
Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3729

NEW EFFICIENT AND ROBUST NTRU POST-QUANTUM
KEY EXCHANGE RELEASE “NTRU-ROBUST”

1 El HASSANE LAAJI, 1ABDELMALEK AZIZI
1Mohammed First University Oujda Morocco

E-mail: e.laaji@ump.ac.ma, abdelmalekazizi@yahoo.fr

ABSTRACT

Since 2016, the National Institute for Standards and Technology (NIST) launched a post-quantum
standardization project. Now the competition reaches its third round, and NIST inviting the cryptographic
community to participate by improving and analyzing the finalist candidates. On our side, we contribute by
creating an improved release of NTRU Lattice-Based post-quantum key exchange (KEM) scheme, called
“NTRUrobust”; with parameters set that meet the category 5 security level defined by the NIST.
NTRUrobust used our own Fast Modular Multiplication algorithm (FMMA) and the Number Theoretic
Transform algorithm (NTT) together for speeding-up the polynomials multiplication in the cryptographic
process. We obtain drastic results; our release is faster by factor up to 93 times than NTRUphs821 release
proposed by the NTRU team. NTRUrobust warrants strong security level, perfect correctness, and great
flexibility for eventual future extensions.

Keywords: Post Quantum cryptography, Modular Multiplication, NTRU, NTT, KEM.

1. INTRODUCTION

The cryptography is omnipresent in our
everyday life though many applications in order to
secure sensitive data exchanged or stored in
electronic devices. The most current cryptographic
protocols are based on RSA, Diffie&Hellman
(DH), or elliptic curve cryptography (ECC).
Unfortunately, all these cryptosystems will be
vulnerable to quantum computer attacks.

It is why, in 2016 the National Institute of
Standard and Technology (NIST) lunch a post-
quantum cryptosystem standardization project [1]
for choosing one or more post-quantum
cryptosystem able to resist quantum computer
attacks.

Now, the NIST competition reaches its
third round by selecting seven finalist candidates:
"The third-round finalist public-key encryption and
key-establishment algorithms are Classic McEliece,
CRYSTALS-KYBER, NTRU, and SABER. The
third-round finalists for digital signatures are
CRYSTALS-DILITHIUM, FALCON, and
Rainbow" as announced in [2].

Except the Classic McEliece and Rainbow,
all algorithms are lattice-based schemes and NIST
states in its latest report, that "The structured lattice
schemes appear to be the most promising general-
purpose algorithms for public-key encryption/KEM
and digital signature schemes "[2].

1.1 Related works
NTRU team presented four KEM (Key

Exchange Mechanism) releases that their
parameters sets meet the categorization based on
security levels 1, 3, and 5 as defined by NIST. All
those releases operate in the polynomials ring of the
form [] / (1)n

q qR Z X X , with modulus q is power

of two and n prime number. The parameters sets of
NTRU releases are:
 NTRUhps2048821 with parameters set that

meets category 1; it is equivalent to an
algorithm that is at least as hard to break
AES128;

 NTRUhps2048677 with parameters set that
meets category 3; it is equivalent to an
algorithm that is at least as hard to break
AES192.

 NTRUhps4096821 with parameter set that
meets category 5; it is equivalent to an
algorithm that is at least as hard to break
AES256.

 And the NTRUhrss701 release which is
presented as variant of NTRUhps2048677.
In term of the security, NTRU is based on

stronger lattices assumption, it has resisted for 20
years of cryptanalysis. The NIST shows that NTRU
assumes an interesting security levels, and states
that NTRU "lacks a formal worst-case-to-average-

Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3730

case reduction", and it is more efficient than others
Lattice-based cryptosystems [2, 3].

But in term of the performance, NIST states
that NTRU submission is "not quite at the level of
the highest-performing lattice schemes"[2].

Therefore the goal of our contribution is to
dress this weakness of NTRU performance, by
developing new efficient and robust a NTRU
version, with high confidence in its security.

1.2 Contributions

We note that, this work is an extended
work of our latest paper titled "Fast Modular
Multiplication algorithm applied to a Ring-LWE
scheme"[4], which describes the creation of an
improved release of post-quantum key exchange
"NewHope" based on Ring-LWE problem [5].

Along with the cryptographic community,
we contribute by creating a new efficient and robust
NTRU post-quantum key exchange (KEM) release
called "NTRUrobust", with parameters set
{n=1024,q=65537,p=2} that achieving the category
5 security level , and it can be a variant of
NTRUhps4096821 with parameters set {q=4096,
n=821, p=3} cited above.

Generally, the execution time of the
NTRU based protocols is dominated by the
multiplications in polynomials ring.

Therefore, for speeding-up the
polynomials multiplication in the cryptographic
process (Keys Generation + Encapsulation +
Decapsulation), our NTRUrobust implementation
uses NTT algorithm [6,7], combined with our Fast
modular multiplication algorithm (FMMA), which
represent a variant of Montgomery algorithm[8]

and it is two times faster [4].
The benchmarking result of our release

compared to NTRUhps4096821 release shown that
the performance of our release is about 93 times
faster, and warrants a stronger security level, and
perfect correctness.

We also obtained a good result by
comparing NTRUrobust to CRYSTAL-KYBER
and SABER, which their parameters meet category
5 security levels defined by NIST, as we will see in
section 6.

We note, also that our release used the
latest KECCAK hash function which has recently
been standardized as SHA-3 in FIPS202 [9],

1.3 Outline

The rest of the paper is organized as follows:
the section.1 contains this introduction; Section 2,
recalls the background of the Lattices-Based-
Cryptography, and briefly describes the FMMA and

NTT algorithms; the Section 3, presents a
description of some related works based on
structured Lattice scheme; in Section 4, we present
NTRU historic and a description of NTRUhps
post-quantum cryptosystem. The proposed scheme
NTRUrobust and the corresponding efficiency and
security analysis are presented in Sections 5, 6 and
7. Finally a conclusion is provided.

2. BACKGROUND

In this section, we will focus to provide
only descriptions of the principal subjects that are
evoked in this work. So, we give a brief definition
of the lattice-based cryptography, and we describe
our Fast Modular Multiplication and the improved
NTT algorithms.

2.1 Lattice-Based cryptography

The Lattice-Based-Cryptography is defined by
Hoffstein et.al in [10] as follow:

The Lattice ()
n

BL of � is the set of vectors v

generated by the basis 1(,...,)nB e e

 with all vector

coefficients are integer numbers in � , formally:

() 1 1 1{ ,(,...,) ... }.n n
B n n nL v a a and v a e a e

� �

The Lattice Cryptography is based on the
complexity to break Lattices Cryptosystems by
posing problems that are hard to solve. The
principal Lattice problems are SVP and CVP and
their definitions are as follow:

2.1.1 The Shortest Vector Problem (SVP)

Finding (SVP) in Lattice L(B) is finding a non-
zero vector that minimizes the Euclidean norm.
Formally the problem SVP is to find a non-zero
vector:

(B) (B)v L x L v xwe have

ǁ ǁ ǁ ǁ (1)

2.1.2 The Closest Vector Problem (CVP)

Given the Lattice ()BL , and a vector mw

� to

find a vector (B)v L

 "Closest" to w

, is to find a

vector ()Bv L
 that minimizes the Euclidean norm

w v

ǁ ǁ where:

 min{ w v } CVP v.

ǁ ǁ (2)
Many others approximate problems of SVP

and CVP exist, like uSVP, CoreSVP[5], etc. The
CoreSVP is the cost of lattice attacks of one call to
solve a SVP with block size b, by using BKZ
Lattice reduction algorithm, as we will describe in
section 6 [11].

Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3731

2.2 Fast Modular Multiplication Algorithm
 The motivation for studying high-speed
algorithms for modular multiplication comes from
their applications in some cryptosystems. FMMA is
a method to carry out a fast modular multiplication.
It is two about times faster than the Montgomery
algorithm, and it can be its variant [4].

FMMA is constructed specially for Fermat
prime numbers and all numbers of the form

2 1kq . In our case study, we use the fourth

Fermat prime number as the modulus for our
implementation, as we will describe below [12].

The principle of our algorithm is to
transform the modulation of a prime number to the
number of power of two. It allows the reduction
and the modular multiplication to be fast and more
efficient on general-purpose computers, signal
processors, and microprocessors. The reduction
(%), the multiplication (*), and the division (/) will
be respectively replaced by logic operators AND
(&), Shift (<<), and Shift (>>).

2.2.1 Algorithm 1: FMMA

Input : , , 2 1, (1).kIntegers x y modulus q and q
FMMA():

2

1. * ;

(1);

3. () ();

();

5. (0) .

6. .

2. .&

4.

p x y

z p

d p z log phi

result z d

if result then return result q

else return result

Output: Reduced number: * mod .result x y q

2.3 Number Theoretic Transform (NTT)

The number-theoretic transform (NTT) is
a generalization of the Discrete Fourier Transform
(DFT), see [6,7], which is carried out in positive
Integer group and finite fields whereas the DFT is
defined in complex numbers group.

The Number Theoretic Transform (NTT)
provides efficient polynomials multiplication in the
ring of the form [] / (1)n

q qR X X � (with n power

of two and q prime number). NTT has many
applications in computer arithmetic and
cryptographic domain, because it reduces the time
complexity from 2() (* ())O n to O n log n .

To use NTT algorithm we must choosing
the modulus that satisfying, 1q kn then the

multiplicative group n� has size () 1 .q q k n

and a generator g, and computing the primitive nth
root of unity Omega :

 ()mod 1 mod .k n kn qg q and g g q (3)

2.3.1 Transforming a polynomial from
Normal form to NTT form

For a polynomial
1

0

n
i

i q
i

f f X R

 the

NTT function is defined by:

1

0

() .
n

i
i

i

NTT f fNtt f Ntt X

 (4)

1

0

mod .
n

j ij
i j

j

with fNtt f q

 (5)

Where Gamma is the 2nd root of unity.

2.3.2 Transforming a polynomial from NTT
form to Normal form
 The inverse of NTT function to return to
normal form is computed by the below formula:

1

0

() .
n

i
i

i

invNTT fNtt f f X

 (6)

1

1

0

mod .
n

i ij
i j

j

with f n f Ntt q

 (7)

So the NTT algorithm can perform the
multiplication of two polynomials * qh f g R ; by

transforming them to NTT form (fNTT and gNTT);
computing the product in NTT form by the point-
wise multiplication noted by ()

modhNTT fNTT gNTT q (that means we obtain

* modi i i qhNtt fNtt gNtt); and finally transforming

the hNTT polynomial from NTT form to normal
form by the inverse of NTT function:

 h invNTT hNTT .
Consequently, an important reduction cost

of multiplication can be achieved by pre-computing
and storing the powers values related to the
parameters: and [6].

2.3.3 Pre-computed arrays.
 For using the improved NTT algorithm,
based on the Cooley-Tukey (CT) buttery efficiency,
we should computing and storing five arrays:
Bitrev, Omega, InvOmega, and Gama in bit-
reversible order, and invGama in normal order as
follow :
 Bitrev : Stores the value from 1 to (n-1) in bit-

reversible;
 Omega: Stores the powers of in bit-

reversible: (mod).Bitrev iOmega i q

Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3732

 InvOmega: Stores the powers of 1 in bit-

reversible: (mod).Bitrev iInvOmega i q

 Gama: Stores the powers of in bit-

reversible: (mod).Bitrev iG iama q
 InvGama: Stores the powers of 1 in normal

order and multiplying each coefficient by the
inverse of (mod)n q :

 1
* (mod).iinvGam i qa

n

2.3.4 Algorithm 2: improved NTT algorithm

Input : a polynomial f, a pre-computed array
precomp, dimension n, and modulus * 1q k n .

Function : CoolyNTT()

1. 0; 10; 2 :

/ /

2. 1 ;

3. 0; ; :

4. 0;

5. ; 1; 2 * :

6. ;

7. FMMA , , ;Pr

8. (5);

9.

for i i i do

Even Level

d i

for st start d st do

move

for j st j n j d do

A j A j A j d

A j d move A j A j

f

eco

n

mp d q

e d for line

end

 (3);or line

// Odd Level

10. <<=1;

11. 0; ; :

12. 0;

13. ; 1; 2* :

14. ;

d

for st st d st do

move

for j st j n j d do

A j A j A j d

 15. FMMA , , ;

16. (11);

17. (13);

18. (1);

PrA j d move A j Am j d q

end for line

end for line

end for i

ec

e

o

n

p

l

End algorithm.

Output: a fNtt=CoolyNTT(f) in bit-reversed

ordering.
Comment: This principal CoolyNTT(f) will be
called by the algorithm 3 and the algorithm 4. The
Precom array in line 7 and 15, takes the value of
Gama or invGama (as described above) according
to our need to compute the forward NTT of the
polynomial f or its NTT inverse, and this principal
algorithm calls the FMMA algorithm in line 7, and
line 15 for reducing each multiplication modulo q.

We note this version of NTT is inspired from [5, 7].

2.3.5 Algorithm 3: Transforming a
polynomial from normal form to NTT form

Input: a polynomial f, n, pre-computed array
Omega and Gama as are described above.
Function : NTTfunc(f)

1. _ ;

2. 0 ; ; :

3. FMMA , , ;

4. 2 ;

5. , ;

6. Re ;

bitrev vector

for int i i n i do

f i i Omega i q

end for line

fNtt CoolyNTT f Gama

turn fNt

f

f

t

Output: a polynomial fNtt in NTT form and in
normal order.
Comment: This function calls the FMMA
algorithm with pre-computed array Omega as
argument (in line 3), and calls CoolyNTT algorithm
with pre-computed array Gama as argument (line
5), and itself is called for each polynomials
multiplication by the Keys generation,
Encapsulation, and Decapsulation algorithms.

Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3733

2.3.6 Algorithm 4: Transforming a
polynomial from NTT form to normal form

Input: polynomial r, n, pre-computed arrays
invOmega and invGama containing respectively
the power of (mod)i q in bit-reversible, and

(mod)i q

 in normal order as are described above.

Function : invNTTfunc(fNtt)

1. _ ;

2. , invOmega ;

 3. 0 ; ; :

4. FMMA , invGama , ;

5. 2 ;

6. Re ;

bitrev vector fNtt

f CoolyNTT fNtt

for int i i n i do

f i i i q

end for line

turn r

f

Output: A polynomial f in normal form and in
normal order.
Comment: The same, this function calls CoolyNTT
the algorithm with pre-computed array invOmega
as argument (in line 2) and calls the FMMA
algorithm with pre-computed array invGama as
argument (in line4), and itself is called for each
polynomials multiplication by the Keys generation,
Encapsulation, and Decapsulation algorithms.

3. RELATED WORKS

 Many others works used one or
more algorithms for increasing the performance of
the multiplication and modular multiplication. In
this section we give small description of some
lattice-based schemes that use one or more
algorithms commonly in their cryptographic
process to increase the performance of the
multiplication and modular multiplication like NTT
algorithm, Montgomery algorithm, Karatsuba
algorithm etc.
Specially, we describe briefly the two finalist
candidates CRYSTAL-KYBER and SABER, which
are competitors of NTRU. Also, we give a small
description of FALCON which is a lattice-based
signature scheme, and it is based on the NTRU
assumption.

3.1 CRYSTALS-KYBER

The CRYSTALS-KYBER is post-
quantum key encapsulation mechanism (KEM)
constructed and based on the hardness of the
Module Learning With Errors (MLWE) problem,
and inspired from Learning With Error (LWE)
created by Regev since 2008[13][14]. It is an IND-

CCA2-secure KEM constructed from IND-CPA

security by using Fujisaki–Okamoto transformation
[15].

 The KYBER scheme operates in the ring
of the form [] / (1)n

q qR Z X X with the dimension

n is power-of-two and the modulus q is prime
number. For speeding-up the polynomials
multiplication and increasing its performance,
KYBER uses the number theoretic transform
(NTT). NIST states that "The scheme has excellent
all-around performance for most applications"[2].

We note that KYBER team defined a
release Kyber1024 with the parameters set meets
the category 5 security level.

For more details about KYBER the reader
can see [16] in NIST website.

3.2 SABER

SABER is lattice-based (KEM) scheme
constructed and based on the hardness of the
Module Learning With Rounding (MLWR)
problem [17]. Like KYBER, it is an IND-CCA2-

secure KEM constructed from IND-CPA security
by using Fujisaki–Okamoto transformation [15].

The SABER cryptosystem operates in the
polynomials ring of the form [] / (1)n

q qR Z X X ,

with n power of two and modulus q power of two.
This domain not allows us to use efficiency the
NTT algorithm.

The SABER team states that “the rounding
operation and power-of-2 modulo in SABER
allows for the efficient optimization of the modular
reduction and polynomial multiplication steps”.

We note that SABER team defined a
release FireSaber with the parameters set meets the
category 5 security level [18].

NIST experts judge that "SABER has
excellent performance and would be immediately
suitable for general-purpose applications, and it is
one of the most promising KEM schemes to be
considered for standardization at the end of the
third round"[2].

3.4 FALCON
 FALCON [19] is a lattice-based signature
scheme, its security is based on NTRU assumption,
and it operates in the polynomials ring of the form

[] / (1)n
q qR X X � with q prime number and n

power of two.
 The same, FALCON used the NTT
algorithm with Montgomery algorithm for speeding
up the polynomials multiplication and modular
multiplication.

Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3734

 NIST expert state that “It is efficient, and
offers good performance. So FALCON was
selected by NIST to continue in third-round [2].

4. NTRU

In 1996, NTRU was introduced by the

three mathematicians J. Hofstein, J. Pipher, and J.
H. Silverman and then published in 1998 [10]. It
was presented as an alternative to RSA, ECDH and
ECC. NTRU releases have also been standardized
by the IEEE P1363.1 standard in April 2011, and
by the X9.98 standard [3][11].

NTRU is completely constructed from
Lattice-Based-Cryptography. Besides the
conjectured security against quantum attacks,
lattice-based schemes tend to be algorithmically
simple and highly parallelizable [2].

Its domain of computation is the
polynomials ring of the form qR [] / (1)n

q X X �

with n prime number and the modulus q is power of
two, or the polynomials ring of the form

qR [] / (1)n
q X X � with n is power of two and

the modulo q is prime number.
Since its first creation there are several

versions, the latest NTRU is now candidate to
NIST's post-quantum standardization project, and it
is selected among the four finalist public key
encryption/KEM schemes.

4.1 NTRU-HPS KEM scheme

The NTRU candidate is a structured
lattice-based KEM obtained from by using generic
transformation of PKE and it is IND-CCA2 secure.
“The NTRU-HPS follows Hoffsein, Pipher, and
Silverman’s use of fixed weight sample spaces” [3].
is It defined in the polynomials ring of the form

[] / (1)n
q qR Z X X and the sub-ring

[] / ()q q nS X � with (1) / (1)n
n x x and

1 2 ... 1.n n
n x x

The authors presented four versions with
different parameters set that warrant the security
levels defined and classified by NIST in categories
1,3, and 5 [3].

The releases and their parameter set are:
NTRUhps2048509 { 509, 2048, 3}n q p for

achieving the security level category 1;
NTRUhps2048677 677, 2048, 3n q p for

achieving the security level category 3;
NTRUhps4096821{ 821, 4096, 3}n q p for
achieving the category 5, (and NTRUhrss701
version which is a variant of NTRUhps2048677).

 The polynomials are sampled according to
uniform distribution with a seed and used
KECCAK[9] SHA-3 hash function implementation,
which is the latest standard hash function. They are
chosen in the set {-1, 0, 1} with some criteria of
number of coefficients equal to (1) and number of
the coefficients equal to (-1). The authors designed
the: , , , ,r m g fL L L L respectively the sets of the

polynomials {r, m, g, f} the reader can see for more
details [3].

We remark that the use of the ring qR and

sub-ring qS has no impact on the NTRU security, it

is used just for speeding-up the convolution
multiplication of in this polynomials sub-ring, and
the inverse of the polynomials by using the
extended Euclidean algorithm. It is so easy to
switch from q qR to S or the inverse, just by

multiplying by (1)x or dividing by (1)x .
For more information about NTRU

description and implementations the reader can find
them [3] in NIST website.

4.2 NTRUhps KEM algorithms description
 In this subsection we describe briefly the
cryptographic algorithms, for more details the
reader can see the document in [3].

4.2.1 Keys Generation
 The keys generation begin by: (1)
generating uniformly two polynomials (,)f g in

the sets (,)f gL L ; (2) computing a polynomial

3,qF F as the inverses of f respectively in 3,qS S ;

(3) computing the public key (*)qh p g F in qR ;

(4) and finally computing the inverse of h in qS

noted qH .

4.2.2 Encapsulation
 The encapsulation begin by: (1) generating
randomly a message m (shared key) in mL set, and

hashing it in a string Km ; (2) Generating uniformly

a noise r as polynomial in rL set; (3) computing a

cipher-text *c h r m in qR .

4.2.3 Decapsulation
 The decapsulation begin by: (1) computing
a polynomial *a f c in qR ; (2) computing a

decrypted message 3*m a F in 3R ; (3) computing

a polynomial modr c m q ; (4) checking

(,) r mif r m L L which means that the

reconciliation of the shared key is good and returns

Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3735

(, ,0)r m , the shared key is the hashed string of m ;
else it returns (0,0,1) .

According to the NIST experts' analysis
NTRU is an exciting field of research, and it is very
efficient but it has a small performance gap in
comparison to KYBER and SABER. In particular,
NTRU has a slower key generation than KYBER
and SABER [2].

5. OUR NTRU_ROBUST RELEASE

To correct the performance weakness of

NTRU candidate, we contribute by creating an
improved release of NTRU, which could be a
variant of NTRUhps4096821 release. We obtained
drastic result in the term of performance by
combining our FMMA algorithm with NTT
algorithm as we described above in section 2.

Our release, called "NTRUrobust", is
based and inspired from the NTRUhps
cryptographic algorithms described in section 4. It
is defined in the polynomials ring of the form

[] / (1)n
q qR X X � with the dimension 1024n

and the modulus 65537q which is the fourth
Fermat prime number that allows us to use
efficiency the FMMA and NTT algorithms.

In this section, we describe our
NTRUrobust Lattice-Based (KEM) scheme. And
for good illustration of our contribution, we
introduce the NTT functions in the keys generation,
encapsulation, and decapsulation algorithms.

5.1 Parameters definition method

To use the NTT algorithm combined with
FMMA algorithm, we define herein the necessary
parameters as follow:
 The multiplicative group q� has a generator g

and a size () 1 .q q k n , which represents
the Euler indicator.

 And defining the nth primitive root of unity
and its primitive 2n-th root of unity such that
 , computed by the below formula.

 ()mod 1 mod .k n kn qg q and g g q

5.2 NTRUrobust parameters set

Our NTRUrobust release is defined by the
parameters set that achieves the category 5 security
level 1024, 65537, 2, 16 / 2}{n q p , with

is the standard deviation used for choosing the
polynomials according to Centered Binomial
Distribution. The modulus used is the fourth Fermat

prime number
42 62 1 2 *1024 1 65537.q

Fermat prime numbers were first studied
by Pierre Fermat, for more details the reader can
see [12].

For computing the needed parameters
values of NTT, we should follow the steps below:

 The parameters n=1024, k=2^6=64, and

q=64*1024+1=65537 which satisfying the
condition: q=kn+1;

 Finding a generator g=4441 that satisfying the
conditions: gk !=1 and gkn = 1;

 Computing n-th primitive root of unity omega:
 mod 1089kg q , its square root gamma:

33 , the inverse of gamma:

 1 mod 1986q , and the inverse of omega:

 1 mod 11976q

 The inverse of n modulo q,
 1 mod 65473n q which will be used by the

inverse of NTT function to transform the
polynomials from NTT form to normal form
for computing the InvGama array as defined in
subsection 2.3.3.
The particularity of the fourth Fermat prime

number is that it has only one root of unit 1089 .

5.3 Description of NTRUrobust protocol
In this part, we describe the proposed

NTRUrobust post-quantum key exchange(KEM)
inspired by the NTRUhps KEM scheme. And for
illustrating our contribution and our improvement,
we modified the original algorithms of NTRUhps
(keys generation, encapsulation, and decapsulation)
by using the NTT functions which includes the
FMMA function for each multiplication of two
coefficients (as described in section 2).
 The polynomials are sampled according to
Centered Binomial Distribution (sampCBD()
function) rather than Uniform Distribution
(sampUD() function), Alkim.et.al[5] state that
”Sampling from the Centered Binomial Distribution
is rather trivial in hardware and software.
Additionally, the implementation of this sampling
algorithm is much easier to protect against timing
attack and does not decrease the security”.

The sets of the polynomials {f, g, r, m}
used by the NTRUrobust protocol are defined
respectively as below:

{ [3,..,3]}f iL f R with f ;

{ [3,..,3]}g iL g R with g ;

{ {0,1}}r iL r R with r ;

{ {0,1}}m iL m R with m .

Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3736

Also, we use SHA3-256 hash function
rather than using the SHAKE-256 hash function
that allows us to hash a binary polynomial (m)
directly into string format without coding it into
string format before hashing it. For more details,
the reader can see [3, 9].

 We also note that our version takes the
private key F in the form * 1F p f . This form

allows us to avoid the computation of the inverse of
 modf p because * 1 mod 1F p f p [20].

The NTRU authors' shown that the use of
private key in this form decrease the rate of the
decryption failure, but by the parameters set of our
release implementation we obtained a perfect
correctness of the decryption by executing the
script developed by Hoffstein et.al [21, 22].

The Keys Generation, Encapsulation,
Decapsulation algorithms below, describe the
protocol operations and illustrate the use of the NTT
algorithm and the SHA3-256 hash function. The
FMMA modular multiplication function is
integrated in NTT functions for each coefficients
multiplication in all the cryptographic process (as
described in the algorithm 2,3, and 4).

5.3.1 Algorithm 5 : Keys Generation
Input : the sequence parameters { , , }n q p and a
seed.

1. , ();f g sampCBD seed
2. 1;F F pf
3. , (,);FNtt gNtt NTTfunc F g

 1
4. mod ;invFNtt q

FNtt

 5. (mod);hNtt gNtt invFNtt q

 1
6. mod ;invHNtt q

hNtt

7. ();pk encode hNtt
8. (,);sk encode FNtt invHNtt

Output : private key FNtt and invHNtt encoded in
the string sk and the public key hNtt encoded in pk.
Comment : In the key generation our
implementation generate both private keys (f, g) in
the same time by the sampCBD(seed) function(line
1) that allows us to increase the key generation
process, this function uses the SHAKE-256 Keccak
hash function. The private keys and the public keys
are kept in NTT form and encoded into string sk,
pk. In (line 4) and (line 6), the inverse of
polynomials (hNTT, FNtt) are found by computing
the inverse of each coefficient modulo q,

1
(mod)

i
qi hNtt

invHNtt and 1
(mod)

i
qi FNtt

invFNtt by

extended Euclidean algorithm.

5.3.2 Algorithm 6 : Encapsulation
Input : The public key pk and a seed
1. ();msg randomly seed
2. ();m encode msg
3. () ();hNtt decode pk
4. ();mNtt NTTfunc m
5. ();r sampCBD seed
6. ();rNtt NTTfunc r
7. () ;cNtt rNtt hNtt mNtt

8. 3 256();SSc SHA m (SSc is the shared key)

9. ().C encode cNtt (Codified in string format)

Output : The ciphertext C.
Comment: in (line 1) the encapsulation function
chooses randomly a message and encodes it into
binary polynomial, and then in (line 8) hash it by
Keccak hash function SHA3-256 to produce the
shared key SSc. In (line 9) the cipher-text is
transformed from polynomial form to string format.

5.3.3 Algorithm 7: Decapsulation
Intput : The cipher-text C and the private key sk
1. (,) ();FNtt invHNtt decode sk
2. () ();cNtt decode C

 3. mod ;bNtt cNtt FNtt q

 4. () mod ;b InvNTT bNtt q

1 1
5. { , };

2 2i

q q
b lefting b

 6. mod ;m b p

 7. () mod ;mNtt NTTfunc m q

 8. () mod ;rNtt cNtt mNtt invHNtt q

 9. () mod ;r InvNTT rNtt q

10. (,) { }r mIf r m not L L return False ;
11. 3 256();SSd SHA m

Output : The shared key SSd.
Comment: In (lin 6) the first step is achieved by
computing the decryption message m and the
decapsulation function produce a polynomial r in
(line 9) and then in (line 10), the reconciliation is
good, if only if the coefficients of the polynomials
(m, r) are in {0,1}. That means the shared key SSc
(Hashed string) in the encapsulation algorithm is
equal to shared key SSd (hashed string) in the
decapsulation algorithm; else the complete process
must be repeated until the reconciliation is exact.

Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3737

The decryption failure rate of our
NTRUrobust release implementation is ZERO that
warrants perfect correctness. The result is obtained
by using the python script developed by Hoffstein
et.al, and executing it in Sage software [21, 22].

6. BENCHMARKING RESULT

In this section we will present the

performance results of our NTRUrobust compared
especially to the performances of
NTRUhps4096821. And also we present the
performance results of our release compared to the
performances of Kyber1024 and FireSaber
releases respectively of KYBER and SABER and
that their parameters sets meets the category 5, for
having the coherence comparison.

We note that all implementations are
performed on a PC-TOSHIBA with an Intel(R)
Core(TM) i7-2630QM CPU, 2 GHz processor,
RAM 8 GO, under environment Windows 7-32
bits and Dev-C++ 4.9.9.2.

The implementation of NTRUrobust
release described in this paper is available on the
Google drive website at [23]; and the NTRU,
KEYBER, and SABER implementations are
available in the NIST website at [24].

6.1 Benchmarking between NTRUrobust &
NTRU4096821
 In this subsection, we present the
performance results of the benchmarking of our
NTRUrobust implementation with parameters
{n=1024, q=65537, p=2} compared to the
NTRU4096821 with parameters {n=821, q=4096,
p=3}. We built the software of both
implementations on the same machine cited above,
and we report the median result of 100 runs.
 The performance results can be found in
Table 1, and the result values are given in
milliseconds (ms).

Table 1: Speed performance benchmarking (ms)

Figure 1: Performance benchmarking between
NTRUrobust and NTRUhps4096821. The result values
are given in milliseconds (ms).

In this result, we remark that we did better.
The speed performance of our NTRUrobust
compared to the speed performance of
NTRUhps4096821, is greater by a factor up-to 165
times for key generation function; greater by a
factor up-to 8 times for encapsulation function; and
greater by a factor up-to 11 time for decapsulation
function.

That means that the performance of our
release outperforms the NTRUhps4096821 version
for the total cryptographic process
(keysGeneration+ Encapsulation+Decapsulation)
by a factor up to 93 times faster. This gap
performance is essentially due to the performance
of our modular multiplication algorithm FMMA
combined to NTT algorithm.

6.2 Performance benchmarking of
NTRUrobust, Saber, and Kyber
 In this subsection, we present the
performance results of our NTRUrobust release
compared to the FairSaber and Kyber1024 releases
of SABER and KYBER post-quantum KEM
schemes , which their parameter sets meets the
category 5 security Levels.

Table 2: Performance benchmarking between
NTRUrobust, FireSaber, and Kyber1024 releases. The
result values are given in milliseconds (ms):

We show in Table 2, and Figure 2, that our release
As illustrates in Table 2 and Figure 3; the
NTRUrobust compared to Kyber1024, its
performance is slower by factor up to 2.6 times for

0

2

4

6

8

10

Keys Generation Encapsulation Decapsulation

NTRUhps 4096821

NTRU robust

Schemes Keys Gen
(ms)

Encap
(ms)

Decap
(ms)

NTRUhps
4096821

206 3.60 8.43 ms

NTRU
robust

1.25 0.47 0.62

Speed-up
Factor (X)

 165 times 8 times 11 times

 Keys Gen
(ms)

Encap
(ms)

Decap
(ms)

Kyber1024 0.46 0.63 0.63

FireSaber 2,51 3.12 3.43

NTRUrobust 1,25 0.47 0,62

Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3738

keys generation, it is faster by factor up to 1.5 for
encapsulation, and it has the same performance for
the decapsulation. And compared to FireSaber, the
performance of NTRUrobust is freater by a factor
up 2 times for key generation, more than 6.5 times
for encapsulation, and about 5.5 times for
decapsulation.

In general cases the keys generation
algorithm is not performed for each message
exchanged, so it has not the same importance as
encapsulation and decapsulation, which are
repeated many times for each message exchanged.

That means, in term of performance our
NTRUrobust is better than all NTRUhps,
KEYBER, and SABER releases.

Figure 2: Speed performance benchmarking between
NTRUrobust, FireSaber, and Kyber1024. We reportedthe
results values to approximate Milliseconds.

7 NTRUrobust Security

Many cryptanalysis works are performed;
their principal goal was to check the robustness of
the Lattices-Based Cryptography by posing the
hardest problems on point lattice in n� . The best
tools used to prove the security is Lattice reduction
by the algorithms (Gram-Schmidt, LLL, BKZ
algorithms) and Meet-in-The-Middle attack
(MIM)[3] [10][11]. In fact, the mathematicians
often estimate the projected security of
cryptographic systems by plotting the evolution in
"running time" and "space requirements" of the
best-known attacks according to level security
needed.

For measuring the security level of
Lattice-Based Cryptosystems, Martin R. Albrecht et
al. developed an estimator tool, which is described
in paper under the title "Estimate all the LWE,
NTRU schemes"[25]. In this work, we use this tool
to estimate the heuristic complexity of BKZ cost
model to solve the uSVP (primal attack).

7.1 Security benchmarking

In table 3 below, we use this tool to
estimate the security level of NTRUrobust and
NTRUhps4096821, Kyber1024, and FireSaber by
solving the uSVP (primal attack) with BKZ cost
model of size c=20,292b for the classical security and
decreasing this size to c=20,265b by using the
quantum sieving algorithm to consider potential
Grover speed-ups[5].

7.1 Security Benchmarking between
NTRUrobust, NTRUhps4096821.

 In table 3, we present the security
benchmarking result between our release
NTRUrobust and NTRUhps4096821 release. Our
release achieves 2230 for classical security level and
2208 for quantum security level, whereas the
security of NTRU4096821 achieves 2195 for
classical security level and 2175 for quantum
security level.

Table 3: Security benchmarking between NTRUrobust,
NTRUhps4096821, Kyber1024, and FireSaber .

We remark in this table that the security
performance of our release NTRUrobust is more
efficient than NTRUhps4096821 by a gain of 35
bits for classical security and 33 bits for quantum
security by using respectively the cost models of
BKZ C=20.292b , and C=20.265b, when the b is the
block size used the algorithm BKZ to find the
uSVP.

According to the result of Albrech et.al
estimator, we show that NTRUrobust is more

1.25

2.51

0.460.47

3.12

0.630.62

3.43

0.63

0

0.5

1

1.5

2

2.5

3

3.5

4

NTRUrobust FireSaber Kyber1024

Keys Generation

Encapsulation

Decapsulation

Scheme\Security
Classical

C=20.292b

Quantum

C=20.265b

NTRUhps4096821 2195 2175

NTRUrobust 2230 2208

Kyber1024 2243 2221

FireSaber 2283 2256

Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3739

secure than Kyber1024, but it is less secure than
FireSaber.

In its report [8240], NIST states that the
security of NTRU is based on stronger assumption
than LWE or RLWE schemes also based on
Lattices [26].

7.2 Decryption failure
 The parameters set of NTRUrobust
warrants a perfect correctness of the decryption,
and the result is obtained by using the script
developed by NTRU team [20]. Even we generated
the private key in the form F=pf+1 [17], as
described above in section 5, the result of
decryption failure probability is ZERO as presented
in Table 4.

Compared to Kyber1024 and FireSaber
our release is more confident against an eventual
attack using decryption failure [27].

Table 4: Decryption failure comparison

Scheme Dec. failure rate

NTRUrobust 2-∞

NTRUhps4096821 2-∞

Kyber1024 2-174

FireSaber 2-165

8 CONCLUSION

In this paper, we presented an improved
release of NTRUhps4096821 named NTRUrobust.
The proposal is an efficient post-quantum key
exchange protocol which ensures many interesting
security features such as confidentiality of session
keys, perfect forward secrecy and a quantum-
resistant variant of current classical schemes based
on RSA, DH or ECC. We obtained significant
enhancements in performance by using our new
Fast Modular Multiplication Algorithm with an
improved NTT algorithm and also improve the
security level and while preserving security
compared to NTRUhps4096821, KEYBER and
SABER releases. Indeed, the parameters choice and
the protocol construction meet the level 5 of the
NIST security requirements.

Finally, building more efficient post-
quantum protocols with short keys enables practical
implementations in real world applications; these
constructions are more suitable for applications in
various environments in the present and the future.

Our release implementation allows great
flexibility, it is very easy to rise the parameters

from dimension n=1024 to n=2048 with the same
modulus q, and also it is very easy to increase the
size of the shared key from 256 bits to 512 bits.

REFRENCES:
[1] LilyChen,StephenJordan, Yi-Kai Liu, Dustin

Moody, Rene Peralta, Ray Perlner, Daniel
Smith, ”NISTIR 8105 -Report on Post-
Quantum Cryptography”, USA, 2016.

[2] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel
Apon, David Cooper, Quynh Dang, John
Kelsey, Yi-Kai Liu, Carl Miller, Dustin
Moody, Rene Peralta, Ray Perlner, Angela
Robinson, Daniel Smith-Tone, “NISTIR
8309- Status Report on the Second Round of
the NIST Post-Quantum Cryptography
Standardization Process”, NIST, USA, 2020.

[3] Cong Chen, Oussama Danba, Jeffreyrey
Hoffstein, Andreas Hulsing, Joost Rijneveld,
John M. Schanck, Peter Schwabe, William
Whyte, Zhenfei Zhang, ”Algorithm
Specifications And Supporting
Documentation”, Wilmington USA, 2019.

[4] El Hassane Laaji, Abdelmalek Azizi, “New Fast
Modular Multiplication Algorithm applied to
Ring-LWE scheme”, Department of
Mathematics, Mohammed First University,
Oujda, Morocco, 2020.

 [5] Alkim, E. Ducas, Poppelman, T. and Schwabe,
P. “Post-quantum key exchange-NewHope”,
Department of Mathematics, Ege University,
USA, 2019.

 [6] Longa, P. and Naehrig, M, “Speeding up the
Number Theoretic Transform for Faster Ideal

Lattice-Based Cryptography”, Microsoft Research
USA, 2019.

[7] Nayuki Project, ”Number-Theoric-Transform
(Integer DFT)”. Link:
https://www.nayuki.io/page/number-theoretic-
transform-integer-dft

[8] Peter Montgomery, “Modular Multiplication
Without Trial Division”. Math comput. USA,
1985.

[9] G.V. Assche, G. Bertoni, J. Daemen, P.Peters,
and R.Van. “Keccak Hash algorithm”.
Radboud University,Nederlands, 2016.

[10] J.Hofstein, J. Pipher, and J. H. Silverman:
”Introduction Mathematics and Cryptography

NTRU” Wilmington USA, 1998.
[11]. J. Hofstein, Jill Pipher, John M. Schanck,

Joseph H. Silverman, William Whyte, and
Zhenfei Zhang, ”Choosing Parameters for
NTRUEncrypt” , Wilmington USA 2016.

Journal of Theoretical and Applied Information Technology
15th December 2020. Vol.98. No 23
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3740

[12] P. Ribenboim. “The New Book of Prime
Number Records”, New York, Springer-
Verlag, 1996.

 [13] Regev, O. (2005), “On lattices, learning with
errors, random linear codes, and
cryptography”, In Proceedings of the 37th
Annual ACM Symposium on Theory of
Computing, pages 84-93.

[14] Lyubashevsky, V. Peikert, C. and Regev, O.
(2010). On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor,
Advances in Cryptology - EUROCRYPT
2010, volume 6110 of Lecture Notes in
Computer Science, pages 1-23. Springer.

[15] Eiichiro Fujisaki and Tatsuaki Okamoto,
“Secure integration of asymmetric and
symmetric encryption schemes”, In Advances
in Cryptology - CRYPTO99, pages 537–554,
1999.
https://link.springer.com/chapter/10.1007/3-
540-48405-1-34. 5, 11, 20

 [16] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike
Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter
Schwabe, Gregor Seiler, Damien Stehlé,
“CRYSTALS-Kyber Algorithm
Specifications And Supporting
Documentation (version 2.0)”, NIST –
Wilmington USA March 30, 2019.

 [17] Jan-Pieter D'Anvers, Angshuman Karmakar,
Sujoy Sinha Roy, and Frederik Vercauteren,

“Saber: Module-LWR Based Key Exchange, CPA-
Secure Encryption and CCA-Secure KEM”,
in AFRICACRYPT 2018, pages 282-305,
2018.

[18] Jan-Pieter D'Anvers, Angshuman Karmakar,
Frederik Vercauteren “SABER: Mod-LWR
based KEM (Round 2 Submission)”, imec-
COSIC, KU Leuven, Belgium, 2019.

[19]. Cong Chen, Oussama Danba, Jeffreyrey
Hoffstein, Andreas Hulsing, Joost Rijneveld,
John M. Schanck, Peter Schwabe, William
Whyte, Zhenfei Zhang, ”Falcon: Fast-Fourier
Lattice-based Compact Signatures over
NTRU” Wilmington USA 2019.

[20] Mohan Rao Mamdikar, Vinay Kumar and D.
Ghosh, ” Enhancement of NTRU public key”
National Institute of Technology, Durgapur
2013.

 [21] John Scham and NTRU team, “Decryption
failure script” link:
https://github.com/jschanck/ntru-ephem-dfr.

[22] Nick Howgrave-Graham, Phong Q. Nguyen,
David Pointcheval, John Proos, Joseph H.
Silverman, Ari Singer, and William Whyte,
"The Impact of Decryption Failures on the
Security of NTRU Encryption", NTRU
Cryptosystems Burlington, CNRS France,
University of Waterloo, Canada.

[23] El Hassane LAAJI, abdelmalek AZIZI, Link
Google drive of our NTRUrobust
implementation:

https://drive.google.com/file/d/1Cbe0fTFphfxzEvM
CLTQjdIerlaEsc6cm/view?usp=sharing

Mohammed first University Oujda, Morocco, 2020.
 [24] NIST link website of NTRU, SABER, and

KYBER cryptosystem implementations.
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

 [25] Martin R. Albrecht, Benjamin R. Curtis, Amit
Deo, Alex Davidson, Rachel Player, Eamonn
W. Postlethwaite, Fernando Virdia, and
Thomas Wunderer, “Estimate all the {LWE,
NTRU} schemes”, In Security and
Cryptography for Networks - 11th
International Conference, SCN 2018, volume
11035 of Lecture Notes in Computer Science,
pages 351-367. Springer, 2018.

[26] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel
Apon, David Cooper, Quynh Dang, Yi-Kai
Liu, Carl Miller, Dustin Moody, Rene Peralta
Ray Perlner, Angela Robinson, Daniel Smith-
Tone, ”Status Report NISTIR 8240 on the
First Round of the NIST Post-Quantum
Cryptography Standardization Process”, USA
2019.

 [27] Daniel J. Bernstein1, "Comparing proofs of
security for lattice-based encryption",
Department of Computer Science, University
of Illinois at Chicago, Chicago, IL 60607 -
7045, USA2, Horst Gortz Institute for IT
Security, Ruhr University Bochum, Germany
djb.at.cr.yp.to

