in
Figure 3. The predict and update terms are
represented as P(z) and is represented in terms of
Polyphase factorization as in Eq. (11). The
proposed lifting scheme structure consists of two
subtractors and two multipliers every stage of
predict-update operations. The last stage is
multiplication operations. Figure 5 is the lifting
scheme structure for tree b.

Figure 4: Lifting scheme structure for real tree or tree

a

Pa (z) = ቂ1 P₁
0 1

ቃ ቂ
1 0
P₂ 1ቃ ቂ1 P₃

0 1
ቃ ቂ

1 0
P₄ 1ቃ

 ቂ
1 P₅
0 1

ቃ ቂ
1 0
P₆ 1ቃ ቂ

K₁ 0
0 K₂ቃ (11)

 Figure. 5: Lifting scheme structure for real tree or tree b

The number of arithmetic operations required for
implementing DTCWT based on lifting scheme is

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4097

further optimized to reduce power and area
requirement and improve processing speed.

4. DESIGN OF EFFICIENT LIFTING
SCHEME STRUCTURE

Based on the polyphase factorization expressions
the step by step operations of lifting scheme
algorithm is presented in Table 5 for tree a and
Table 6 for tree b. There are eight steps starting
from split operation to scaling operation. The split
operation is performed by down sampling by 2 and
using one clock cycle delay. The even term is
represented by X2i and X2i+1 represent the odd term
and are represented as si

0 and di
0 respectively. The

lifting filter coefficients for tree a are represented as
{a1, b1, b2, d1, d2, e1, e2, f1} and for tree b is
represented as {a2, b3, b4, d3, d4, e3, e4, f2}.

Table 5: Step by step process of lifting scheme algorithm
for tree a

Lifting
steps

Arithmetic
Expressions

With lifting
coefficients

Even
and odd
split

Si
0 =X2i &

di
0 = X2i+1

Si
0 =X2i

di
0 = X2i+1

Predict 1 di
1 = di

0 + a1 Si
0 di

1 = di
0 + 4 Si

0
Update 1 Si

1 = Si
0 + b1 di

1 +
b2 d1

i+1
Si

1 = Si
0 - 4 di

1 +
63 d1

i+1
Predict 2 di

2 = di
1 + c1S1

i-2
+ c2S1

i-1
di

2 = di
1 - S1

i-2 -
4S1

i-1
Update 2 Si

2 = Si
1 + d1d2

i+2
+ d2d2

i+3
Si

2 = Si
1 + 132

d2
i+2 - 196 d2

i+3
Predict 3 di

3 = di
2 + e1S2

i-4
+ e2S2

i-3
di

3 = di
2 – 4 S2

i-4
+ S2

i-3
Update 4 Si

3 = Si
2 + f1d3

i+4 Si
3 = Si

2 + 62
d3

i+4
Scaling Si = k1 Si

3
di = k2di

3
Si = -11 Si

3
di = -23 di

3

Table 6: Step by step process of lifting scheme algorithm
for tree b

Lifting
steps

Arithmetic
Expressions

With lifting
coefficients

Even
and odd
split

Si
0 =X2i &

di
0 = X2i+1

Si
0 =X2i

di
0 = X2i+1

Predict 1 di
1 = di

0 + a2 Si
0 di

1 = di
0 - 4 Si

0
Update 1 Si

1 = Si
0 + b3 di

1 +
b4 d1

i+1
Si

1 = Si
0 + 4 di

1 -
63 d1

i+1
Predict 2 di

2 = di
1 + c3S1

i-2
+ c4S1

i-1
di

2 = di
1 + S1

i-2
+ 4S1

i-1
Update 2 Si

2 = Si
1 + d3d2

i+2
+ d4d2

i+3
Si

2 = Si
1 - 132

d2
i+2 + 196 d2

i+3
Predict 3 di

3 = di
2 + e3S2

i-4
+ e4S2

i-3
di

3 = di
2 – S2

i-4 -
S2

i-3
Update 4 Si

3 = Si
2 + f2d3

i+4 Si
3 = Si

2 + 62
d3

i+4
Scaling Si = k3 Si

3
di = k4di

3
Si = 90 Si

3
di = 3 di

3

In step 1 the input samples are split into even and
odd samples and are denoted as Si0 and di0. In step
2 of the lifting scheme the even and odd samples
are processed to predict the term di1, in this
expression the lifting constant (a1) derived in the
previous section and presented in Table 5.7 is used.
The constant a1 is dyadic rational number and
performing multiplication with the multiplicand si0
in step 1 is carried out by left shifting the
multiplicand by 2 bits. The multiplication operation
in step 2 is converted to a multiplierless operation.
In step 3, update 1 operation is carried out and
requires two samples of predict 1 phase (d0i and
d1i+1) and two lifting constants b1 and b2.
Computation of si1 requires two multiplication and
two addition operations. Considering two samples
for i=0 and i=1, the update 1 expression is
presented in Eq. (12).

S0
1 = S0

0 - 4 d0
1 + 63 d1

1 (i=0)
(12a)

S1
1 = S1

0 - 4 d1
1 + 63 d1

2 (i=1)
(12b)

The term d11 is used twice once for computing S01
and s11. In computing s10, d11 is multiplied by 63
and in computing s11 it is multiplied by 4. Since
multiplication is carried out twice on the same term
a modified logic is presented in this work so as to
reuse the multiplied partial products. Table 7
presents the modified expression of lifting scheme

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4098

(middle column) and the split lifting expression
(last column) for performing reuse operations.

Table 7: Modified and split lifting schemes

Steps With lifting
coefficients

Modified
lifting
expression

Split
lifting
expressio
ns

1 Si
0 =X2i

di
0 = X2i+1

Si
0 =X2i

di
0 = X2i+1

-

2 di
1 = di

0 + 4
Si

0
di

1 = di
0 + 4

Si
0

-

3 Si
1 = Si

0 - 4 di
1

+ 63 d1
i+1

Si
1 = Si

0 - 4
di

1 + 64 d1
i+1

Si
1 = Si

0 -
4 di

1 + 4
d1

i+1 + 60
d1

i+1
4 di

2 = di
1 - S1

i-2
- 4S1

i-1
di

2 = di
1 - S1

i-

2 - 4S1
i-1

-

5 Si
2 = Si

1 + 132
d2

i+2 - 196
d2

i+3

Si
2 = Si

1 +
128 d2

i+2 -
192 d2

i+3

Si
2 = Si

1 +
64 d2

i+2 +
64 d2

i+2 -
64 d2

i+3 -
128 d2

i+3
6 di

3 = di
2 – 4

S2
i-4 + S2

i-3
di

3 = di
2 – 4

S2
i-4 + S2

i-3
-

7 Si
3 = Si

2 + 62
d3

i+4
Si

3 = Si
2 + 56

d3
i+4

Si
3 = Si

2 +
16 d3

i+4+ 8
d3

i+4+ 32
d3

i+4
8 Si = -11 Si

3
di = -23 di

3
Si = -10 Si

3
di = -24 di

3
Si = -10
Si

3
di = -16
di

3-8 di
3

The lifting coefficients in step 3, step 5, step 7 and
step 8 are replaced with constants that are dyadic
rational numbers. The split expressions for
modified lifting scheme are rewritten considering
the constants in multiples of dyadic rational
numbers. Considering the modified and split lifting
logic presented in Table 7 the lifting expression in
Eq. (12) is rewritten as in Eq. (13) considering two
time intervals of i=0 and i=1.

S0
1 = S0

0 - 4 d0
1 + 64 d1

1 (i=0) (13a)

S1
1 = S1

0 - 4 d1
1 + 64 d1

2 (i=1) (13b)

The data flow diagram or graph for the expression
in Eq. (13) is presented in Figure 6. Rounding of
the coefficient to 64 and splitting the constant into
two numbers as 4 and 60 the data flow graph is
redrawn. The advantage of this logic is the lifting
term d11 multiplied by the constant 4 is used twice

to compute s01 and s11 saving one multiplication
operation.

Figure 6: Dataflow graph for step 3 using split lifting
expression

Multiplying the input data by dyadic twiddle factor
of 4 is performed by shifting left the multiplicand
by 2-bits. Multiplication by the constant 60 is
carried out by performing left shift operation of the
multiplicand. Since 60 is not a dyadic integer, the
constant 60 is expressed as (64-4). The binary
representation of 60 is “011 1100”, this implies
there are 4 ones and hence requires four left shift
operations. Representing the constant 60 by 64
(“1000 0000”) and 4 (“0000 0100”) the number of
ones are reduced to two. The arithmetic operations
in of shifting left the multiplicand when multiplied
by 64 and 4 will be appending 6 zeros and 2 zeros
at the LSB respectively. After appending operation,
the partial products are added using one adder. The
total number of shifting operations and addition
operations are reduced in this method of data
processing.

Figure 7: Dataflow graph for step 5 using split lifting
expression

Figure 7 presents the data flow diagram for step 5
of split lifting scheme. The lifting coefficient -196
is rounded off to nearest integer -192 and is split
into -64 and 128. Similarly the lifting coefficient
132 is rounded off to 128. Multiplying the term d21
with 128 in the first half of data flow graph is
carried out by appending 7 zeros on the LSB and
the product is represented as ‘d’. The product term

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4099

‘d’ is used in two branches of the data flow diagram
and is further multiplied by -64 (carried out by
appending 7 zeros on LSB) and 1. By realizing the
data flow graph by split logic the number of bits
required for representing the data is limited to 8 bits
(including sign bit) and the product term generated
in the first half of the data flow graph (represented
by ‘d’) is reused in the right flowing data graph
thus saving one arithmetic operation.

Figure 8: Dataflow graph for step 8 using split lifting
expression

Figure 8 presents the data flow graph for step 8 of
proposed lifting scheme method. In this step the
lifting coefficient 62 is rounded off to 56 and the
coefficient -23 is rounded of to -24. The constant
56 is split into three constants of 16, 8 and 32.
Multiplying the term d31 by 16 and 8 in the first
half of the data flow graph is carried out by
appending the input data d31 first by 4 zeros on the
LSB and then by appending by 3 zeros to generate
the intermediate term represented by ‘dd’. The term
‘dd’ is used by the second half of the data flow
graph to perform multiplication by 32 (carried out
by appending by 5 zeros on LSB) and sign reversal
operation in the right flowing data flow graph. The
proposed lifting scheme method for the 10-tap filter
represented in Table 7 designed for tree a is
presented in Figure 9. Figure 10 presents the
proposed lifting scheme method for tree b.

In the proposed lifting scheme structure the concept
of reusability is adopted to reuse the partial
products for computing lifting scheme predict and
update intermediate outputs. The number of adders
for realising one pair of low pass and high pass
filter outputs are computed to be of 12 for both tree
a and tree b. Computing both real tree and
imaginary tree outputs the lifting scheme structure
are similar only the sign of the lifting scheme
coefficients change at each stage of predict and
update steps.

5. FUNCTIONAL VERIFICATION OF SPLIT
LIFTING STRUCTURE

Split lifting structure developed in the previous
chapter is verified for its logic correctness by
considering test vectors with range 0 to 255. In
order to avoid overflow, the input vector is
considered in the range of 0 to 127. A know vector
set of 10 pixels is considered and the data is
processed by the 10-tap filter using convolution
operation. Output generated in this process using
MATLAB environment is considered as reference
output data set. It is required to obtain the same set
of outputs after the known set of inputs are
processed by the lifting scheme structure. The
lifting logic is modelled using Verilog using
hierarchical approach, the arithmetic units are
modelled using behavioural model and the
arithmetic models are integrated into top model
using structural modelling. Test bench is developed
to verify the model and the test bench is loaded
with the known test vectors. The Verilog model is
simulated in Xilinx ISE and the results are obtained
in the simulator window. The output generated in
binary format is converted to signed integer format
and the outputs are noted down to compare with the
results of outputs obtained in the MATLAB model.
For a known set of test inputs theoretical values of
the actual output is calculated and is compared with
the simulation results output. The split lifting
scheme logic is modelled as 1D-DTCWT processor
and the results for known set of inputs in the range
of 0 to 127 have been used as test inputs, and the
corresponding outputs are obtained using ISE Sim.
The test results are shown in Figure 9. From the
simulation results it is found that the 1D-DTCWT
processor results are matching the theoretical
requirements.

Figure 12: First stage simulation results of 1D DWT
processor using Model Sim

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4100

The input pixels are sent into the DTCWT engine
as given in Table 8 in “DATA IN” vector. The tree
a and tree b filter coefficients used for the filter
design are indicated along with the MATLAB
results and HDL results.

Table 8: Simulation results for known test case of input
vector

 1D-DTCWT tree a 1D-DTCWT tree b

In HQ0 Output
(MATLAB)

Out
put
(HDL)

HQ1 Output
(MATLAB)

Out
put
(HDL)

42 4 168 164 0 0 0

42 -4 -168 -164 63 2646 2648

42 -1 -42 -42 -4 -168 -164

42 132 5544 5548 -
196

-8232 -8234

42 -4 -168 -164 1 42 42

42 62 2604 2602 0 0 0

42 -11 -462 -464 -23 -966 -968

The input and output waveform for the simulation
of DTCWT engine is evaluated the simulation
result matches the computation results in Table 8.
Software model results and hardware model results
are compared for different test vectors and the
results are found to be similar demonstrating the
functionality of architecture designed. The DTCWT
engine takes 30 clock periods to compute the tree a
and tree b output coefficients at the starting of each
row. The latency is estimated between the low \to
high transition of sync signal to first output data
valued signal. The DTCWT takes only 22 clock
cycles to computation the DTCWT of each line
after the computation of first DWT coefficient at
the starting each new row.

5.1 FPGA Implementation

The Verilog model is successfully verified for its
functionality for both as 1D-DTCWT processor and
for 3D-DTCWT processor. The functionally
verified model is synthesized using Xilinx ISE
targeting Spartan 6 FPGA device. The synthesis
results for the 1D-DTCWT processor is shown in
Figure 13. The top level model for the 3D-DTCWT
processor is shown in Figure 14a and the
corresponding internal block diagram after level-1
hierarchy is presented in Figure 14b.

Figure 13: Synthesized netlist for 1D-DTCWT processor

Figure 14a and 14b: Synthesized netlist for 3D-DTCWT

model

Table 9 compares the FPGA performance results of
the proposed structure with all other
implementation structure. From the comparison
report, the proposed split lifting scheme based 1D-
DTCWT processor is found to operate ate
maximum frequency of 342.38 MHz consuming
power of less than 28 W. The most efficient
implementation scheme is the Distributed
Arithmetic (DA) method [15] and the proposed
method is demonstrating performances better than
the DA method. 23% of improvement in operating
frequency and 46% reduction in power dissipation
is achieved for the proposed architecture as
compared with DA method. Table 10 compares the
performances of 3D-DTCWT implementation over
Spartan-6 device considering three reference
designs. Power dissipation in all three reference
architectures is limited to less than 10 W and the
results obtained are for single stage DTCWT
processing based on proposed split lifting scheme is
greater than 56W as the proposed architecture
processes nine frames simultaneously. The
algorithm proposed in [16] is modelled and is
extended for DTCWT computation of 256 x 256
image and the results are compared with proposed
split lifting based architecture for 3D DTCWT
computation. The hybrid DA architecture discussed
in [17] optimizes area utilization on CLBs and
DTCWT structure is implemented on Spartan-6
FPGA for four filters. It is observed that the parallel
processing algorithm that is designed in this work is
able to process data at higher frequency of

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4101

operation as compared with all other architectures.
The power dissipation is found to be higher than the
existing designs. Development of image

registration algorithm on FPGA platform has
demonstrated that the total delay in performing 3D-
DTCWT is less than 300ps.

6. CONCLUSION

For high speed image processing requirement such
as in image registration process that is required in
portable devices or hand held devices the operating
frequency of over 300 MHz provides 3D image
processing at more than 200 frames per second
which is demonstrated in this work based on
systolic array architecture and DA algorithm.
DTCWT based image processing algorithm
demonstrating advantages over DWT based image
processing this work discusses hardware
accelerators for meeting the processing speed and
optimum area for hardware implementation. The
DTCWT processing module presented in this work
is suitable for image decomposition into complex
bands providing information on six directional
orientations. The proposed architecture can be used
as an IP module for image processing applications
to be developed on hardware platforms.

REFERENCES:

[1] Selesnick, R. G. Baraniuk, and N. C.
Kingsbury, “The dualtree complex wavelet
transform,” IEEE Signal Processing Magazine,
vol. 22, no. 6, 2005 pp. 123–151

[2] Selesnick and K. Y. Li, “Video denoising using
2D and 3D dual-tree complex wavelet
transforms,” in Wavelets: Applications in
Signal and Image Processing X, vol. 5207 of
Proceedings of SPIE, San Diego, Calif, USA,
August 2003,.pp. 607–618

[3] Jeremy Fowers, Greg Brown, Patrick Cooke,
and Greg Stitt. 2012. A performance and
energy comparison of FPGAs, GPUs, and
multicores for sliding-window applications. In
Proceedings of the ACM/SIGDA 20th
International Symposium on Field
Programmable Gate Arrays (FPGA’12). ACM,
New York, NY, 47–56.

[4] Deepayan Bhowmik, Paulo Garcia, Andrew M.
Wallace, Robert J. Stewart, and Greg
Michaelson. 2017. Power efficient dataflow
design for a heterogeneous smart camera
architecture. In Proceedings of the 2017
Conference on Design and Architectures for
Signal and Image Processing (DASIP’17).
IEEE, Los Alamitos, CA, 1–6

[5] Robert Stewart, Greg J. Michaelson, Deepayan
Bhowmik, Paulo Garcia, and AndyWallace.
2016. A dataflow IR for memory efficient
RIPL compilation to FPGAs. In Algorithms
and Architectures for Parallel Processing.
Lecture Notes in Computer Science, Vol. 1194.
Springer, 174–188

[6] S. Ahmad, V. Boppana, I. Ganusov, V.
Kathail, V. Rajagopalan, and R. Wittig. 2016.
A 16-nm multiprocessing system-on-chip field-
programmable gate array platform. IEEE
Micro 36, 2, 48–62

[7] J. Jeddeloh and B. Keeth. 2012. Hybrid
Memory Cube new DRAM architecture
increases density and performance. In
Proceedings of the 2012 Symposium on VLSI
Technology (VLSIT’12). IEEE, Los Alamitos,
CA, 87–88

[8] Erik Jan Marinissen and Yervant Zorian. 2017.
Guest editors introduction: Design and test of a
high-volume 3-D stacked graphics processor
with high-bandwidth memory. IEEE Design
and Test 34, 1, 6–7

[9] Ioannis Stratakos, Dimitrios Gourounas,
Vasileios Tsoutsouras, Theodore
Economopoulos, George Matsopoulos and
Dimitrios Soudris, Hardware Acceleration of
Image Registration Algorithm on FPGA-based
Systems on Chip COINS, May 5–7, 2019,
Crete, Greece

[10] ROBERT STEWART, KIRSTY DUNCAN,
GREG MICHAELSON, and PAULO
GARCIA, DEEPAYAN BHOWMIK and
ANDREW WALLACE, RIPL: A Parallel
Image Processing Language for FPGAs, ACM
Transactions on Reconfigurable Technology
and Systems, Vol. 11, No. 1, Article 7, March
2018

[11] Sweldens, W.: The Lifting Scheme: A New
Philosophy in Biorthogonal Wavelet
Construction. Proc. Of SPIE, Vol.2569, San
Diego, USA, July 1995, 68–79

[12] Daubechies, I.; Sweldens, W.: Factoring
Wavelet Transform into Lifting Steps. J.
Fourier Anal. Appl., Vol.4, No.3, 1998, 247–
269

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4102

[13] N. G. Kingsbury, “Design of Q-shift complex
wavelets for image processing using frequency
domain energy minimisation,” Proc. IEEE
ICIP, Sep. 2003,pp. 1013–1016,

[14] Y. J. Chen, S. Oraintara, T. D. Tran, K.
Amaratunga, and T. Q. Nguyen,
“Multiplierless approximation of transforms
with adder constraint,” IEEE Signal Process.
Lett., vol. 9, Nov. 2002, pp. 344–347,

[15] M. M. Eshtawie and M. Othman, "Distributed
Arithmetic Implementation of an Optimized
Raised Cosine FIR Filter Coefficients," 2006
8th international Conference on Signal
Processing, Beijing, 2006, doi:
10.1109/ICOSP.2006.345498.

[16] Memory Efficient High Speed Systolic Array
Architecture Design with Multiplexed
Distributed Arithmetic for 2D DTCWT
Computation on FPGA, Poornima B., Sumathi
A., Cyril Prasanna Raj P

[17] S. S. Divakara, Sudarshan Patilkulkarni, Cyril
Prasanna Raj, “High Speed Area Optimized
Hybrid DA Architecture for 2D-DTCWT”
International Journal of Image and Graphics
Vol. 18, No. 1, 2018

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4103

Table 9: Comparison of FPGA metrics for 1D-DTCWT processing

Parameters Fully-
Parallel

Fully-Serial Partly-Serial Cascade-
Serial

Distributed-
Arithmetic

Split
Lifting
Scheme

Area (Total
cell area)

1.37e+09 2.96e+09 4.64e+09 4.62e+06 4.64e+09 0.67e+09

Time(Max
Delay)

472.527ps 9185.81ps 8665.33ps 8737.84ps 3817.75ps 292.001ps

Power 118.2441031
W

85.1820803
W

133.1774176W 133.928234
4W

52.0805906
W

28.0098 W

Computed
Frequency

99.0533M Hz 108.864M
Hz

115.402M Hz 114.445M
Hz

261.934M Hz 342.38M
Hz

Table 10: Comparison of hardware requirements

 SAA with Multiplexed
DA [16]

DTCWT [17] Direct
DTCWT

Proposed

Number of Slice
Registers

3672 4112 7482 10234

Number of Slice
LUTs

3173 4091 7224 10054

Total power (W) 1.5702 1.71111 2.00207 56W

Max. Frequency
(MHz)

321.89 289.12 212.67 332.98

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4104

Figure 9: Proposed lifting scheme data flow graph for tree a

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4105

Figure 10: Proposed lifting scheme data flow graph for tree b

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4106

Figure 11: Data flow diagram for computing {S-2, d2} of tree a and tree b

