
Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4082

UNDERSTANDING STUDENTS’ PERCEPTIONS AND
MOTIVATIONS TOWARDS THE LEARNING OF

PROGRAMMING IN MALAYSIAN HIGH SCHOOLS

 1RODZIAH LATIH, 2AHGILAN PEREMOL, 3NORLEYZA JAILANI
1,3 Faculty of Information Science and Technology, University Kebangsaan Malaysia, 43600 Bangi,

Selangor, Malaysia
2Information Management Unit, Ministry of Education, Putrajaya, Malaysia.

E-mail: 1rodziah.latih@ukm.edu.my, 2ahgilan@gmail.com, 3njailani@ukm.edu.my

ABSTRACT

Computer programming as a taught subject was added to the Malaysian National School Curriculum in
stages starting from 2017. This is seen as a positive step in light of the nation's future challenges, especially
with the advent of the Fourth Industrial Revolution. However, a wealth of research has indicated that
programming's teaching and learning are wrought with challenges and pedagogical issues. It is thus
imperative that studies are done to investigate issues regarding the acceptance and motivation in learning
programming among local school children. With this objective in mind, a study was done in several schools
in Selangor, Malaysia. A total of 166 form-four students were surveyed to uncover their perceptions of the
materials and approaches used in the teaching of programming and their motivations in learning
programming. According to the results, the materials and teaching approach were important factors to
motivate students to like the subject and make them perform better.

Keywords: Coding, Computational Thinking, Algorithmic Thinking, Computer Science Curriculum, Turtle
Graphic

1. INTRODUCTION

Programming skill has been identified as
the required skill for the current job market [1]. It is
also an essential job skill for a future job because
many businesses rely on computer apps and
systems. Learning to program lets students get a
better understanding of the software, which is an
essential part of the computer system and current
technology devices. Programming is a process of
writing, testing, debugging/ troubleshooting, and
maintaining the source code of computer programs
[2]. Programming is, in fact, a much broader topic
than pronounced by definition. Programming
exposes students to computational thinking, which
involves problem-solving using a computer [3].
Thus, programming is an ideal way of developing
computational thinking [4], and computational
thinking may be applied to various kinds of
problems that do not directly involve programming
[5].

Computational thinking will let students

articulate a problem and think logically. It can be

used not only for mathematically well-defined
problems of which solutions are completely
analyzable; nevertheless, real-world problems
whose answers might be in the form of large,
complex software systems [6]. Students competent
in computational thinking are knowingly better
prepared for the daily tasks and the professional
work that anticipates them in their future [7]. Thus,
computational thinking should be considered as an
attitude and skill for everyone and not just
computer scientists [8].

Accordingly, many countries have

introduced computer programming courses in
schools. In the UK, the new computing curriculum
was introduced in 2014 and incorporated Computer
Science teaching as compulsory from ages 5-16 [9].
The curriculum was programmed in four stages
throughout their formal K-12 education. For each
stage, students are expected to develop aspects of
computational thinking skills progressively. For
example, in Key Stage 1 (age 5–7 years old), the
students create and reason about the simple
program. At this stage, the objective is to develop

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4083

deeper computational thinking and problem-solving
skills, and the exercises take place without program
a physical computer. In Key Stage 2 (age 7–
11 years old), they will create and debug more
complicated programs with specific goals and get to
grips with basic programming concepts like
variables and control structure. In Key Stage 3 (age
11–14 years old), the students are expected to learn
two programming languages, at least one of which
is a textual programming language where they have
to create their programs. While the requirements of
Key Stage 2 can be fully satisfied in non-textual
programming like Scratch, the Key Stage 3 syllabus
deliberately ensures that students move to full-
textual programming. At Key Stage 4 (age 14–16),
the students have an opportunity to study aspects of
Information Technology and Computer Science at
sufficient depth to allow them to progress to higher
levels of study or a professional career.

Japan also has a plan to make

programming compulsory for all primary school
(age 6 – 12 years old) by 2020, followed by a junior
high school (age 12 – 15 years old) in 2021 and
high school (age 15 – 18 years old) by 2022 [10]. In
primary school, the students will learn logical
thinking through programming experiences. Since
there is no subject to teach computing, the students
will learn programming in other disciplines like
arithmetic and science. In junior high school, the
students will learn programming through the
subject Technology, of which they will discover
two types of programming, “Measurement and
Control” and “Network Communication." In high
school, the students will learn to program in two
elective courses of subject “Informatics”;
Information I and Information II.

Singapore introduced a computing

curriculum to develop computational thinking and
programming skills from pre-school to tertiary
education level in 2014 [11]. Unlike countries like
England and Korea, Singapore does not include
computing or computational thinking as
compulsory education. Instead, Singapore’s
approach provides opportunities for students to
develop their interests in programming and
computing skills through touchpoint activities at
various ages. At the pre-school level, the Playmaker
Program was introduced where electronic, robotic,
or programmable toys are used to engage young
children in play while developing computational
thinking skills such as algorithmic thinking. In

primary school, the Code for Fun Enrichment
Program was introduced to expose the students to
computational thinking concepts and
programming; and develop a workforce equipped
with basic programming and computational
thinking skills. The students learn to program using
a visual programming language, such as Scratch,
combined with a robotic kit such as the MoWay or
microcontrollers such as the micro:bit. For
secondary school, students are taught to program
using Python programming language. The students
will develop computational thinking and
programming skills to create solutions with
technology to solve problems.

Malaysia had also introduced

programming as a subject at the school level in
2017. The curriculum has been designed to
integrate the subject, starting from primary school
until upper secondary school. The objective is to
equip students with computational thinking and
problem-solving skills. Subsequently, this study
investigates the perceptions of Malaysian lower
secondary students towards learning computer
programming and what motivates them to learn the
subject. We also introduce an engaging visual
approach to learning basic programming as an
alternative to the current textual approach. The aim
is to investigate whether the approach can help
them understand the topics and motivate them to
learn computer programming.

Therefore, the rest of the paper is

structured as follows: Section 2 explains the
research background, while Section 3 highlights the
research methods applied in this study. This is
followed by sections 4 and 5, which respectively
describe the results obtained and the discussion.
Finally, section 6 concludes this paper.

2. RESEARCH BACKGROUND

2.1 Malaysia Education System

In Malaysia, education is divided into four

stages: pre-school education (age 4-6 years old),
primary school (age 7 – 12 years old), secondary
school (age 13 – 17 years old), and tertiary
education (college or university) (Fig. 1). The
primary school takes six years (year-1 (Y1) till
year-6 (Y6)), and for secondary school, it takes five
years (form-one (F1) till form-five (F5)). Only

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4084

primary school is compulsory, where else are
optional. The secondary school stage is divided into
two levels; lower secondary school (F1-F3) and
upper secondary school (F4-F5). After each stage,
there is a national examination named Primary
School Achievement Test (UPSR), Form Three
Assessment (PT3), and Malaysian Education
Certificate (SPM). After the PT3 examination,
students are streamed according to their PT3 results
and interest. They typically attend one of the three
types of school; academic (art or science), technical
and vocational, and religious. At the end of upper-
secondary school, students from all streams take the
SPM examination. Those who want to go for
tertiary education can choose either to go to post-
secondary school (form-six (F6)), Matriculation, or
Diploma at any institution, like polytechnic. After
form-six (a two-year program), they have to sit for
another national examination called the Malaysian
Higher Education Certificate (STPM). Generally,
the admission requirement for all Malaysian
universities is either STPM, matriculation, or
Diploma. Figure 1 summarizes the stages in
Malaysia Education System.

Figure 1: Malaysia Education System

In 2017, Malaysia officially introduced

computer programming subjects in the national
school curriculum to equip students with logical
thinking and problem-solving skills. At primary
school (Y4-Y6), programming is taught through the
Design and Technology subject. Students learn to

create algorithms (pseudocode and flow chart) and
develop simple programs. The students are also
learned to program hardware such as Arduino and
Micro-Bit, which is an introduction to Robotics and
Artificial Intelligence. Computer programming is
also taught to lower-secondary school students (F1-
F3) through two different subjects (the school can
choose either one); Basic of Computer Science
subject, and Design and Technology subject.

Further, for upper-secondary school

students (F4-F5), computer programming is taught
via Computer Science subject. At the lower-
secondary school level (F1-F3), students are
exposed to simple programming using Scratch,
while upper-secondary school (F4-F5) students are
using Microsoft Visual Basic, Java, PHP, Phyton,
and HTML (also the school can choose which
appropriate). The objective is to equip the students
with a good foundation in computational thinking,
problem-solving skill, and programming language
for future digital economy jobs. In the post-
secondary level (F6), programming is taught
through Information and Communication
Technology subjects where they will learn C
Programming. Table I in the following shows the
subjects taught for each level from primary school
to post-secondary level.

Table 1: Computer Science Subjects

Level Subject

Post-Secondary (F6) Information and
Communication
Technology

Upper-Secondary (F4-
F5)

Computer Science

Lower-Secondary (F1-
F3)

Basic of Computer
Science

Design & Technology

Primary School (Y4-
Y6)

Design & Technology

2.2 The Challenges of Teaching Computer
Programming at School Level

The main aim of teaching programming is

to teach how to program. The fundamental of
programming is about two things; solve the
problem, and create a program as a solution [2]. In
the first case, the programmer analyses the
problem, produces an algorithmic solution, and then

Degree

Lower Secondary F1‐F3 (Age: 13‐15)

Primary Y1‐Y6 (Age: 7‐12)

Pre‐School (Age: 5‐6)

Diploma Form 6 (F6) Matriculation

National Exam: UPSR

Upper Secondary F4‐F5 (Age: 16‐17)

National Exam: PT3

National Exam: SPM

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4085

translate this algorithm into a program code. The
second case, which is to create a program, involves
two knowledge; program generation and program
comprehension. To generate a program, students
need to know the type of data, the process, and how
to construct the command. As for program
comprehension, the students should understand how
their program works. Another aspect, similarly
important, is the semantics of a program, also
referred to as the program's meaning. A
semantically correct program is a program that
performs the required task. Programs written with
different syntax can perform the same semantic
task.

Computer programming is challenging to

both students and teachers as it is required to fluent
the programming language and structure the overall
logical flow of instructions. The concepts in
computer programming are also abstracts and
challenging to learn. Thus, it is recommended for
introductory programming to teach problem-solving
and algorithm development before the language
[12]. The algorithm is a detailed step-by-step
instruction for solving a problem or completing a
task. Children should be teaching to think
algorithmic because it is crucial for other subjects
as well as mathematics and science.

Masura et al. [13] identified six significant

challenges in teaching and learning computer
programming; suitable materials, teaching
approaches, learning approaches, problem-solving
skills, time management, and self-confidence. The
students who excel in programming have worked
very hard; they do many exercises, discuss with
teachers and peers, and find other resources such as
from the Internet [13]. Bubica and Boljat [14] also
highlighted factors that influence the success of
students in programming such as mathematical
knowledge, spatial map sketching, sense of
comfort, attribution of success, learning style, the
choice of the first programming language, students’
behavior while programming, learning strategies,
gender, and previous programming experience, the
total number of years spend in programming, a
number of introduced programming languages,
using viable mental models, solving problem
abilities, greater number spent in playing computer
games, exercising languages skills, English as a
native language, students interest, and their course
expectations, and systemizing Quotient (SQ) -
empathy quotient (EQ) value.

The method of teaching in a classroom can
be the reason for students’ low performance. Using
an outdated way of teaching to the current
generation is not an option. Students born and
grown up with interactive media and smart mobile
devices do not find programs based on examples of
the form 'Hello, World' motivating. They are more
interested in visual programming tools like Scratch
[15], Alice [16], Pencil Code [17], Kojo [18], and a
real robot [19], [20]. However, using programming
tools in the classroom does not impact the students'
problem-solving skills; nevertheless, it improves
their self-confidence in problem-solving skill [21]
and their perception toward programming [22].

Lack of motivation among the students in

learning computer programming may contribute to
some known problems in computer science
education, such as lower achievement,
programming incompetence, low level of interest,
and negative perceptions towards computer science.
Nevertheless, using the right programming
language, course content, and teaching approach
can affect students’ self-efficacy [23]. On the other
hand, self-efficacy positively impacts intrinsic
motivation, and this intrinsic motivation can engage
students in learning activities [24]. Intrinsic aspects
focus on individuals rather than the environmental
setting. It generally includes individual attitude and
expectation, goals, and emotions. Studies show that
students who have intrinsic motivation disclosed
excellent performance and perceived high
programming skills compare with other types of
motivation [22], [25], [26].

2.3 Java Turtle Graphics

Turtle Graphics is a programming

language learning approach for children introduced
by Wally Feurzig and Seymour Papert in the late
1960s [27]. Initially, Turtle Graphics was a small
robot that looks like a turtle and could hold like a
pen for drawing. It is a learning tool used to learn
the Logo programming language. At that time,
Logo was well accepted because of its simplicity
and features for quickly show the graphical results.
Papert then developed a graphic library for the
Logo programming language based on the original
Turtle Graphics concept.

The following Figure 2 shows an example

of a program written in Java using the Turtle

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4086

Graphics approach. Turtle Graphics is a vector
graph with three attributes: location, direction, and
pen. The pen has three attributes; colors, widths,
and open/close conditions. The turtle on the screen
moves with commands relative to its position, such
as "move forward 100 spaces" and "turn right 90
degrees". Using Turtle Graphics, students can see
the program's immediate visual output, and they
can edit the program according to the envisioned
output.

Figure 2: Example of Turtle Graphics program

Turtle Graphics can be used to learn the

basic concepts of programming like selection,
looping, procedure, and arrays. Figure 3 shows an
example of a graphical pattern that generates using
repetition structure in the Turtle Graphics approach.
Other patterns also can be generated through
students’ imagination and creativity (Figure 4).

Figure 3: Example of a graphical pattern generated

using the repetition structure.

Figure 4: Examples of students’ work.

The Turtle Graphics approach is easy to

understand and enhances students' motivation to
learn to program [26], [28]. Therefore, it is very
suitable for the use of programming language
learning at the school level [29].

3. METHODOLOGY

This study was carried out to investigate

the perceptions and motivations of Malaysian lower
secondary school students toward teaching and
learning computer programming and their
perceptions of using Turtle Graphics in computer
programming class. The study was conducted using
a survey method, and it took seven weeks to collect
the data.

The teachers teach using the given Turtle

Graphics module that consists of 10 topics;
Introduction to Java Programming, Introduction to
the Programming Environment, Debugging,
Algorithm, Class and object, Variable, Data type,
Input and output, Control Structure, and Repetition
Structure. The teachers were provided with
guidelines. At week seven, a hardcopy of
questionnaires was distributed to 166 students with
different socio-economic backgrounds were
selected from six secondary schools across
Selangor.

The respondents were form-four (F4)

students who registered for Computer Science as an
elective subject. The questionnaire consists of four

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4087

parts; the demographic, Students’ perceptions
towards their Computer Programming class,
students’ perceptions of the Turtle Graphics
Module, and students’ motivation toward the
Computer Programming Course.

The respondents’ profile, as obtained from

their demographic information, is revealed in Table
2. The majority of the respondents are female,
which is 70.45%, while male respondents are
29.55%. 24.40% of the respondents are from the
science track, while 75.60% of the respondents
are from the technical and vocational track. Most
of the respondents (76.29%) have a background
in the Basic of Computer Science subject, which
they studied during form-one (F1).

Table 2. Profile of Respondents

Demographics Category Percentage

Gender Male 29.55%

Female 70.45%

Track Science 24.40%

Technical &
vocational

75.60%

Background in
CS

Yes 76.29%

No 23.71%

The questions are based on the Likert

scales ranging from 1(Strongly Disagree),
2(Disagree), 3(Slightly Agree), 4(Agree) to

5(Strongly Agree). We grouped the respondents’
responses into three groups; negative, neutral,
and positive. The Positive category refers to the
'Strongly Agree' and 'Agree' answers, the Neutral
category refers to the ‘Slightly Agree' answer,
and the Negative category refers to the 'Strongly
Disagree' and 'Disagree' answers.

4. RESULTS

4.1 Students’ Perceptions of Computer
Programming Class

The students were asked to give

perceptions of their computer programming
class. Table 3 shows the results. The majority of
the students (69.28%) agreed that the
programming language's logic and syntax is
difficult to understand. Besides, 63.25% of the
students said that the programming language
used is not relevant. However, most of them
(41.57%) agreed that the teacher's examples are
easy to understand, and 43.98% agreed that the
given materials help them understand the subject.

Table 3 also indicates that the students

satisfied the teacher’s teaching methods (item
No. 3). 52.41% of the students said they liked the
teacher's approach very much compared to only
4.22% loathing it, while 43.37% on the neutral
side.

Table 3: Students’ perception Of Programming Class

No. Item
Mean Percentage

-ve

Slightly
Agree

+ve

1
I feel the logic and syntax of programming language easy to
understand

1.34
69.28 27.71 3.01

2 I feel the programming language used in the class is relevant 1.67
63.25 6.02 30.72

3 I love the teaching pedagogical from teacher 2.48 4.22 43.37 52.41

4 The examples provided by the teacher are easy to understand 2.21 20.48 37.95 41.57

5
The reference material provided by the teacher helped me to
understand the programming language

2.27 16.87 39.16 43.98

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4088

4.2 Students’ Perceptions of Turtle Graphics
Module

Table 4 shows the result of part three.

Generally, most students accept the module and
rate it as neutral (69.87% for item No. 6, and
57.23% for item No. 7). They agree that the
contents of the module are relevant and in line
with the technology developments. The students
also accept the contents, examples, and exercises
appropriately (item No. 8 to 12). The contents of
the module and the examples provided are
sufficient for the students to understand the
topics. The majority of the students (which is
61.45% rate it as neutral) appreciate the
examples given as it helps them understand the
topics better.

The students also agree with the
module's presentation, the style of presentation,
distribution of topics, and language used (items
No. 13, 14, 15, 16, and 17). However, most
students said that the explanation in the module
is hard to understand.

The students also agree that the module

helps them improve their knowledge and
programming skills (items No. 18, 19, and 20).
39.16% of the students said that the module
could improve their programming skills, 2.42%
disagree, and 58.43% are unbiased. Besides, the
proposed module can be used as self-learning
exercises, where the students can practice on
their own.

Table 4: Students’ perception Of Turtle Graphics Module in General

No. Item
Mean Percentage

-ve

Slightly
Agree

+ve

6 Generally, do you agree with this module 1.85 22.44 69.87 7.69

7 The contents of this module are relevant and in line with
technological developments

1.57 42.77 57.23 0

8 This module achieves its objectives 1.71 33.73 61.45 4.82

9
The contents of this module are sufficient for me to understand
the subject of learning

1.80 27.11 65.66 7.23

10 The contents of this module are related to the course evaluation 1.82 22.89 72.29 4.82

11 The examples included are sufficient 1.84 17.47 80.72 1.81

12 The examples included help to understand this module 2.08 15.06 61.45 23.49

13 The distribution of topics in this module is reasonably long 1.90 10.24 89.16 0.6

14 The style of presentation of this module is interesting 1.80 19.88 80.12 0

15 The explanation in this module is easy to understand 1.31 68.67 31.33 0

16
The language used in the module corresponds to my level of
mastery

1.75 25.9 73.49 0.6

17 The objectives of the module are clearly stated 2.07 12.05 69.28 18.67

18 This module can improve my programming skills 1.63 39.16 58.43 2.41

19 This module can improve my knowledge 1.73 31.93 62.65 5.42

20 This module allows me to practice individually 1.55 45.18 54.82 0

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4089

4.3 Students’ Motivation Toward Learning
Computer Programming

We also asked students what motivated

them to learn computer programming subjects—the
result in Table 5. The majority of the students
(52.73% rate as neutral and 6.06% rate it as
positive) said they feel excited to learn computer
programming. 40.96% of the students said that
they choose to be in the computer programming
class compared to only 9.04% of the students that
opposed it. The majority of the students (41.57%

rate as neutral and 27.11% rate as positive) said
they would like to study computer science further
after they finish school.

The majority of the students (54.22%)

said that they would ask the teachers or friends if
they need an explanation on the subject.
Sometimes they also try to find the answer on the
Internet.

Table 5: Students’ Motivation Towards Learning Computer Programming

No. Item
Mean Percentage

-ve

Slightly
Agree

+ve

21 I feel excited when learning to program 2.35
6.06 52.73 41.21

22 Be in this programming class is my choice 2.22
19.28 39.76 40.96

23
If I do not understand any programming topics, I will ask a
teacher or a friend or search the Internet

2.45 9.04 36.75 54.22

24 I would like to further my studies in computer science after SPM 2.04 27.11 41.57 31.33

25 The module design helped me in planning my study 2.12 4.22 79.52 16.27

5. DISCUSSION

The study investigates the perceptions and
motivations of Malaysian lower secondary students
towards the teaching and learning of computer
programming. The students have a negative
perception of the programming subject. The
students alleged that the logic and syntax of the
programming language is difficult to understand.
Even though they agreed that the teacher's
examples are easy to understand, and the given
materials help them understand the subject.

We also introduced an exciting approach,

via a module, to teach basic programming, and we
would like to know the students’ opinions on this
module. The new module adopts the Turtle
Graphics approach to teach computer
programming. We asked the teachers to use this
module to teach computer programming as a
supplement to the preexisting module. We then
asked the students' perceptions of this module,
and the majority of them like it. The provided
module has helped the students to understand the

subject, and it improved their self-efficacy.

In the last part, we asked the students

their motivation to study computer programming.
Amazingly, most students said that their liking for
the subject had motivated them to study computer
programming subjects. They also plan to further
studies in computer science during their tertiary
education level. This type of motivation is known
as intrinsic motivation, where the engagement in an
activity mainly for pleasure and satisfaction [30].

The results from this research show some

similarities with the research done by [25], [26],
[31], where intrinsic motivation leads to self-
motivation in pursuing the learning. It is also
discovered that the new module introduced did
manage to spark some motivation in learning
computer programming. The teachers’ teaching
approach has also grabbed the students’ attention
and improves students' motivation through
engaging learning experiences.

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4090

6. CONCLUSION

This study provides some convincing
evidence of common problems in learning
programming. The material and the teaching
approach are essential factors in giving confidence,
satisfaction, and enjoyment in learning
programming. One of the exciting findings shows
that students who learn fundamental concepts of
computer science at a young age most probably
will pursue computer science. They enjoy
learning computer programming; nevertheless,
they said it is difficult to understand the subject.

Some limitations of this study include

the limited number of schools involved in the
study. This is because we only consider schools
that teach Java programming. Thus, it is essential to
realize that this study's results may not be
extrapolated to other geographical regions or to
schools that adopt other programming languages. In
such scenarios, further studies will have to be
carried out. The authors are currently trying to
develop other Turtle Graphics modules using
Python, C, and C++ programming language.

We hope these findings will help teachers

strategize their teaching approach to nurture
positive computer programming perceptions and
motivate them to grip their skills. Programming
helps give a better overall understanding of the
rapidly changing technology that affects our
daily life. Learning programming at the school
level can help children develop these skills and
play a part in the change. Learning programming,
however, is not easy and notoriously hard for
school level students. The success is strongly
dependent on student motivation, interest, and
vital foundational skill. It is essential to
understand the factors influencing students’
motivation, confidence, satisfaction, and
enjoyment of studying computer programming.
We also hope the findings will give overall views
on the Computer Science curriculum, particularly
in programming. The information can be used to
prepare on which computer programming
language can be taught.

CONFLICT OF INTEREST

The authors declare that there is no conflict of
interest regarding the publication of this paper.

ACKNOWLEDGMENT

This work was supported by the Ministry of
Higher Education, Malaysia, under research grant
fund FRGS/1/2016/ICT01/UKM/02/3 and
University Kebangsaan Malaysia under grant
GGPM-2020-026.

REFERENCES:
[1] S. Hargrave, “Rise Of The Machines: Why

Coding Is The Skill You Have To Learn,”
The Guardian, 2018. [Online]. Available:
https://www.theguardian.com/new-faces-of-
tech/2018/oct/25/rise-of-the-machines-why-
coding-is-the-skill-you-have-to-learn.
[Accessed: 23-Sep-2020].

[2] A. Luxton-Reilly et al., “Introductory
Programming: A Systematic Literature
Review,” in Annual Conference on
Innovation and Technology in Computer
Science Education, ITiCSE, 2018, pp. 55–
106.

[3] F. Buitrago Flórez, R. Casallas, M.
Hernández, A. Reyes, S. Restrepo, and G.
Danies, “Changing a Generation’s Way of
Thinking: Teaching Computational Thinking
Through Programming,” Rev. Educ. Res.,
vol. 87, no. 4, pp. 834–860, 2017.

[4] M. Webb et al., “Computer Science in K-12
School Curricula of the 2lst Century : Why ,
What and When ?,” Educ Inf Technol, vol.
22, pp. 445–468, 2017.

[5] J. M. Wing, “Computational Thinking and
Thinking About Computing,” Philos. Trans.
R. Soc. A Math. Phys. Eng. Sci., vol. 366,
no. 1881, pp. 3717–3725, 2008.

[6] D. Hickmott, E. Prieto-Rodriguez, and K.
Holmes, “A Scoping Review of Studies on
Computational Thinking in K–12
Mathematics Classrooms,” Digit. Exp. Math.
Educ., vol. 4, no. 1, pp. 48–69, 2018.

[7] X. Basogain, M. A. Olabe, J. C. Olabe, R.
Ramirez, M. Del Rosario, and J. García,
“PC-01: Introduction to computational
thinking: Educational technology in primary
and secondary education,” 2016 Int. Symp.
Comput. Educ. SIIE 2016 Learn. Anal.
Technol., pp. 1–5, 2016.

[8] T. Bell, “Computer science in K-12
education: The big picture,” Olympiads in
Informatics, vol. 12, pp. 3–11, 2018.

[9] N. C. C. Brown, S. Sentance, T. Crick, and
S. Humphreys, “Restart: The Resurgence of
Computer Science in UK Schools,” ACM
Trans. Comput. Educ., vol. 1, no. 1, pp.

Journal of Theoretical and Applied Information Technology
31st December 2020. Vol.98. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4091

366–374, 2010.
[10] S. Kanemune, S. Shirai, and S. Tani,

“Informatics and programming education at
primary and secondary schools in Japan,”
Olympiads in Informatics, vol. 11, no. April
2016, pp. 143–150, 2017.

[11] Peter Seow, C.-K. Looi, M.-L. How, B.
Wadhwa, and L.-K. Wu, “Educational
policy and implementation of computational
thinking and programming: Case study of
Singapore,” in Computational Thinking
Education, S.-C. Kong and H. Abelson, Eds.
Springer, 2019, pp. 345--361.

[12] A. Pears et al., “A Survey of Literature on
the Teaching of Introductory Programming
Arnold,” vol. 1846, pp. 161–180, 2018.

[13] M. Rahmat et al., “Major problems in basic
programming that influence student
performance,” vol. 59, pp. 287–296, 2012.

[14] N. Bubica and I. Boljat, “Predictors of
Novices Programmers ’ Performance,”
ICERI2014 Conf., no. November, pp. 1536–
1545, 2014.

[15] I. Ouahbi, F. Kaddari, H. Darhmaoui, A.
Elachqar, and S. Lahmine, “Learning Basic
Programming Concepts by Creating Games
with Scratch Programming Environment,”
Procedia - Soc. Behav. Sci., vol. 191, pp.
1479–1482, 2015.

[16] E. Aivaloglou and F. Hermans, “How kids
code and how we know: An exploratory
study on the scratch repository,” ICER 2016
- Proc. 2016 ACM Conf. Int. Comput. Educ.
Res., no. Section 5, pp. 53–61, 2016.

[17] D. Bau and D. A. Bau, “A preview of Pencil
Code a tool for developing mastery of
programming,” Promot. 2014 - Proc. 2nd
Work. Program. Mob. Touch, Part SPLASH
2014, pp. 21–24, 2014.

[18] F. Heintz, L. Mannila, K. Nygårds, P.
Parnes, and B. Regnell, “Computing at
school in Sweden - Experiences from
introducing computer science within
existing subjects,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 9378, pp.
118–130, 2015.

[19] T. Sapounidis, S. Demetriadis, and I.
Stamelos, “Evaluating children performance
with graphical and tangible robot
programming tools,” Pers. Ubiquitous
Comput., vol. 19, no. 1, pp. 225–237, 2015.

[20] N. F. A. Zainal, R. Din, N. A. A. Majid, M.
F. Nasrudin, and A. H. A. Rahman,
“Primary and secondary school students

perspective on Kolb-based STEM module
and robotic prototype,” Int. J. Adv. Sci. Eng.
Inf. Technol., vol. 8, no. 4–2, pp. 1394–
1401, 2018.

[21] F. Kalelioǧlu and Y. Gülbahar, “The effects
of teaching programming via Scratch on
problem solving skills: A discussion from
learners’ perspective,” Informatics Educ.,
vol. 13, no. 1, pp. 33–50, 2014.

[22] N. F. A. Zainal, S. Shahrani, N. F. M.
Yatim, R. A. Rahman, M. Rahmat, and R.
Latih, “Students’ Perception and Motivation
Towards Programming,” Procedia - Soc.
Behav. Sci., vol. 59, pp. 277–286, 2012.

[23] A. Forte and M. Guzdial, “Motivation and
nonmajors in computer science: Identifying
discrete audiences for introductory courses,”
IEEE Trans. Educ., vol. 48, no. 2, pp. 248–
253, 2005.

[24] R. M. Ryan and E. L. Deci, “Intrinsic and
Extrinsic Motivations : Classic Definitions
and New Directions,” vol. 67, pp. 54–67,
2000.

[25] K. M. Y. Law, V. C. S. Lee, and Y. T. Yu,
“Learning motivation in e-learning
facilitated computer programming courses,”
Comput. Educ., vol. 55, no. 1, 2010.

[26] M. A. Bakar, M. Mukhtar, and F. Khalid,
“The Effect of Turtle Graphics Approach on
Students’ Motivation to Learn
Programming: A Case Study in a Malaysian
University,” Int. J. Inf. Educ. Technol., vol.
10, no. 4, pp. 290–297, 2020.

[27] M. E. Caspersen and H. B. Christensen,
“Here, there and everywhere - on the
recurring use of turtle graphics in CS1,” pp.
34–40, 2000.

[28] A. Perumal, R. Latih, and M. Abu Bakar,
“MyJavaSchool: Students’ Perceptions and
Motivation for Computer Programming,”
Asia-Pacific J. Inf. Technol. Multimed., vol.
08, no. 02, pp. 71–78, 2019.

[29] K. J. Mackin, “Turtle Graphics For Early
Java Programming Education,” Artif Life
Robot., vol. 24, pp. 345–351, 2019.

[30] V. Gopalan, J. A. A. Bakar, A. N. Zulkifli,
A. Alwi, and R. C. Mat, “A review of the
motivation theories in learning,” AIP Conf.
Proc., vol. 1891, no. October 2017, 2017.

[31] S. Mohanarajah, “Increasing Intrinsic
Motivation of Programming Students:
Towards Fix and Play Educational Games,”
Issues Informing Sci. Inf. Technol., vol. 15,
pp. 069–077, 2018.

