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ABSTRACT 

DTCWT based image processing is gaining popularity for its advantages such as shift invariance and 
additional directional features compared with DWT. Computation complexity of DTCWT have limited its 
use for real time image processing applications. Hardware accelerators for image processing algorithms 
implemented on FPGA platform have demonstrated improvement in computation speed. In this work, 
hardware accelerators for computing DTCWT based on split lifting scheme algorithm is designed and 
implemented on FPGA. The number of arithmetic operations and complexity in performing multiplication 
is reduced by multiplierless operations and reuse logic. The proposed design is implemented on FPGA and 
is demonstrated to operate at maximum frequency of 333 MHz and power dissipation is limited to 56 W. 
The DTCWT computation is reconfigurable to perform both forward and inverse transforms.  

Keywords: Hardware Accelerator, DTCWT, Lifting Scheme, Multiplierless Logic, Reuse Logic .

1. INTRODUCTION 
 

Over the last three decades Discrete Wavelet 
Transform (DWT) has been widely used for 
multiresolution image and signal processing 
applications including image registration, 
compression, fusion, classification and orthogonal 
frequency division multiplexing. The popularity of 
wavelet based algorithms is further to grow in 
future with significant research progress in design 
of filter banks for wavelet transforms. Lack of 
directionality from wavelet sub bands, poor support 
for shift invariant property and lack of phase 
information are the major limitations of wavelet 
based filtering. Dual Tree Complex Wavelet 
Transform (DTCWT) has been carried out to 
overcome the limitations of DWT and studies on 
filter bank design are also being worked out by 
many of the researchers [1]. Computation 
complexity of DTCWT algorithm in decomposing 
input images into multiple levels have constrained 
use of DTCWT for real time image processing [2]. 
Image processing algorithms process input image 
which is of 2D or more and processing is carried 
out by grouping image into sub images of smaller 
size and hence requires parallel processing 
operations so that all the sub images can be 
processed simultaneously. As the volume of data 
that is acquired from imaging devices increases the 

amount of data that need to be processed also 
increases and processing huge volume of data in 
real time requires multicore platforms that can 
process data using parallel processing algorithms. 
In CPU or GPU based processing platform the 
concept of fetch-decode-execute operations delay 
the process of executing introducing latency. 
Fetching of data from the cache memory may miss 
out and frames could be dropped during data access 
when the processing speeds are fixed. In FPGA 
based image data processing predictability is very 
high with frames per second processing meeting the 
requirements of real time image processing 
specifications. Power consumption is another factor 
that is advantageous in FPGA compared with CPU 
or GPU. The work carried out by Fowers et al. in 
2012 [3] have demonstrated that image processing 
algorithm implemented on FPGA required only 20 
Watts of power as compared with the same 
algorithm implemented on CPU and GPU 
consuming 130 Watts and 145 Watts respectively 
[4]. In CPU and GPU dynamic memory allocation 
concept is advantageous which is a limitation in 
FPGA is because of limited availability of on-chip 
memory. For portable medical devices power 
dissipation by image processing module need to 
limited to less than 5 Watts for durable operation of 
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the device. Xilinx Zedboards cannot accommodate 
more than 4 images of size 1024 x 768 as compared 
with Kintex 7 FPGA [5]. The processing power and 
the features available on Zedboard need to be 
utilized and customization in architecture is 
required so as to meet the cost requirements. Next 
generation FPGAs such as Ultrascale+ devices are 
designed to support higher density memory options 
supporting complex image processing applications 
[6].  Even with increasing the memory storage on 
FPGAs as claimed by new memory technologies 
such as Hybrid Memory Cube (HMC) [7] and 
High-Bandwidth memory (HBM) [8] will still not 
support the memory requirements of complex 
image processing algorithms. However, FPGAs 
have large number of distributed memory units that 
can be used as local memories. Utilizing the local 
memory units on FPGA that are distributed 
uniformly across the FPGA architecture is the right 
way ahead for implementing complex image 
processing applications which requires proper 
architecture design and use of coding models. 
Ioannis Stratakos et al. in 2019 [9] have presented 
hardware accelerators for image registration on 
FPGA platform with System on Chip approach. 
Optimizing process is carried out using Downhill 
simplex method and Powells direction method and 
similarity measure is carried out using correlation 
coefficient and mutual information techniques. 
Robert Stewart et al. in 2018 [10] have presented 
discussion on Rathlin Image Processing Language 
(RIPL) a high level image processing language 
specifically for modelling algorithms on FPGAs. 
The concept of map and zip with inspired by 
stream-based functional programming languages 
and libraries are considered as primitives and called 
as skeletons in RIPL. The skeletons capture the 
basic image processing arithmetic operations, 1D 
and 2D filtering operation, transformation 
operations and image reduction operation. 
Hardware pipelines are generated in RIPL to 
improve latency of image processing algorithms. 
The macro blocks and libraries in RIPL do not 
support DTCWT architecture and it is required to 
develop the architecture considering basic sub 
systems. Hardware accelerators implemented on 
FPGA have been demonstrated to achieve more 
than 36X of speed improvement for the modules 
such as affine transformation, similarity measure, 
DCT, FFT etc. Very few literatures have been 
reported on hardware accelerators for DTCWT 
implementation for image processing applications. 
In this paper, detailed discussion on design of high 
speed architectures for performing arithmetic 

operations and data movement operations in 
computing complex wavelet sub bands is presented. 

 
2.  LIFTING SCHEME  
 

One of the simplest methods for wavelet filter 
bank implementation is using lifting scheme that 
was first introduced by Sweldens in 1995 [11]. The 
work carried out by Daubechies and Sweldens in 
1998 [12] have implemented lifting scheme for FIR 
filters. The lifting scheme coefficients are 
determined using the process of factorization of 
Polyphase matrix. Implementing filter bank 
structure using lifting scheme reduces the 
computation complexity on hardware platforms.  
Both inverse and forward transforms can be carried 
out by lifting scheme leading to perfect 
reconstruction.  

2.1 Lifting Scheme For DTCWT 
 
DTCWT filters as discussed in previous chapters 

for the analysis filter bank structure are represented 
as {h0(n), h1(n)} and {g0(n), g1(n)} for the real and 
imaginary tree respectively. The filter banks for the 
synthesis filters are {f0(n), f1(0)} and {p0(n), p1(n)} 
representing real and imaginary tree filter structure. 
Polyphase notation for these filters are expressed as 
in Eq. (1),  

H0(z)  =  H00(z2)    +   z-1  H01(z2) 
H1(z)  =  H10(z2)    +   z-1  H11(z2) 
G0(z)  =  G00(z2)    +   z-1  G01(z2) 
G1(z)  =  G10(z2)    +   z-1  G11(z2)                          

(1) 
Expressing filters using Polyphase matrices of 

{H0(z), H1(z)} and {G0(z), G1(z)} in terms of Hp(z) 
and Gp(z) respectively and these parameters are 
represented in terms of even and odd phases of 
filters as in Eq. (2) for the filter Gp(z) and similarly 
can be expressed for Hp(z).  

Gp(z)  = ൤
𝐺଴଴ሺ𝑧ሻ  𝐺଴ଵ  ሺ𝑧ሻ
𝐺ଵ଴ሺ𝑧ሻ 𝐺ଵଵሺ𝑧ሻ ൨                                

(2) 
 
Considering orthogonal filters for DTCWT 

computation the length of filters for {h0(n), f1(0)} 
and {h1(n), f0(0)} will be equal resulting in 
satisfying para-unitary property as in Eq. (3) and 
time reversal property as in Eq. (4).  

∑ ℎ௜ ሾ𝑛ሿ  ℎ௝ሾ𝑛 ൅ 2𝑘ሿ௡  = 𝛿 ሾ𝑖 െ 𝑗ሿ𝛿ሾ𝑘ሿ 
 
∑ 𝑔௜ ሾ𝑛ሿ  𝑔௝ሾ𝑛 ൅ 2𝑘ሿ௡  = 𝛿 ሾ𝑖 െ 𝑗ሿ𝛿ሾ𝑘ሿ                

(3) 
 
 
h1[n]  =(-1)nh0[L – n – 1] 
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g1[n] =(-1)ng0[L – n – 1]                                     

(4) 
 
L is the length of the filters and if the filters are 

biorthogonal then the length of the filters are 
different. One of the important properties of 
biorthogonal properties are the time reversal 
relation as in Eq. (5).  

 
g0[n] = h0[L0- n – 1] 
p0[n] = f0[L1 – n -1]                                            

(5) 
 
Considering the Kingsbury’s Q-shift filters 

{G0(z), G1(z)} are time reversal of {H0(z), H1(z)}. 
The Polyphase factorization for this filter as 
presented by Adeel Abbas and Trac D. Tran in 
2008 is given as in Eq. (6) for Hp(z) and Eq. (7) for 
Gp(z) for the 14-tap Q-shift filter proposed by 
Kingsbury[13]. 

 
 

HP(z) =  ൥
െ5

64ൗ 0

0 െ5
64ൗ

൩ ൥
1 3

16ൗ
െ3

16𝑧ିଵൗ 𝑧ିଵ
൩ 

              ൥
1 െ37

8ൗ
37

8𝑧ିଵൗ 𝑧ିଵ
൩ ൥

1 െ5
2ൗ

5
2𝑧ିଵൗ 𝑧ିଵ

൩   

(6) 
 

GP(z) = ൥
െ1

64ൗ 0

0 െ1
64ൗ

൩ ൥
1 85

16ൗ
െ85

16𝑧ିଵൗ 𝑧ିଵ
൩ 

           ൥
1 37

8ൗ
െ37

8𝑧ିଵൗ 𝑧ିଵ
൩ ൥

1 5
2ൗ

െ5
2𝑧ିଵൗ 𝑧ିଵ

൩       

(7) 
Kingsburys 14-tap Q-shift filter is orthogonal 

and the real part of this filter is time reverse of the 
imaginary part satisfying Ψg(t) =  Ψh(N-1-t) and 
G0(z) is time-reversal of H0(z). Detailed discussion 
on multiplierless approximation for lifting scheme 
coefficients is presented by Ying-Jui Chen et al. in 
2002 [14]. Considering 10-tap Qshift filters for 
DTCWT polyphase factorization scheme is used to 
arrive at lifting scheme coefficients.  

 
2. DERIVING LIFTING SCHEME FOR 10-

TAP DTCWT FILTER 
 

At every level of DTCWT decomposition row 
processing and column processing is carried out 
considering four filters representing real and 
imaginary filter banks. For 2D image registration, 

level-1 decomposition using DTCWT generated 16 
sub bands of which 12 of them were high pass sub 
bands and 4 of the were low pass sub bands. For 3D 
image registration, level-1 decomposition generated 
64 sub bands of which 56 of them were high pass 
sub bands and 8 of them were low pass sub bands. 
Computation complexity of filter banks 
implementation on hardware platform is estimated 
considering arithmetic units and memory units. 
Figure 1 presents the filter bank for analysis and 
synthesis filters for DTCWT. The analysis filters 
are represented as {H0, H1, G0, G1} and the 
synthesis filters are {H’0, H’1, G’0, G’1}. The 
corresponding filter coefficients for analysis filters 
are presented in Table 1.  

 
         Figure 1: DTCWT analysis and synthesis filters  
 
The 10-tap filter coefficients represent Kingsbury 

Q-shift filters and it is required to design high speed 
area efficient and low power architecture for 
implementation of the filter structure on FPGA 
platform. The synthesis filters coefficients for 
Kingsbury Q-shift 10-tap filter is presented in Table 
2. Based on the discussions presented in previous 
section, lifting scheme based algorithm is designed 
and suitable architecture is developed for FPGA 
implementation.  

 
Table 1: Analysis filter coefficients 

 

 
 

Table 2: Synthesis filter coefficients 
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  The analysis filter coefficients simplified using 

approximation algorithm in MATLAB and the 
corresponding lifting scheme coefficients are 
derived and is presented in Figure 2. The lifting 
scheme method derived for the 10-tap filters 
requires three stages of predict-update pair of 
arithmetic operations and the final stage requires 
scaling process to generate the filter coefficients 

 

 
 
     Figure 2: Lifting scheme coefficients for 10-tap 

filter 
 

Predict and update filter coefficients obtained is 
found to be in the range of |0.06746501| to 
|12.26138873| with dynamic range variation of 
99.44%. Using Laurent polynomial predict and 
update expressions for lifting scheme is presented 
in Eq. (8). 
 P1(z) = 0.2733   
                                                     
P2(z) = - 0.2543 + 3.959*z^(-1) 
 
P3(z) = - 0.08291*z^(+2) - 0.2394*z^(+1) 

 
P4(z) = + 8.26*z^(-2) - 12.26*z^(-3) 
 
P5(z) = - 0.255*z^(+4) + 0.06747*z^(+3) 
 
P6(z) = 3.865*z^(-4) 

 
                                                                        (8) 

     K1 =    -0.6836 and   K2 =    -1.4629 
 

The polyphase factorization for the 10-tap 
analysis filter Hp10(z) is presented in Eq. (9), 
similarly the Polyphase factorization for 10-tap 
filter Gp10(z) is also arrived at.  

 

 

 
 

               
(9) 

It is required to design efficient architecture for 
implementation of DTCWT filters considering 
lifting scheme algorithm. The filter coefficients are 
fractional numbers and require 16 bit number 
representation. Representing the filter coefficients 
using integer number representation simplifies the 
complexity of arithmetic unit. The lifting scheme 
coefficients for both real tree and imaginary tree 
(tree a and tree b) are scaled by a factor of 16 (24) 
and rounded off to its nearest integer.  The scaled 
and rounded lifting scheme coefficients represented 
as {HQ0, HQ1, GQ0, GQ1} are presented in Table 3 
for the real tree filters and Table 4 for imaginary 
tree filters. The maximum and minimum values of 
filter coefficients after scaling are 196 and zero. 
The dynamic range variation is approximately 
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99.999% after scaling and rounding. The dynamic 
range before and after scaling and rounding is 
changed by a factor of 0.00559, indicating a very 
small change in magnitude variations 

 
Table 3 :Quantized filter coefficients for real tree 
 

Tree a 

N Lifting coefficients  Quantized lifting 
coefficients 

H0 H1 HQ0 HQ1 
P1 4.3732 0 4 0 

P2 -4.0692 63.3487 -4 63 

P3 -1.3265 -3.8296 -1 -4 

P4 132.1525 -196.1822 132 -196 

P5 -4.0803 1.0794 -4 1 

P6 61.8352 0 62 0 

Ka -10.9370 -23.4067 -11 -23 

 
 
 
 
 
 
 
 
 
 
 
Table 4: Quantized filter coefficients for imaginary 

tree 
 

Tree B 
N Lifting coefficients  Quantized 

lifting 
coefficients 

G0 G1 GQ0 GQ1 
Q1 -0.2733 0 -4 0 
Q2 0.2543 -3.9592 4 -63 
Q3 0.0829 0.2393 1 4 
Q4 -8.2595 12.2613 -132 196 
Q5 -0.0037 -0.0674 0 -1 
Q6 3.8647 0 62 0 
Kb 5.6537 0.1768 90 3 

 
 

Figure 3 is the lifting scheme structure for the real 
tree filter bank of DTCWT. The input sequence 
x(n) is split into even and odd samples and is 
processed by the three stages of predict-update 
arithmetic operation and then is finally processed 
by the scaling operations. The terms s(z) and t(z) 
are generically used for representation for predict 
and update operations respectively. The Polyphase 

factorization for the structure is expressed in terms 
of s(z) and t(z) as in Eq.(10).  
 
 

 
Figure 3: Generic representation of 10-tap lifting scheme 
structure 
 

P (2) = ℿ௜ୀଵ
௡ ቂ1 Sᵢሺzሻ

0 1
ቃ ൤

1 0
tᵢሺzሻ 1൨ ൤

K 0
0 1/𝐾൨         

(10) 
 
Figure 4 presents the proposed lifting scheme 
structure derived from the generic structure in 
Figure 3. The predict and update terms are 
represented as P(z) and is represented in terms of 
Polyphase factorization as in Eq. (11). The 
proposed lifting scheme structure consists of two 
subtractors and two multipliers every stage of 
predict-update operations. The last stage is 
multiplication operations. Figure 5 is the lifting 
scheme structure for tree b.  
 

 
Figure 4: Lifting scheme structure for real tree or tree 

a 
 

Pa (z) = ቂ1 P₁
0 1

ቃ ቂ
1 0
P₂ 1ቃ ቂ1 P₃

0 1
ቃ  ቂ

1 0
P₄ 1ቃ 

                   ቂ
1 P₅
0 1

ቃ  ቂ
1 0
P₆ 1ቃ ቂ

K₁ 0
0 K₂ቃ                    (11) 

 Figure. 5: Lifting scheme structure for real tree or tree b 
 

The number of arithmetic operations required for 
implementing DTCWT based on lifting scheme is 
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further optimized to reduce power and area 
requirement and improve processing speed.  
 
4. DESIGN OF EFFICIENT LIFTING 
SCHEME STRUCTURE 
 
Based on the polyphase factorization expressions 
the step by step operations of lifting scheme 
algorithm is presented in Table 5 for tree a and 
Table 6 for tree b. There are eight steps starting 
from split operation to scaling operation. The split 
operation is performed by down sampling by 2 and 
using one clock cycle delay. The even term is 
represented by X2i and X2i+1 represent the odd term 
and are represented as si

0 and di
0 respectively. The 

lifting filter coefficients for tree a are represented as 
{a1, b1, b2, d1, d2, e1, e2, f1} and for tree b is 
represented as {a2, b3, b4, d3, d4, e3, e4, f2}.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5: Step by step process of lifting scheme algorithm 
for tree a 
 

Lifting 
steps 

Arithmetic 
Expressions 

With lifting 
coefficients  

Even 
and odd 
split 

Si
0 =X2i          &      

di
0  = X2i+1 

Si
0 =X2i                  

di
0  = X2i+1 

Predict 1 di
1 = di

0 + a1 Si
0 di

1 = di
0 + 4 Si

0 
Update 1 Si

1 = Si
0 + b1 di

1 + 
b2 d1

i+1 
Si

1 = Si
0 - 4 di

1 + 
63 d1

i+1 
Predict 2 di

2 = di
1 +  c1S1

i-2  
+  c2S1

i-1 
di

2 = di
1  - S1

i-2  - 
4S1

i-1 
Update 2 Si

2 = Si
1 + d1d2

i+2 
+ d2d2

i+3        
Si

2 = Si
1 + 132 

d2
i+2  - 196 d2

i+3 
Predict 3 di

3 = di
2 + e1S2

i-4  
+ e2S2

i-3 
di

3 = di
2 – 4 S2

i-4  
+ S2

i-3 
Update 4 Si

3 = Si
2 + f1d3

i+4 Si
3 = Si

2 + 62 
d3

i+4 
Scaling  Si = k1 Si

3                
di = k2di

3 
Si = -11 Si

3            
di = -23 di

3 
 
 

Table 6: Step by step process of lifting scheme algorithm 
for tree b 
 

Lifting 
steps 

Arithmetic 
Expressions 

With lifting 
coefficients  

Even 
and odd 
split 

Si
0 =X2i          &      

di
0  = X2i+1 

Si
0 =X2i                  

di
0  = X2i+1 

Predict 1 di
1 = di

0 + a2 Si
0 di

1 = di
0 - 4 Si

0 
Update 1 Si

1 = Si
0 + b3 di

1 + 
b4 d1

i+1 
Si

1 = Si
0 + 4 di

1 - 
63 d1

i+1 
Predict 2 di

2 = di
1 +  c3S1

i-2  
+  c4S1

i-1 
di

2 = di
1  + S1

i-2  
+ 4S1

i-1 
Update 2 Si

2 = Si
1 + d3d2

i+2 
+ d4d2

i+3        
Si

2 = Si
1 - 132 

d2
i+2  + 196 d2

i+3 
Predict 3 di

3 = di
2 + e3S2

i-4  
+ e4S2

i-3 
di

3 = di
2 – S2

i-4  - 
S2

i-3 
Update 4 Si

3 = Si
2 + f2d3

i+4 Si
3 = Si

2 + 62 
d3

i+4 
Scaling  Si = k3 Si

3                
di = k4di

3 
Si = 90 Si

3              
di = 3 di

3 
 

 
In step 1 the input samples are split into even and 
odd samples and are denoted as Si0 and di0. In step 
2 of the lifting scheme the even and odd samples 
are processed to predict the term di1, in this 
expression the lifting constant (a1) derived in the 
previous section and presented in Table 5.7 is used. 
The constant a1 is dyadic rational number and 
performing multiplication with the multiplicand si0 
in step 1 is carried out by left shifting the 
multiplicand by 2 bits. The multiplication operation 
in step 2 is converted to a multiplierless operation. 
In step 3, update 1 operation is carried out and 
requires two samples of predict 1 phase (d0i and 
d1i+1) and two lifting constants b1 and b2. 
Computation of si1 requires two multiplication and 
two addition operations. Considering two samples 
for i=0 and i=1, the update 1 expression is 
presented in Eq. (12). 

S0
1 = S0

0 - 4 d0
1 + 63 d1

1  (i=0)                               
(12a) 

S1
1 = S1

0 - 4 d1
1 + 63 d1

2  (i=1)                               
(12b) 

The term d11 is used twice once for computing S01 
and s11. In computing s10, d11 is multiplied by 63 
and in computing s11 it is multiplied by 4. Since 
multiplication is carried out twice on the same term 
a modified logic is presented in this work so as to 
reuse the multiplied partial products. Table 7 
presents the modified expression of lifting scheme 
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(middle column) and the split lifting expression 
(last column) for performing reuse operations. 

Table 7: Modified and split lifting schemes 

Steps  With lifting 
coefficients  

Modified 
lifting 
expression 

Split 
lifting 
expressio
ns 

1 Si
0 =X2i              

di
0  = X2i+1 

Si
0 =X2i            

di
0  = X2i+1 

- 

2 di
1 = di

0 + 4 
Si

0 
di

1 = di
0 + 4 

Si
0 

- 

3 Si
1 = Si

0 - 4 di
1 

+ 63 d1
i+1 

Si
1 = Si

0 - 4 
di

1 + 64 d1
i+1 

Si
1 = Si

0 - 
4 di

1 + 4 
d1

i+1 + 60 
d1

i+1 
4 di

2 = di
1  - S1

i-2  
- 4S1

i-1 
di

2 = di
1  - S1

i-

2  - 4S1
i-1 

- 

5 Si
2 = Si

1 + 132 
d2

i+2  - 196 
d2

i+3 

Si
2 = Si

1 + 
128 d2

i+2  - 
192 d2

i+3 

Si
2 = Si

1 + 
64 d2

i+2  + 
64 d2

i+2  - 
64 d2

i+3 - 
128 d2

i+3 
6 di

3 = di
2 – 4 

S2
i-4  + S2

i-3 
di

3 = di
2 – 4 

S2
i-4  + S2

i-3 
- 

7 Si
3 = Si

2 + 62 
d3

i+4 
Si

3 = Si
2 + 56 

d3
i+4 

Si
3 = Si

2 + 
16 d3

i+4+ 8 
d3

i+4+ 32 
d3

i+4 
8 Si = -11 Si

3        
di = -23 di

3 
Si = -10 Si

3      
di = -24 di

3 
Si = -10 
Si

3               
di = -16 
di

3-8 di
3 

 

The lifting coefficients in step 3, step 5, step 7 and 
step 8 are replaced with constants that are dyadic 
rational numbers. The split expressions for 
modified lifting scheme are rewritten considering 
the constants in multiples of dyadic rational 
numbers. Considering the modified and split lifting 
logic presented in Table 7 the lifting expression in 
Eq. (12) is rewritten as in Eq. (13) considering two 
time intervals of i=0 and i=1.  

S0
1 = S0

0 - 4 d0
1 + 64 d1

1  (i=0)                         (13a) 

S1
1 = S1

0 - 4 d1
1 + 64 d1

2  (i=1)                         (13b) 

The data flow diagram or graph for the expression 
in Eq. (13) is presented in Figure 6. Rounding of 
the coefficient to 64 and splitting the constant into 
two numbers as 4 and 60 the data flow graph is 
redrawn. The advantage of this logic is the lifting 
term d11 multiplied by the constant 4 is used twice 

to compute s01 and s11 saving one multiplication 
operation.  

 

Figure 6: Dataflow graph for step 3 using split lifting 
expression 

Multiplying the input data by dyadic twiddle factor 
of 4 is performed by shifting left the multiplicand 
by 2-bits. Multiplication by the constant 60 is 
carried out by performing left shift operation of the 
multiplicand. Since 60 is not a dyadic integer, the 
constant 60 is expressed as (64-4). The binary 
representation of 60 is “011 1100”, this implies 
there are 4 ones and hence requires four left shift 
operations. Representing the constant 60 by 64 
(“1000 0000”) and 4 (“0000 0100”) the number of 
ones are reduced to two. The arithmetic operations 
in of shifting left the multiplicand when multiplied 
by 64 and 4 will be appending 6 zeros and 2 zeros 
at the LSB respectively. After appending operation, 
the partial products are added using one adder. The 
total number of shifting operations and addition 
operations are reduced in this method of data 
processing. 

Figure 7: Dataflow graph for step 5 using split lifting 
expression 

Figure 7 presents the data flow diagram for step 5 
of split lifting scheme. The lifting coefficient -196 
is rounded off to nearest integer -192 and is split 
into -64 and 128. Similarly the lifting coefficient 
132 is rounded off to 128. Multiplying the term d21 
with 128 in the first half of data flow graph is 
carried out by appending 7 zeros on the LSB and 
the product is represented as ‘d’. The product term 
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‘d’ is used in two branches of the data flow diagram 
and is further multiplied by -64 (carried out by 
appending 7 zeros on LSB) and 1. By realizing the 
data flow graph by split logic the number of bits 
required for representing the data is limited to 8 bits 
(including sign bit) and the product term generated 
in the first half of the data flow graph (represented 
by ‘d’) is reused in the right flowing data graph 
thus saving one arithmetic operation.  

 

Figure 8: Dataflow graph for step 8 using split lifting 
expression 

Figure 8 presents the data flow graph for step 8 of 
proposed lifting scheme method. In this step the 
lifting coefficient 62 is rounded off to 56 and the 
coefficient -23 is rounded of to -24. The constant 
56 is split into three constants of 16, 8 and 32. 
Multiplying the term d31 by 16 and 8 in the first 
half of the data flow graph is carried out by 
appending the input data d31 first by 4 zeros on the 
LSB and then by appending by 3 zeros to generate 
the intermediate term represented by ‘dd’. The term 
‘dd’ is used by the second half of the data flow 
graph to perform multiplication by 32 (carried out 
by appending by 5 zeros on LSB) and sign reversal 
operation in the right flowing data flow graph. The 
proposed lifting scheme method for the 10-tap filter 
represented in Table 7 designed for tree a is 
presented in Figure 9. Figure 10 presents the 
proposed lifting scheme method for tree b.  

In the proposed lifting scheme structure the concept 
of reusability is adopted to reuse the partial 
products for computing lifting scheme predict and 
update intermediate outputs. The number of adders 
for realising one pair of low pass and high pass 
filter outputs are computed to be of 12 for both tree 
a and tree b. Computing both real tree and 
imaginary tree outputs the lifting scheme structure 
are similar only the sign of the lifting scheme 
coefficients change at each stage of predict and 
update steps.  

5. FUNCTIONAL VERIFICATION OF SPLIT 
LIFTING STRUCTURE 

Split lifting structure developed in the previous 
chapter is verified for its logic correctness by 
considering test vectors with range 0 to 255. In 
order to avoid overflow, the input vector is 
considered in the range of 0 to 127. A know vector 
set of 10 pixels is considered and the data is 
processed by the 10-tap filter using convolution 
operation. Output generated in this process using 
MATLAB environment is considered as reference 
output data set. It is required to obtain the same set 
of outputs after the known set of inputs are 
processed by the lifting scheme structure. The 
lifting logic is modelled using Verilog using 
hierarchical approach, the arithmetic units are 
modelled using behavioural model and the 
arithmetic models are integrated into top model 
using structural modelling. Test bench is developed 
to verify the model and the test bench is loaded 
with the known test vectors. The Verilog model is 
simulated in Xilinx ISE and the results are obtained 
in the simulator window. The output generated in 
binary format is converted to signed integer format 
and the outputs are noted down to compare with the 
results of outputs obtained in the MATLAB model. 
For a known set of test inputs theoretical values of 
the actual output is calculated and is compared with 
the simulation results output. The split lifting 
scheme logic is modelled as 1D-DTCWT processor 
and the results for known set of inputs in the range 
of 0 to 127 have been used as test inputs, and the 
corresponding outputs are obtained using ISE Sim. 
The test results are shown in Figure 9. From the 
simulation results it is found that the 1D-DTCWT 
processor results are matching the theoretical 
requirements. 

 

Figure 12: First stage simulation results of 1D DWT 
processor using Model Sim 
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The input pixels are sent into the DTCWT engine 
as given in Table 8 in “DATA IN” vector. The tree 
a and tree b filter coefficients used for the filter 
design are indicated along with the MATLAB 
results and HDL results. 

Table 8: Simulation results for known test case of input 
vector 

 1D-DTCWT tree a  1D-DTCWT tree b  

In HQ0 Output 
(MATLAB)  

Out 
put 
(HDL) 

HQ1 Output 
(MATLAB) 

Out 
put 
(HDL)

42 4 168 164 0 0 0 

42 -4 -168 -164 63 2646 2648 

42 -1 -42 -42 -4 -168 -164 

42 132 5544 5548 -
196 

-8232 -8234 

42 -4 -168 -164 1 42 42 

42 62 2604 2602 0 0 0 

42 -11 -462 -464 -23 -966 -968 

 

The input and output waveform for the simulation 
of DTCWT engine is evaluated the simulation 
result matches the computation results in Table 8. 
Software model results and hardware model results 
are compared for different test vectors and the 
results are found to be similar demonstrating the 
functionality of architecture designed. The DTCWT 
engine takes 30 clock periods to compute the tree a 
and tree b output coefficients at the starting of each 
row. The latency is estimated between the low \to 
high transition of sync signal to first output data 
valued signal. The DTCWT takes only 22 clock 
cycles to computation the DTCWT of each line 
after the computation of first DWT coefficient at 
the starting each new row.  

5.1 FPGA Implementation 

The Verilog model is successfully verified for its 
functionality for both as 1D-DTCWT processor and 
for 3D-DTCWT processor. The functionally 
verified model is synthesized using Xilinx ISE 
targeting Spartan 6 FPGA device. The synthesis 
results for the 1D-DTCWT processor is shown in 
Figure 13. The top level model for the 3D-DTCWT 
processor is shown in Figure 14a and the 
corresponding internal block diagram after level-1 
hierarchy is presented in Figure 14b.  

 

Figure 13: Synthesized netlist  for 1D-DTCWT processor 
 

 
 
Figure 14a and 14b: Synthesized netlist for 3D-DTCWT 

model 

Table 9 compares the FPGA performance results of 
the proposed structure with all other 
implementation structure.  From the comparison 
report, the proposed split lifting scheme based 1D-
DTCWT processor is found to operate ate 
maximum frequency of 342.38 MHz consuming 
power of less than 28 W. The most efficient 
implementation scheme is the Distributed 
Arithmetic (DA) method [15] and the proposed 
method is demonstrating performances better than 
the DA method. 23% of improvement in operating 
frequency and 46% reduction in power dissipation 
is achieved for the proposed architecture as 
compared with DA method. Table 10 compares the 
performances of 3D-DTCWT implementation over 
Spartan-6 device considering three reference 
designs. Power dissipation in all three reference 
architectures is limited to less than 10 W and the 
results obtained are for single stage DTCWT 
processing based on proposed split lifting scheme is 
greater than 56W as the proposed architecture 
processes nine frames simultaneously. The 
algorithm proposed in [16] is modelled and is 
extended for DTCWT computation of 256 x 256 
image and the results are compared with proposed 
split lifting based architecture for 3D DTCWT 
computation. The hybrid DA architecture discussed 
in [17] optimizes area utilization on CLBs and 
DTCWT structure is implemented on Spartan-6 
FPGA for four filters. It is observed that the parallel 
processing algorithm that is designed in this work is 
able to process data at higher frequency of 
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operation as compared with all other architectures. 
The power dissipation is found to be higher than the 
existing designs. Development of image 

registration algorithm on FPGA platform has 
demonstrated that the total delay in performing 3D-
DTCWT is less than 300ps.  

6.  CONCLUSION  

For high speed image processing requirement such 
as in image registration process that is required in 
portable devices or hand held devices the operating 
frequency of over 300 MHz provides 3D image 
processing at more than 200 frames per second 
which is demonstrated in this work based on 
systolic array architecture and DA algorithm. 
DTCWT based image processing algorithm 
demonstrating advantages over DWT based image 
processing this work discusses hardware 
accelerators for meeting the processing speed and 
optimum area for hardware implementation. The 
DTCWT processing module presented in this work 
is suitable for image decomposition into complex 
bands providing information on six directional 
orientations. The proposed architecture can be used 
as an IP module for image processing applications 
to be developed on hardware platforms.  
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Table 9: Comparison of FPGA metrics for 1D-DTCWT processing 

Parameters  Fully-
Parallel 

Fully-Serial Partly-Serial Cascade-
Serial 

Distributed-
Arithmetic 

Split 
Lifting 
Scheme 

Area (Total 
cell area) 

1.37e+09 2.96e+09 4.64e+09 4.62e+06 4.64e+09 0.67e+09 

Time(Max 
Delay) 

472.527ps 9185.81ps 8665.33ps 8737.84ps 3817.75ps 292.001ps 

Power 118.2441031
W 

85.1820803 
W 

133.1774176W 133.928234
4W 

52.0805906 
W 

28.0098 W 

Computed 
Frequency 

99.0533M Hz 108.864M 
Hz 

115.402M Hz 114.445M 
Hz 

261.934M Hz 342.38M 
Hz 

 

 

Table 10: Comparison of hardware requirements 

 SAA with Multiplexed 
DA [16] 

DTCWT [17] Direct 
DTCWT 

Proposed 

Number of Slice 
Registers 

3672 4112 7482 10234 

Number of Slice 
LUTs 

3173 4091 7224 10054 

Total power (W) 1.5702 1.71111 2.00207 56W 

Max. Frequency 
(MHz) 

321.89 289.12 212.67  332.98 
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Figure 9: Proposed lifting scheme data flow graph for tree a 
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Figure 10: Proposed lifting scheme data flow graph for tree b 
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Figure 11: Data flow diagram for computing {S-2, d2} of tree a and tree b  

 

 


