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ABSTRACT 
 

Since 2016, the National Institute for Standards and Technology (NIST) launched a post-quantum 
standardization project. Now the competition reaches its third round, and NIST inviting the cryptographic 
community to participate by improving and analyzing the finalist candidates. On our side, we contribute by 
creating an improved release of NTRU Lattice-Based post-quantum key exchange (KEM) scheme, called 
“NTRUrobust”; with parameters set that meet the category 5 security level defined by the NIST. 
NTRUrobust used our own Fast Modular Multiplication algorithm (FMMA) and the Number Theoretic 
Transform algorithm (NTT) together for speeding-up the polynomials multiplication in the cryptographic 
process. We obtain drastic results; our release is faster by factor up to 93 times than NTRUphs821 release 
proposed by the NTRU team. NTRUrobust warrants strong security level, perfect correctness, and great 
flexibility for eventual future extensions. 
 
Keywords: Post Quantum cryptography, Modular Multiplication, NTRU, NTT, KEM. 
 

1. INTRODUCTION  
 

The cryptography is omnipresent in our 
everyday life though many applications in order to 
secure sensitive data exchanged or stored in 
electronic devices. The most current cryptographic 
protocols are based on RSA, Diffie&Hellman 
(DH), or elliptic curve cryptography (ECC). 
Unfortunately, all these cryptosystems will be 
vulnerable to quantum computer attacks. 

It is why, in 2016 the National Institute of 
Standard and Technology (NIST) lunch a post-
quantum cryptosystem standardization project [1] 
for choosing one or more post-quantum 
cryptosystem able to resist quantum computer 
attacks. 

Now, the NIST competition reaches its 
third round by selecting seven finalist candidates: 
"The third-round finalist public-key encryption and 
key-establishment algorithms are Classic McEliece, 
CRYSTALS-KYBER, NTRU, and SABER. The 
third-round finalists for digital signatures are 
CRYSTALS-DILITHIUM, FALCON, and 
Rainbow" as announced in [2].  

Except the Classic McEliece and Rainbow, 
all algorithms are lattice-based schemes and NIST 
states in its latest report, that "The structured lattice 
schemes appear to be the most promising general-
purpose algorithms for public-key encryption/KEM 
and digital signature schemes "[2]. 

1.1 Related works 
NTRU team presented four KEM (Key 

Exchange Mechanism) releases that their 
parameters sets meet the categorization based on 
security levels 1, 3, and 5 as defined by NIST. All 
those releases operate in the polynomials ring of the 
form [ ] / ( 1)n

q qR Z X X  , with modulus q is power 

of two and n prime number. The parameters sets of 
NTRU releases are: 
 NTRUhps2048821 with parameters set that 

meets category 1; it is equivalent to an 
algorithm that is at least as hard to break 
AES128; 

 NTRUhps2048677 with parameters set that 
meets category 3; it is equivalent to an 
algorithm that is at least as hard to break 
AES192. 

 NTRUhps4096821 with parameter set that 
meets category 5; it is equivalent to an 
algorithm that is at least as hard to break 
AES256. 

 And the NTRUhrss701 release which is 
presented as variant of NTRUhps2048677. 
In term of the security, NTRU is based on 

stronger lattices assumption, it has resisted for 20 
years of cryptanalysis. The NIST shows that NTRU 
assumes an interesting security levels, and states 
that NTRU "lacks a formal worst-case-to-average-
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case reduction", and it is more efficient than others 
Lattice-based cryptosystems [2, 3]. 

But in term of the performance, NIST states 
that NTRU submission is "not quite at the level of 
the highest-performing lattice schemes"[2].  

Therefore the goal of our contribution is to 
dress this weakness of NTRU performance, by 
developing new efficient and robust a NTRU 
version, with high confidence in its security.  
  
1.2 Contributions 

We note that, this work is an extended 
work of our latest paper titled "Fast Modular 
Multiplication algorithm applied to a Ring-LWE 
scheme"[4], which describes the creation of an 
improved release of post-quantum key exchange 
"NewHope" based on Ring-LWE problem [5]. 

Along with the cryptographic community, 
we contribute by creating a new efficient and robust  
NTRU post-quantum key exchange (KEM) release 
called "NTRUrobust", with parameters set 
{n=1024,q=65537,p=2} that achieving the category 
5 security level , and it can be a variant of 
NTRUhps4096821 with parameters set {q=4096, 
n=821, p=3} cited above. 

Generally, the execution time of the 
NTRU based protocols is dominated by the 
multiplications in polynomials ring.  

Therefore, for speeding-up the 
polynomials multiplication in the cryptographic 
process (Keys Generation + Encapsulation + 
Decapsulation), our NTRUrobust implementation 
uses NTT algorithm [6,7], combined with our Fast 
modular multiplication algorithm (FMMA), which 
represent a variant of Montgomery algorithm[8] 

and it is two times faster [4].  
The benchmarking result of our release 

compared to NTRUhps4096821 release shown that 
the performance of our release is about 93 times 
faster, and warrants a stronger security level, and 
perfect correctness.  

We also obtained a good result by 
comparing NTRUrobust to CRYSTAL-KYBER 
and SABER, which their parameters meet category 
5 security levels defined by NIST, as we will see in 
section 6. 

We note, also that our release used the 
latest KECCAK hash function which has recently 
been standardized as SHA-3 in FIPS202 [9], 

 
1.3 Outline 

The rest of the paper is organized as follows: 
the section.1 contains this introduction; Section 2, 
recalls the background of the Lattices-Based-
Cryptography, and briefly describes the FMMA and 

NTT algorithms; the Section 3, presents a 
description of some related works based on 
structured Lattice scheme; in Section 4, we present 
NTRU historic   and a description of NTRUhps 
post-quantum cryptosystem. The proposed scheme 
NTRUrobust and the corresponding efficiency and 
security analysis are presented in Sections 5, 6 and 
7. Finally a conclusion is provided. 
 

2. BACKGROUND 

In this section, we will focus to provide 
only descriptions of the principal subjects that are 
evoked in this work. So, we give a brief definition 
of the lattice-based cryptography, and we describe 
our Fast Modular Multiplication and the improved 
NTT algorithms. 
 
2.1 Lattice-Based cryptography 

The Lattice-Based-Cryptography is defined by 
Hoffstein et.al in [10] as follow:  

The Lattice ( )
n

BL of �  is the set of vectors v


generated by the basis  1( ,..., )nB e e
 

 with all vector 

coefficients are integer numbers in � , formally:   

( ) 1 1 1{ ,( ,..., ) ... }.n n
B n n nL v a a and v a e a e     

  
� �   

The Lattice Cryptography is based on the 
complexity to break Lattices Cryptosystems by 
posing problems that are hard to solve. The 
principal Lattice problems are SVP and CVP and 
their definitions are as follow: 
 
2.1.1 The Shortest Vector Problem (SVP) 

Finding (SVP) in Lattice L(B) is finding a non-
zero vector that minimizes the Euclidean norm. 
Formally the problem SVP is to find a non-zero 
vector: 

(B) (B)v L x L v xwe have   
   

ǁ ǁ ǁ ǁ                (1)  
 
2.1.2 The Closest Vector Problem (CVP)  

Given the Lattice ( )BL , and a vector mw


�  to 

find a vector (B)v L


 "Closest" to w


, is to find a 

vector ( )Bv L
  that minimizes the Euclidean norm  

w v
 

ǁ ǁ where: 

        min{ w v } CVP v.  
  

ǁ ǁ               (2) 
Many others approximate problems of SVP 

and CVP exist, like uSVP, CoreSVP[5], etc. The 
CoreSVP is the cost of lattice attacks of one call to 
solve a SVP with block size b, by using BKZ 
Lattice reduction algorithm,  as we will describe in 
section 6 [11].   
 



Journal of Theoretical and Applied Information Technology 
15th December 2020. Vol.98. No 23 
© 2005 – ongoing  JATIT & LLS 

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
3731 

 

2.2 Fast Modular Multiplication Algorithm
 The motivation for studying high-speed 
algorithms for modular multiplication comes from 
their applications in some cryptosystems. FMMA is 
a method to carry out a fast modular multiplication. 
It is two about times faster than the Montgomery 
algorithm, and it can be its variant [4]. 

FMMA is constructed specially for Fermat 
prime numbers and all numbers of the form

2 1kq   . In our case study, we use the fourth 

Fermat prime number as the modulus for our 
implementation, as we will describe below [12]. 

The principle of our algorithm is to 
transform the modulation of a prime number to the 
number of power of two. It allows the reduction 
and the modular multiplication to be fast and more 
efficient on general-purpose computers, signal 
processors, and microprocessors. The reduction 
(%), the multiplication (*), and the division (/) will 
be respectively replaced by logic operators AND 
(&), Shift (<<), and Shift ( >>). 
 
2.2.1  Algorithm 1:  FMMA    
_________________________________________   
Input : , , 2 1, ( 1).kIntegers x y modulus q and q     
FMMA():  

2

1. * ;

( 1);

3. ( ) ( );

( );

5. ( 0) .

6. .

2. .&

4.

p x y

z p

d p z log phi

result z d

if result then return result q

else return result



 
  

 
 

 

__________________________________ 
Output: Reduced number:  * mod .result x y q   

 
2.3 Number Theoretic Transform (NTT) 

The number-theoretic transform (NTT) is 
a generalization of the Discrete Fourier Transform 
(DFT), see [6,7], which is carried out in positive 
Integer group and finite fields whereas the DFT is 
defined in complex numbers group.  

The Number Theoretic Transform (NTT) 
provides efficient polynomials multiplication in the 
ring of the form  [ ] / ( 1)n

q qR X X �  (with n power 

of two and q prime number). NTT has many 
applications in computer arithmetic and 
cryptographic domain, because it reduces the time 
complexity from 2( ) ( * ( ))O n to O n log n . 

To use NTT algorithm we must choosing 
the modulus that satisfying, 1q kn   then the 

multiplicative group n�  has size  ( ) 1 .q q k n      

and a generator g, and computing the primitive nth 
root of unity Omega : 

   ( )mod 1 mod .k n kn qg q and g g q      (3) 

 
2.3.1 Transforming a polynomial from 
Normal form to NTT form 

For a polynomial  
1

0

n
i

i q
i

f f X R




    the 

NTT function is defined by: 

             
1

0

( ) .
n

i
i

i

NTT f fNtt f Ntt X




               (4) 

                 
1

0

mod .
n

j ij
i j

j

with fNtt f q 




        (5) 

Where Gamma    is the 2nd root of unity. 

 
2.3.2  Transforming a polynomial from NTT 
form to Normal form 
 The inverse of NTT function to return to 
normal form is computed by the below formula: 

                 
1

0

( ) .
n

i
i

i

invNTT fNtt f f X




               (6) 

 
1

1

0

mod .
n

i ij
i j

j

with f n f Ntt q 


  



         (7) 

So the NTT algorithm can perform the 
multiplication of two polynomials * qh f g R  ; by 

transforming them to NTT form (fNTT and gNTT); 
computing the product in NTT form by the point-
wise multiplication noted  by ( )  

modhNTT fNTT gNTT q  (that means we obtain 

* modi i i qhNtt fNtt gNtt );  and finally transforming 

the hNTT   polynomial from NTT form to normal 
form by the inverse of NTT function: 

 h invNTT hNTT . 
Consequently, an important reduction cost 

of multiplication can be achieved by pre-computing 
and storing the powers values related to the 
parameters:  and    [6]. 

 
2.3.3 Pre-computed  arrays. 
 For using the improved NTT algorithm, 
based on the Cooley-Tukey (CT) buttery efficiency, 
we should computing and storing five arrays: 
Bitrev, Omega, InvOmega, and Gama in bit-
reversible order, and invGama in normal order as 
follow : 
 Bitrev : Stores the value from 1 to (n-1) in bit-

reversible;  
 Omega: Stores the powers of    in bit-

reversible:     (mod ).Bitrev iOmega i q  
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 InvOmega: Stores the powers of  1  in bit- 

reversible:     (mod ).Bitrev iInvOmega i q   

 Gama: Stores  the powers of    in bit-

reversible:     (mod ).Bitrev iG iama q  
 InvGama: Stores the powers of  1   in normal 

order and multiplying each coefficient by the 
inverse of (mod )n q : 

   1
* (mod ).iinvGam i qa

n
    

 
2.3.4 Algorithm 2: improved NTT algorithm 
_______________________________________ 
Input :  a polynomial  f, a pre-computed array 
precomp, dimension n, and modulus * 1q k n  . 

Function  : CoolyNTT() 
 

 
 

 
      

         

1. 0; 10; 2  :

/ /

2.   1 ;

3.   0;    ;   : 

4.   0;

5.   ;  1;  2 *   :

6.       ;

7. FMMA  , ,  ;Pr

8.   ( 5);

9.  

for i i i do

Even Level

d i

for st start d st do

move

for j st j n j d do

A j A j A j d

A j d move A j A j

f

eco

n

mp d q

e d for line

end

   

 

   



    

  

     

 ( 3);or line

 

// Odd Level 

 

 
      

10.  <<=1;

11.   0;    ;   : 

12.   0;

13.   ;  1;  2*   :

14.       ;

d

for st st d st do

move

for j st j n j d do

A j A j A j d

   



    

  

 

         15. FMMA  , ,  ;

16.   ( 11);

17.   ( 13);

18.   ( 1);

PrA j d move A j Am j d q

end for line

end for line

end for i

ec

e

o

n

p

l

     

End algorithm. 
______________________________________ 

Output:   a   fNtt=CoolyNTT(f) in bit-reversed 

ordering. 
Comment: This principal CoolyNTT(f) will be 
called by the algorithm 3 and the algorithm 4.  The 
Precom array in line 7 and 15, takes the value of 
Gama or invGama (as described above) according 
to our need to compute the forward NTT of the 
polynomial f or its NTT inverse, and this principal 
algorithm calls the FMMA algorithm in line 7, and 
line 15 for reducing each multiplication modulo q. 

We note this version of NTT is inspired from [5, 7]. 
 

2.3.5  Algorithm 3: Transforming a 
polynomial from normal form to NTT form 
 
Input:  a polynomial f, n, pre-computed array 
Omega and Gama as are described above. 
Function : NTTfunc(f)  

 
 
      

 
 

1.     _ ;

2.     0 ;  ;   :

3.     FMMA  ,   ,  ;  

4.      2 ;

5. ,  ;

6. Re ;

bitrev vector

for int i i n i do

f i i Omega i q

end for line

fNtt CoolyNTT f Gama

turn fNt

f

f

t

   





 

Output: a polynomial fNtt  in NTT form and in 
normal order. 
Comment: This function calls the FMMA 
algorithm with pre-computed array Omega as 
argument (in line 3), and calls CoolyNTT algorithm 
with pre-computed array Gama as argument (line 
5), and itself is called for each polynomials 
multiplication by the Keys generation, 
Encapsulation, and Decapsulation algorithms. 
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2.3.6  Algorithm 4: Transforming a 
polynomial from NTT form to normal form 
 
Input: polynomial r, n, pre-computed arrays 
invOmega  and invGama containing respectively 
the power of (mod )i q in bit-reversible, and  

(mod )i q 

 in normal order as are described above. 

Function : invNTTfunc(fNtt)  

 
 

 
      

 

1.     _ ;

2. ,  invOmega ;

 3.   0 ;  ;   :

4.     FMMA  ,  invGama ,  ; 

5.       2 ;

6. Re ;

bitrev vector fNtt

f CoolyNTT fNtt

for int i i n i do

f i i i q

end for line

turn r

f



   


 

Output: A polynomial  f  in normal form and in 
normal order. 
Comment: The same, this function calls CoolyNTT 
the algorithm with pre-computed array invOmega 
as argument (in line 2) and calls the FMMA 
algorithm with pre-computed array invGama as 
argument (in line4), and itself is called for each 
polynomials multiplication by the Keys generation, 
Encapsulation, and Decapsulation algorithms. 
 
3. RELATED WORKS 
 

 Many others works used one or 
more algorithms for increasing the performance of 
the multiplication   and modular multiplication. In 
this section we give small description of some 
lattice-based schemes that use one or more 
algorithms commonly in their cryptographic 
process to increase the performance of the 
multiplication and modular multiplication like NTT 
algorithm, Montgomery algorithm, Karatsuba 
algorithm  etc. 
Specially, we describe briefly the two finalist 
candidates CRYSTAL-KYBER and SABER, which 
are competitors of NTRU.  Also, we give a small 
description of FALCON which is a lattice-based 
signature scheme, and it is based on the NTRU 
assumption. 
 
3.1 CRYSTALS-KYBER 

The CRYSTALS-KYBER is post-
quantum  key encapsulation mechanism ( KEM) 
constructed and based on the  hardness of the 
Module Learning With Errors (MLWE) problem, 
and inspired from Learning With Error (LWE) 
created by Regev since 2008[13][14]. It is an IND-

CCA2-secure KEM constructed from IND-CPA 

security by using Fujisaki–Okamoto transformation 
[15]. 

  The KYBER scheme operates in the ring 
of the form [ ] / ( 1)n

q qR Z X X   with the dimension 

n is power-of-two and the modulus q is prime 
number. For speeding-up the polynomials 
multiplication and increasing its performance, 
KYBER uses the number theoretic transform 
(NTT). NIST states that "The scheme has excellent 
all-around performance for most applications"[2].   

We note that KYBER team defined a 
release Kyber1024 with the parameters set meets 
the category 5 security level. 

For more details about KYBER the reader 
can see [16] in NIST website. 
 
3.2 SABER 

SABER is lattice-based (KEM) scheme 
constructed and based on the hardness of the 
Module Learning With Rounding (MLWR) 
problem [17]. Like KYBER, it is an IND-CCA2-

secure KEM constructed from IND-CPA security 
by using Fujisaki–Okamoto transformation [15]. 

The SABER cryptosystem operates in the 
polynomials ring of the form [ ] / ( 1)n

q qR Z X X   , 

with n power of two and modulus q power of two. 
This domain not allows us to use efficiency the 
NTT algorithm. 

The SABER team states that “the rounding 
operation and power-of-2 modulo in SABER 
allows for the efficient optimization of the modular 
reduction and polynomial multiplication steps”. 

We note that SABER team defined a 
release FireSaber with the parameters set meets the 
category 5 security level [18]. 

NIST experts judge that "SABER has 
excellent performance and would be immediately 
suitable for general-purpose applications, and it is 
one of the most promising KEM schemes to be 
considered for standardization at the end of the 
third round"[2]. 
 
3.4 FALCON 
 FALCON [19] is a lattice-based signature 
scheme, its security is based on NTRU assumption, 
and it operates in the polynomials ring of the form 

[ ] / ( 1)n
q qR X X �  with q prime number and n 

power of two. 
 The same, FALCON used the NTT 
algorithm with Montgomery algorithm for speeding 
up the polynomials multiplication and modular 
multiplication. 
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 NIST expert state that “It is efficient, and 
offers good performance. So FALCON was 
selected by NIST to continue in third-round [2].   
 
4.   NTRU  

 
In 1996, NTRU was introduced by the 

three mathematicians J. Hofstein, J. Pipher, and J. 
H. Silverman and then published in 1998 [10]. It 
was presented as an alternative to RSA, ECDH and 
ECC.  NTRU releases have also been standardized 
by the IEEE P1363.1 standard in April 2011, and 
by the X9.98 standard [3][11]. 

NTRU is completely constructed from 
Lattice-Based-Cryptography. Besides the 
conjectured security against quantum attacks, 
lattice-based schemes tend to be algorithmically 
simple and highly parallelizable [2]. 

Its domain of computation is the 
polynomials ring of the form qR [ ] / ( 1)n

q X X �

with n prime number and the modulus q is power of 
two, or the polynomials ring of the form

qR [ ] / ( 1)n
q X X �   with n is power of two and 

the modulo q is prime number. 
Since its first creation there are several 

versions, the latest NTRU is now candidate to 
NIST's post-quantum standardization project, and it 
is selected among the four finalist public key 
encryption/KEM schemes.  

 
4.1  NTRU-HPS KEM scheme 

The NTRU candidate is a structured 
lattice-based KEM obtained from by using generic 
transformation of PKE and it is IND-CCA2 secure. 
“The NTRU-HPS follows Hoffsein, Pipher, and 
Silverman’s use of fixed weight sample spaces” [3].    
is It defined in the polynomials ring of the form 

[ ] / ( 1)n
q qR Z X X   and the sub-ring

[ ] / ( )q q nS X � with ( 1) / ( 1)n
n x x    and 

1 2 ... 1.n n
n x x        

The authors presented four versions with 
different parameters set that warrant the security 
levels defined and classified by NIST in categories 
1,3, and 5 [3].  

The releases and their parameter set are: 
NTRUhps2048509 { 509, 2048, 3}n q p   for 

achieving the security level category 1; 
NTRUhps2048677 677, 2048, 3n q p   for 

achieving the security level category 3; 
NTRUhps4096821{ 821, 4096, 3}n q p   for 
achieving the category 5, (and NTRUhrss701 
version which is a variant of NTRUhps2048677). 

 The polynomials are sampled according to 
uniform distribution with a seed and used 
KECCAK[9] SHA-3 hash function implementation, 
which is the latest standard hash function. They are 
chosen in the set {-1, 0, 1} with some criteria of 
number of coefficients equal to (1) and number of 
the coefficients equal to (-1). The authors designed 
the: ,  ,  ,  ,r m g fL L L L  respectively the sets of the 

polynomials {r, m, g, f} the reader can see for more 
details [3]. 

We remark that the use of the ring qR and 

sub-ring qS has no impact on the NTRU security, it 

is used just for speeding-up the convolution 
multiplication of in this polynomials sub-ring, and 
the inverse of the polynomials by using the 
extended Euclidean algorithm. It is so easy to 
switch from q qR to S or the inverse, just by 

multiplying by ( 1)x  or dividing by ( 1)x  . 
For more information about NTRU 

description and implementations the reader can find 
them [3] in NIST website. 
 
4.2  NTRUhps KEM algorithms description 
 In this subsection we describe briefly the 
cryptographic algorithms, for more details the 
reader can see the document in [3]. 
 
4.2.1 Keys Generation 
 The keys generation begin by: (1) 
generating uniformly two polynomials  ( , )f g  in 

the sets ( , )f gL L ; (2) computing  a polynomial 

3,qF F  as the inverses of f  respectively in 3,qS S  ; 

(3) computing the public key ( * )qh p g F  in qR ; 

(4) and finally computing the inverse of h in qS  

noted qH .   

 
4.2.2  Encapsulation  
 The encapsulation begin by: (1) generating 
randomly a message m  (shared key) in mL set, and 

hashing it in a string Km ; (2) Generating uniformly 

a noise r  as polynomial in rL set; (3) computing a 

cipher-text *c h r m   in qR . 

 
4.2.3 Decapsulation   
 The decapsulation begin by: (1) computing 
a polynomial *a f c  in qR ; (2) computing a 

decrypted message 3*m a F  in 3R ; (3) computing 

a polynomial modr c m q  ; (4) checking 

( , ) r mif r m L L   which means that the 

reconciliation of the shared key is good and returns 
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( , ,0)r m ,  the shared key is the hashed string of m ; 
else it returns (0,0,1) . 

According to the NIST experts' analysis 
NTRU is an exciting field of research, and it is very 
efficient but it has a small performance gap in 
comparison to KYBER and SABER. In particular, 
NTRU has a slower key generation than KYBER 
and SABER [2]. 
 
5. OUR NTRU_ROBUST RELEASE 

 
To correct the performance weakness of 

NTRU candidate, we contribute by creating an 
improved release of NTRU, which could be a 
variant of NTRUhps4096821 release. We obtained 
drastic result in the term of performance by 
combining our FMMA algorithm with NTT 
algorithm as we described above in section 2. 

Our release, called "NTRUrobust", is 
based and inspired from the NTRUhps 
cryptographic algorithms described in section 4. It 
is defined in the polynomials ring of the form

[ ] / ( 1)n
q qR X X �   with the dimension  1024n   

and the modulus 65537q    which is the fourth 
Fermat prime number that allows us to use 
efficiency the FMMA and NTT algorithms. 

In this section, we describe our 
NTRUrobust Lattice-Based (KEM) scheme. And 
for good illustration of our contribution, we 
introduce the NTT functions in the keys generation, 
encapsulation, and decapsulation algorithms. 
 
5.1  Parameters definition method  

To use  the NTT algorithm combined with 
FMMA algorithm, we define herein the necessary 
parameters as follow: 
 The multiplicative group q� has a generator g

and a size ( ) 1 .q q k n    , which represents 
the Euler indicator. 

 And defining the nth primitive root of unity   
and its primitive 2n-th root of unity such that
  , computed by the below formula. 

   ( )mod 1 mod .k n kn qg q and g g q    

 
5.2 NTRUrobust parameters set  

Our NTRUrobust release is defined by the 
parameters set that achieves the category 5 security 
level 1024, 65537, 2, 16 / 2}{n q p     , with   

is the standard deviation used for choosing the 
polynomials according to Centered Binomial 
Distribution. The modulus used is the fourth Fermat 

prime number 
42 62 1 2 *1024 1 65537.q        

Fermat prime numbers were first studied 
by Pierre Fermat, for more details the reader can 
see [12]. 

For computing the needed parameters 
values of NTT, we should follow the steps below: 
 
 The parameters n=1024, k=2^6=64, and 

q=64*1024+1=65537 which satisfying the 
condition: q=kn+1; 

 Finding a generator g=4441 that satisfying the 
conditions: gk !=1 and gkn = 1; 

 Computing n-th primitive root of unity omega:  
  mod 1089kg q   , its square root gamma: 

33   , the inverse of gamma: 

 1 mod 1986q   ,  and the inverse of omega: 

 1 mod 11976q     

 The inverse of n modulo q, 
 1 mod 65473n q   which will be used by the 

inverse of NTT function to transform the 
polynomials from NTT form to normal form 
for computing the InvGama array as defined in 
subsection 2.3.3. 
The particularity of the fourth Fermat prime 

number is that it has only one root of unit 1089  . 
 

5.3        Description of NTRUrobust protocol 
In this part, we describe the proposed 

NTRUrobust post-quantum key exchange(KEM)  
inspired by the NTRUhps KEM scheme. And for 
illustrating our contribution and our improvement, 
we modified the original algorithms of NTRUhps 
(keys generation, encapsulation, and decapsulation) 
by using the NTT functions which includes the 
FMMA function for each multiplication of two 
coefficients (as described in section 2).   
 The polynomials are sampled according to 
Centered Binomial Distribution (sampCBD() 
function) rather than Uniform Distribution 
(sampUD() function), Alkim.et.al[5] state that  
”Sampling from the Centered Binomial Distribution 
is rather trivial in hardware and software. 
Additionally, the implementation of this sampling 
algorithm is much easier to protect against timing 
attack and does not decrease the security”. 

The sets of the polynomials {f, g, r, m} 
used by the NTRUrobust protocol are defined 
respectively as below: 

{ [ 3,..,3]}f iL f R with f     ; 

{ [ 3,..,3]}g iL g R with g     ; 

{ {0,1}}r iL r R with r    ; 

{ {0,1}}m iL m R with m   . 
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Also, we use SHA3-256 hash function 
rather than using the SHAKE-256 hash function 
that allows us to hash a binary polynomial (m) 
directly into string format without coding it into 
string format before hashing it. For more details, 
the reader can see [3, 9].  

 We also note that our version takes the 
private key F in the form * 1F p f  . This form 

allows us to avoid the computation of the inverse of
 modf p because  * 1 mod 1F p f p   [20]. 

The NTRU authors' shown that the use of 
private key in this form decrease the rate of the 
decryption failure, but by the parameters set of our 
release implementation we obtained a perfect 
correctness of the decryption by executing the 
script developed by Hoffstein et.al [21, 22]. 

The Keys Generation, Encapsulation,   
Decapsulation algorithms below, describe the 
protocol operations and illustrate the use of the NTT 
algorithm and the SHA3-256 hash function. The 
FMMA modular multiplication function is 
integrated in NTT functions for each coefficients 
multiplication in all the cryptographic process (as 
described in the algorithm 2,3, and 4). 

 
5.3.1 Algorithm 5 : Keys Generation 
Input : the sequence parameters { , , }n q p  and a 
seed. 

   
1. , ( );f g sampCBD seed   
2. 1;F F pf     
3. , ( , );FNtt gNtt NTTfunc F g     

  1
4. mod ;invFNtt q

FNtt
  

 5. ( mod );hNtt gNtt invFNtt q    

 1
6. mod ;invHNtt q

hNtt
   

7. ( );pk encode hNtt   
8. ( , );sk encode FNtt invHNtt   

Output : private key FNtt and invHNtt encoded in 
the string sk and the public key hNtt encoded in pk. 
Comment : In the key generation our 
implementation generate both private keys (f, g) in 
the same time by the sampCBD(seed) function(line 
1) that allows us to increase the key generation 
process, this function uses the SHAKE-256 Keccak 
hash function. The private keys and the public keys 
are kept in NTT form and encoded into string sk, 
pk. In (line 4) and (line 6), the inverse of 
polynomials (hNTT, FNtt) are found by computing 
the inverse of each coefficient modulo q,   

1
(mod )

i
qi hNtt

invHNtt   and 1
(mod )

i
qi FNtt

invFNtt   by 

extended Euclidean algorithm. 
 
5.3.2 Algorithm 6 : Encapsulation 
Input : The public key  pk and a seed 
1. ( );msg randomly seed   
2. ( );m encode msg   
3. ( ) ( );hNtt decode pk  
4. ( );mNtt NTTfunc m  
5. ( );r sampCBD seed   
6. ( );rNtt NTTfunc r   
7. ( ) ;cNtt rNtt hNtt mNtt    

8. 3 256( );SSc SHA m   (SSc  is the shared key) 

9. ( ).C encode cNtt (Codified in string format)  

Output : The ciphertext C. 
Comment: in (line 1) the encapsulation function 
chooses randomly a message and encodes it into 
binary polynomial, and then in (line 8) hash it by 
Keccak hash function SHA3-256 to produce the 
shared key SSc. In (line 9) the cipher-text is 
transformed from polynomial form to string format.  
 
5.3.3 Algorithm 7: Decapsulation 
Intput : The cipher-text C  and the private key sk 
1. ( , ) ( );FNtt invHNtt decode sk   
2. ( ) ( );cNtt decode C   

 3. mod ;bNtt cNtt FNtt q   

 4. ( ) mod ;b InvNTT bNtt q   

1 1
5. { , };

2 2i

q q
b lefting b

  
    

 6. mod ;m b p   

 7. ( ) mod ;mNtt NTTfunc m q   

 8. ( ) mod ;rNtt cNtt mNtt invHNtt q     

 9. ( ) mod ;r InvNTT rNtt q   

10. ( , ) { }r mIf r m not L L  return False ; 
11. 3 256( );SSd SHA m    

Output : The shared key SSd. 
Comment: In (lin 6) the first step is achieved by 
computing the decryption message m and the 
decapsulation function produce a polynomial r in 
(line 9) and then in (line 10), the reconciliation is 
good, if only if   the coefficients of the polynomials 
(m, r) are in {0,1}. That means the shared key SSc 
(Hashed string) in the encapsulation algorithm is 
equal to shared key SSd (hashed string) in the 
decapsulation algorithm; else the complete process 
must be repeated until the reconciliation is exact. 
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The decryption failure rate of our 
NTRUrobust release implementation is ZERO that 
warrants perfect correctness. The result is obtained 
by using the python script developed by Hoffstein 
et.al, and executing it in Sage software [21, 22]. 

 
6. BENCHMARKING RESULT 

  
In this section we will present the 

performance results of our NTRUrobust compared 
especially to the performances of 
NTRUhps4096821. And also we present the 
performance results of our release compared to the 
performances of Kyber1024 and FireSaber  
releases respectively of KYBER and SABER and 
that their parameters sets meets the category 5, for 
having the coherence comparison. 

We note that all implementations are 
performed on a PC-TOSHIBA with an Intel(R) 
Core(TM) i7-2630QM CPU, 2 GHz processor, 
RAM  8 GO, under environment Windows 7-32 
bits and  Dev-C++ 4.9.9.2. 

The implementation of NTRUrobust 
release described in this paper is available on the 
Google drive website at [23]; and the NTRU, 
KEYBER, and SABER implementations are 
available in the NIST website at [24]. 
 
6.1        Benchmarking between NTRUrobust & 
NTRU4096821 
            In this subsection, we present the 
performance results of the benchmarking of our   
NTRUrobust implementation with parameters 
{n=1024, q=65537, p=2} compared to the 
NTRU4096821 with parameters {n=821, q=4096, 
p=3}. We built the software of both 
implementations on the same machine cited above, 
and we report the median result of 100 runs. 
          The performance results can be found in 
Table 1, and the result values are given in 
milliseconds (ms). 
 
Table 1: Speed performance benchmarking (ms) 

 
 
 
 
 
 
 
 
 

 
 

Figure 1: Performance benchmarking between 
NTRUrobust and NTRUhps4096821. The result values 
are given in milliseconds (ms). 

In this result, we remark that we did better. 
The speed performance of our NTRUrobust 
compared to the speed performance of 
NTRUhps4096821, is greater by a factor up-to 165 
times for key generation function; greater by a 
factor up-to 8 times for encapsulation function; and 
greater by a factor up-to 11 time for decapsulation 
function.  

That means that the performance of our 
release outperforms the NTRUhps4096821 version 
for the total cryptographic process 
(keysGeneration+ Encapsulation+Decapsulation) 
by a factor up to 93 times faster.  This gap 
performance is essentially due to the performance 
of our modular multiplication algorithm FMMA 
combined to NTT algorithm. 

 
6.2  Performance benchmarking of 
NTRUrobust, Saber, and Kyber 
 In this subsection, we present the 
performance results of our NTRUrobust release 
compared to the FairSaber and Kyber1024 releases 
of SABER and KYBER post-quantum KEM 
schemes , which their parameter sets meets the 
category 5 security Levels.  
  
Table 2: Performance benchmarking between 
NTRUrobust,  FireSaber, and Kyber1024 releases. The 
result values are given in milliseconds (ms): 

 
 
 
 
 
 
   
We show in Table 2, and Figure 2, that our release 
As illustrates in Table 2 and Figure 3; the 
NTRUrobust compared to Kyber1024, its 
performance is slower by factor up to 2.6 times for 

0

2

4

6

8

10

Keys Generation Encapsulation Decapsulation

NTRUhps 4096821

NTRU robust

Schemes Keys Gen 
(ms) 

Encap 
(ms) 

Decap 
(ms) 

NTRUhps 
4096821 

206 3.60  8.43 ms 

NTRU 
robust 

1.25 0.47 0.62 

Speed-up 
Factor (X) 

 165 times 8 times 11 times 

 Keys Gen 
(ms) 

Encap 
(ms) 

Decap 
(ms) 

Kyber1024 0.46 0.63 0.63 

FireSaber 2,51 3.12 3.43 

NTRUrobust 1,25 0.47 0,62 
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keys generation, it is faster by factor up to 1.5 for 
encapsulation, and it has the same performance for 
the decapsulation. And compared to FireSaber, the 
performance of NTRUrobust  is freater by a factor 
up 2 times for key generation, more than 6.5 times 
for encapsulation, and about 5.5 times for 
decapsulation. 

In general cases the keys generation 
algorithm is not performed for each message 
exchanged, so it has not the same importance as 
encapsulation and decapsulation, which are 
repeated many times for each message exchanged. 

That means, in term of performance our 
NTRUrobust is better than all NTRUhps, 
KEYBER, and SABER releases. 
 

 
 

Figure 2: Speed performance benchmarking between 
NTRUrobust, FireSaber, and Kyber1024. We reportedthe 
results values to approximate Milliseconds. 

 
7  NTRUrobust Security 
 

Many cryptanalysis works are performed; 
their principal goal was to check the robustness of 
the Lattices-Based Cryptography by posing the 
hardest problems on point lattice in n� . The best 
tools used to prove the security is Lattice reduction 
by the algorithms (Gram-Schmidt, LLL, BKZ 
algorithms) and Meet-in-The-Middle attack 
(MIM)[3] [10][11]. In fact, the mathematicians 
often estimate the projected security of 
cryptographic systems by plotting the evolution in 
"running time" and "space requirements" of the 
best-known attacks according to level security 
needed. 

For measuring the security level of 
Lattice-Based Cryptosystems, Martin R. Albrecht et 
al. developed an estimator tool, which is described 
in paper under the title "Estimate all the LWE, 
NTRU schemes"[25]. In this work, we use this tool 
to estimate the heuristic complexity of BKZ cost 
model to solve the uSVP (primal attack).  
 
7.1  Security benchmarking  

In table 3 below, we use this tool to 
estimate the security level of NTRUrobust and 
NTRUhps4096821, Kyber1024, and FireSaber by 
solving the uSVP (primal attack)  with BKZ cost 
model of size  c=20,292b for the classical security and 
decreasing this size to c=20,265b   by using the 
quantum sieving algorithm to consider potential 
Grover speed-ups[5]. 
 
7.1 Security Benchmarking between  
NTRUrobust,  NTRUhps4096821. 

 In table 3, we present the security 
benchmarking result between our release 
NTRUrobust and NTRUhps4096821 release. Our 
release achieves 2230 for classical security level and 
2208 for quantum security level, whereas the 
security of NTRU4096821 achieves 2195 for 
classical security level and 2175 for quantum 
security level. 
 
Table 3: Security benchmarking between NTRUrobust, 
NTRUhps4096821, Kyber1024, and FireSaber . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

We remark in this table that the security 
performance of our release NTRUrobust is more 
efficient than NTRUhps4096821 by a gain of 35 
bits for classical security and 33 bits for quantum 
security by using respectively the cost models of 
BKZ  C=20.292b , and C=20.265b, when the b is the 
block size used the algorithm BKZ to find the 
uSVP. 

According to the result of Albrech et.al 
estimator, we show that NTRUrobust is more 

1.25

2.51

0.460.47

3.12

0.630.62

3.43

0.63

0

0.5

1

1.5

2

2.5

3

3.5

4

NTRUrobust FireSaber Kyber1024

Keys Generation

Encapsulation

Decapsulation

Scheme\Security 
Classical 

C=20.292b 

Quantum 

C=20.265b 

NTRUhps4096821 2195 2175 

NTRUrobust 2230 2208 

Kyber1024 2243 2221 

FireSaber 2283 2256 



Journal of Theoretical and Applied Information Technology 
15th December 2020. Vol.98. No 23 
© 2005 – ongoing  JATIT & LLS 

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
3739 

 

secure than Kyber1024, but it is less secure than 
FireSaber.  

In its report [8240], NIST states that the 
security of NTRU is based on stronger assumption 
than LWE or RLWE schemes also based on 
Lattices [26].  
 
7.2  Decryption failure  
 The parameters set of NTRUrobust 
warrants a perfect correctness of the decryption, 
and the result is obtained by using the script 
developed by NTRU team [20]. Even we generated 
the private key in the form F=pf+1 [17], as 
described above in section 5, the result of 
decryption failure probability is ZERO as presented 
in Table 4.   

Compared to Kyber1024 and FireSaber 
our release is more confident against an eventual 
attack using decryption failure [27]. 
  

Table 4: Decryption failure comparison 

Scheme Dec. failure rate 

NTRUrobust 2-∞ 

NTRUhps4096821 2-∞ 

Kyber1024 2-174 

FireSaber 2-165 

 
8 CONCLUSION 

In this paper, we presented an improved 
release of NTRUhps4096821 named NTRUrobust. 
The proposal is an efficient post-quantum key 
exchange protocol which ensures many interesting 
security features such as confidentiality of session 
keys, perfect forward secrecy and a quantum-
resistant variant of current classical schemes based 
on RSA, DH or ECC. We obtained significant 
enhancements in performance by using our new 
Fast Modular Multiplication Algorithm with an 
improved NTT algorithm and also improve the 
security level and while preserving security 
compared to NTRUhps4096821, KEYBER and 
SABER releases. Indeed, the parameters choice and 
the protocol construction meet the level 5 of the 
NIST security requirements. 

Finally, building more efficient post-
quantum protocols with short keys enables practical 
implementations in real world applications; these 
constructions are more suitable for applications in 
various environments in the present and the future.  

Our release implementation allows great 
flexibility, it is very easy to rise the parameters 

from dimension n=1024 to n=2048 with the same 
modulus q, and also it is very easy to increase the 
size of the shared key from 256 bits to 512 bits.   
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