
Journal of Theoretical and Applied Information Technology 
020. Vol.98. No 232 December th15 

ongoing  JATIT & LLS –© 2005  

 

3195-1817ISSN: -E                                                      www.jatit.org8645                                                                  -1992ISSN:  

 
3823 

 

STATISTICAL COMPARISON BETWEEN EL-MLP AND 
EL-ANFIS, OPTIMIZED BY MEANS OF ANOVA, 
FOR THE PD CONTROL OF A MOBILE ROBOT 

 

1DANTE GIOVANNI STERPIN, 1JESÚS DAVID MARTÍNEZ VELANDIA, 2FERNANDO 
MARTÍNEZ SANTA 

1Electronic Engineering, Corporación Unificada Nacional de Educación Superior, Bogotá, Colombia 
2Electric Engineering, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia 

E-mail:  1{dante_sterpin, jesus.martinez}@cun.edu.co, 2fmartinezs@udistrital.edu.co 
 
 

ABSTRACT 
 

In this paper, two types of controller for a mobile robot with the wall-following task are statistically 
compared. One of them is a Multi-Layer Perceptron (MLP) while the other one is an Adaptive-Network-
based Fuzzy Inference System (ANFIS). Here, such controllers are named: EL-MLP and EL-ANFIS, 
because they were trained by means of an analytical method known as Extreme Learning Machine (ELM). 
They were structurally optimized with a statistical method known as Analysis of Variance (ANOVA), and a 
t-Test between two populations with the best exemplars of each type of controller, demonstrates statistically 
that EL-ANFIS generalizes better than EL-MLP, due to its validation error mean, and variance, are 
significantly lower. 

Keywords: Multi-Layer Perceptron (MLP), Adaptive-Network-based Fuzzy Inference System (ANFIS), 
Extreme Learning Machine (ELM), Analysis of Variance (ANOVA), Hypothesis test between 
two populations (t-Test), PD Control. 

 
1. INTRODUCTION  
 

The artificial neural networks and the Fuzzy 
inference systems have been widely used in 
engineering in several applications including 
mobile robots control. In specific applications of the 
Multi-Layer Perceptron (MLP) [1], the structural 
parameters of the neural network, as the number of 
hidden layers and the number of nodes in each of 
them are determined by the designer, applying 
previously known configurations. Due to the 
absence of a deterministic method to set up such 
parameters, different optimization techniques have 
been proposed [2, 3, 4, 5] in order to minimize such 
parameters using bioinspired algorithms such as ant 
colonies and genetic algorithms [6, 7, 8]. Among 
those techniques, the analysis of variance (ANOVA) 
a tool for the design and analysis of experiments [9, 
10], was preferred in this work because it was 
recently considered as a statistically measurable 
method, in the optimization of neural networks [5]. 
Something similar happens to the Adaptive-
Network-based Fuzzy Inference Systems (ANFIS), 
in order to set up the number of terms for 
fuzzification [11, 12, 13, 14, 15]. In this regard, 
optimization methods also have been proposed, 

some of which are based on genetic algorithms [16, 
17, 18], particle swarm [19, 20, 21, 22], or c-means 
clustering [23], but the use of ANOVA to optimize 
the structure of ANFIS has not been realized yet.  

Nowadays, there are performance comparisons 
between MLP and ANFIS, in control applications 
[24, 25], artificial vision [26, 27], and predictive 
modeling in diverse areas [28, 29, 30, 31, 32, 33, 22, 
34, 35]. In this way, the absence of comparisons 
like these in control applications for mobile robots 
is very noticeable. 

On the other hand, the Extreme Learning 
Machine (ELM) [36] has been laid down as a 
training method for Single hidden Layer 
Feedforward Networks (SLFN), including the MLP 
[37] and ANFIS [38, 39], since, in contrast to the 
backpropagation (BP) based training, the ELM 
method offers the advantages of having a very short 
learning time, and SLFN with great capability to 
generalize are obtained.  

The main objective of the work reported in this 
paper is to do a statistical performance comparison 
between an MLP and an ANFIS, working both as 
controllers. Here, those systems were trained using 
ELM, and optimized by means of ANOVA. As a 
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reference case, a differential mobile robot 
performing the wall-following navigation task was 
considered. The specific contribution of this paper 
is to show that ANFIS is a better generalizer than 
MLP for the control of a mobile robot, using ELM 
as a training technique which guarantees a great 
generalization for all SLFN, and additionally using 
ANOVA as a statistical optimization technique 
(previously used for the MLP but not for ANFIS). 
Thus, the novelty in this work is the application of 
ANOVA to optimize the architecture of an ANFIS, 
and the statistical comparison between MLP and 
ANFIS, as controllers in the context of mobile 
robotics. The justification for this is that ANOVA is 
a statistically measurable method that had not been 
applied before for ANFIS, and also there were not 
comparisons like this in mobile robotics.  

In this paper, first, the used architectures of both 
MLP and ANFIS are detailed, in conjunction with 
their ELM based training. Then, the ANOVA based 
optimization of the MLP and a proposal for its 
application to the ANFIS are detailed. The method 
and the results of the statistic comparison between 
two populations, composed by certain number of 
optimized controllers of each type, are detailed in 
the last section.  

 

2. METHODOLOGY 
 

Both controllers, the ELM based MLP and 
the ELM based ANFIS, were implemented by 
means of computer simulations without using any 
real or virtual robot. Those simulations were 
implemented on Java programming language, for 
training and testing the controllers several times. 
After that, they were optimized by means of the 
analysis of variance (ANOVA). Finally, to obtain 
data of optimized controllers, for the statistical 
comparison, new simulations were done. It is 
important to clarify that the implemented 
simulations only give the outputs of the controllers, 

i.e. the speed level of each motor, but do not the 
position or speed of the whole robot. 

Based on previous comparisons between 
MLP and ANFIS, in various contexts, ANFIS has 
been found to be more efficient and robust than 
MLP, therefore, the hypothesis of investigation was 
that ANFIS, as a robotic controller, could be a 
better generalizer than MLP. 

 

3. EXTREME LEARNING MLP (EL-MLP) 
 

The Multi-Layer Perceptron is the most 
representative connectionist system, and it is built 
by layers of artificial neurons. Figure 1 shows the 
MLP as an SLFN, so it can be trained by ELM. Its 
inputs receive the proportional error signal (P) and 
the derivative error signal (D), which are 
characteristic of PD controllers. Since its output 
gives the speed level of one motor, two MLP like 
that are used, and each one receives the same input 
signals. Therefore a “double” MLP controls the 
robot, and each MLP-controller has independent 
synaptic weights from each other. 

 

 
 

Figure 1: Structure used for each MLP-control 

 

 

 
 
 
(1)
 

 
In order to apply the ELM technique, in 

each MLP-based controller, the synaptic weights 
between the Φ hidden neurons and the input 
neurons are considered as certain Alpha parameters 

and they are randomly initialized. After that, the 
response Fj of each hidden neuron is obtained, 
using the bipolar sigmoid as activation function, to 
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obtain the H matrix of the equation 1, given the Π 
examples of training set. 

Vector Y contains the Π obtained outputs 
and it is calculated by the equation 2, using the H 
matrix and certain Beta parameters. In the MLP 
those Betas are the synaptic weights between the Φ 
hidden neurons and the output neuron. Being that 
the correspondence between Y and the desired 
outputs vector T is expected, according to the Π 
training examples, the equation 3 shows how such 
Betas are obtained. There, H† is the Moore-Penrose 
pseudoinverse of H and to calculate it the equation 
4 is used, in which I is the identity matrix, and � 
should tend to zero [40]. Thus, the resulting 
solution is more stable and has better generalization 
[41]. In this work � is 1E – 8. 

 

 (2)

 

 (3)

 

 (4)

 

4. EXTREME LEARNING ANFIS (EL-ANFIS) 
 

ANFIS is an Adaptive-Network-based 
Fuzzy Inference System, originally proposed in 
[42]. Figure 2 shows that its structure is composed 
by layers of nodes without connection values. 
ANFIS allows robots to obtain certain behavior, 
according to the inputs, using supervised learning 
like MLP. It is usually trained by a hybrid way, 
using the BP algorithm for certain Alpha 
parameters in the antecedent nodes, and using the 
Least Squares Method (LSM) for certain Beta 
parameters in the consequent nodes. In order to 
control the robot motors, ANFIS also process the 
PD control signals, and uses two structures like 
figure 2, giving the same input signals to each one. 
Thus a “double” ANFIS controls the robot, and 
each ANFIS-controller has independent parameters 
from each other.  

In the 1st layer of each ANFIS the inputs 
are fuzzified by means of generalized bell function, 
as membership function, according to equation 5. 
Each input xk is fuzzified using P membership 
functions, or fuzzy terms. In each of those terms, 
{aρ; bρ; cρ} are the Alfa parameters. In order to 
apply the ELM technique, in each ANFIS-based 

controller, those Alphas are initialized with the 
proposed method in [38]. 

 

 
 

(5)

In the 2nd layer the stimulation level Ri of 
fuzzy rules is calculated, by means of the fuzzy 
conjunction among some fuzzifications μρ, just like 
the equation 6 indicates. Figure 2 shows the [2×2] 
conventional conjunctions, assuming two fuzzy 
terms by each input xk. In the 3rd layer those 
stimulation levels Ri are normalized, according to 
the equation 7, assuming that it could have as many 
as Ψ fuzzy rules. 

 

 (6)

 

 (7)

In the 4th layer the Sugeno-type response is 
calculated in each consequent node Ci, using the 
Beta parameters, which are their mi coefficients, 
and their bi constant, according to the equation 8. 
Figure 2 shows that the single hidden layer in 
ANFIS like a SLFN, is its 4th layer. The final 
output is obtained adding the Ψ partial outputs Ci, 
using the equation 9. 
 

 (8)

 

 
(9)

 

Since the ELM must find the mi 
coefficients, and the bi constant, for each Ci node, 
the equation 10 details the H matrix of ANFIS. 
Unlike the H matrix of MLP, its number of 
columns is calculated multiplying the number Ψ of 
fuzzy rules by (K+1), assuming K inputs.  
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(10)

 

Figure 2: Structure used for each ANFIS-controller 

 
Finally, the Beta parameters of ANFIS are 

obtained using the equation 3, and this calculation 
is repeated by 50 times [36], both for ANFIS and 
MLP. Each time the Π training examples were 
changed, choosing randomly the 80% of the 
training set. The remaining 20% was used to find 
the best configuration of Betas, choosing which 
show the least validation error. 
5. EL-MLP AND EL-ANFIS OPTIMIZATION 
 

Since we have already described how both 
MLP and ANFIS are trained with ELM, they are 
here after named: EL-MLP and EL-ANFIS. Now, 
with the necessity of optimizing both the number of 
MLP hidden neurons, and the number of ANFIS 
fuzzy terms, using a statistically measurable 
method, this section describes how ANOVA was 
applied for EL-MLP, according to the Sbarufatti’s 
proposal [5], and how we propose to apply it for 
EL-ANFIS. For that, we made experiments with 
validation error as response variable, measuring it 
with the sum of square errors (SSE), given the 20% 
of the training set, in order to estimate the 
generalization capability of controllers.  

The ANOVA method compares data 
populations, taking into account their sources of 
variability, thus it determines if those populations 
show significant differences, testing statistically if 

their population means are equivalent, or not. 
Generally, such differences are tested to know if 
any or a few experimental treatments improve the 
behavior of certain response variable, or dependent 
variable. Those treatments are either the values of 
certain independent variable, or the possible 
combinations of values of certain number of 
independent variables. The independent variables 
are often called: factors of the experiment. 
Assuming g applied treatments and n observations 
of the dependent variable, by each treatment, the 
ANOVA method partitions the total variability (SST) 
of the dependent variable, into the variability that is 
caused by the treatments (SSG), and the variability 
that is caused by random (SSR). Taking into account 
that (SSG) has (g - 1) degrees of freedom, and (SSR) 
has (N - g) degrees of freedom, where (N = g * n) is 
the total number of observations, their respective 
mean squares: (MSG) and (MSR) are computed, to 
calculate the test statistic Fo using the equation 11. 

 

 (11)

 
Since Fo follows a Fisher-Snedecor 

distribution with (g - 1) and (N - g) degrees of 
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freedom, we can do an hypothesis testing, with 
(100 ⁎ (1 - α))% of confidence, and if the respective 
P-value is less than the significance level α then the 
hypothesis of equivalent population means is 
rejected, and thus the test conclude that the 
application of any treatment has a significant effect 
on the dependent variable. However, this method 
requires that data must satisfy the randomness, 
normality and homogeneity assumptions [9]. 
5.1 Optimizing EL-MLP by means of ANOVA 
 

Applying the ANOVA method to optimize 
the EL-MLP-based controllers, the respective 
treatments are defined by variations of the number 
Φ of hidden neurons. In this way, the aim is to find 
a minimum Φ value, such that its increase does not 
imply a significant improvement on the SEE, 
statistically speaking. Following the method 
proposed by Sbarufatti [5], we obtained data 
defining a range of possible values for the Φ 
independent variable: [1; 51]. Each of those 51 
values sets up an experiment, as the minimum value 
ϕ of a sub-set with 10 levels: [ϕ; (ϕ + 9)]. Therefore, 
a factor with 10 treatments is applied to each of 
those 51 experiments, and each treatment is 
repeated 10 times. Aforementioned experiments 
design implies that each EL-MLP-based controller 
will be optimized after being trained (10 ⁎ 51 ⁎ 10) 
times, but it is not a problem because ELM is used 
for training each time. Thus, at each experiment, 
ANOVA compares 10 populations, with 10 data 
each one, and with 95% of confidence (α = 0.05) it 
determines if its SSE means are equivalent, or if 
any treatment has a significantly influence on the 
SSE mean. So, the minor ϕ for which the 
hypothesis of equivalent means has been accepted, 
and the normality and homogeneity assumptions 
too, it will be the minimum number of hidden 
neurons for the EL-MLP-based controller. In this 
work the normality was tested with Lilliefors [43], 
the homogeneity was tested with Levene [9], and 
the randomness is implicit in the computational 
manner of obtaining data.  

Since original data satisfied neither 
normality nor homogeneity, they had to be 
transformed by means of the Box-Cox technique 
[9]. Figure 3 details the obtained P-values at each 
normality test, homogeneity test and ANOVA, 
during the optimization of the EL-MLP-controller 
for the left motor. There, the minor ϕ was 15 hidden 
neurons. Figure 4 details the same for the EL-MLP-

controller for the right motor and there, the minor ϕ 
was 16 hidden neurons.  
5.2 Optimizing EL-ANFIS by means of ANOVA 
 

Previously we detailed that for EL-MLP 
the applied ANOVA is of one factor: Φ, to find the 
minimum number of hidden neurons, and the 
respective number of Betas is equal to the Φ value. 
For EL-ANFIS we propose to use K factors: {P1;...; 
Pk}, in order to find the minimum number of fuzzy 
terms at each input xk, however the number of Betas 
in EL-ANFIS increases (K+1) times, the number of 
fuzzy rules added because of adding one to the 
value of any factor. We add by default as many 
fuzzy rules as the number of combinations of P of 
the other factors. In the factorial design of 
experiments, ANOVA additionally partitions the 
variability (SSG) into the variabilities caused by 
each factor, and the variabilities caused by each 
interaction among factors. In the optimization of 
EL-ANFIS, ANOVA don’t need such partition 
because in this application it needs to know just 
when there is not any influence of treatments on the 
SSE mean. Therefore, to optimize EL-ANFIS the 
test statistic Fo is calculated, and interpreted, just 
like in EL-MLP. 

Applying that proposal to the EL-ANFIS-
based PD controllers, then we have two factors: {P1; 
P2}, both varying among [2; 10]. Each possible 
combination of them sets up an experiment, as the 
minimum values: {ρ1 ; ρ2}, and using just three 
levels by factor: [ρk ; ( ρk + 2)], because of the 
increase of Betas when any factor increments its 
value. Thus, 81 experiments were performed with 
[3 × 3] treatments each one, and 10 repetitions by 
treatment. So, each EL-ANFIS controller had been 
trained (81 ⁎ 9 ⁎ 10) times. The obtained data had 
to transform too, by means of the Box-Cox 
technique, in order to satisfy the normality and 
homogeneity assumptions, while the randomness is 
implicit in the computational manner to obtain data 
too. At each experiment ANOVA determines, with 
95% of confidence (α = 0.05), if any treatment has 
significant effect on the SSE mean, or not. The 
minimum values: {ρ1 ; ρ2} which the hypothesis of 
equivalent means is accepted for, the minimum 
number of fuzzy terms at each input xk. Figure 5 
indicates with light gray the resulting eligible 
combinations, and a pair of X indicates the ones 
that our method finally chose because they also 
have the lowest SSE mean. 
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Figure 3: Normality, homogeneity and ANOVA P-values for the Left EL-MLP-controller 

 

 
Figure 4: Normality, homogeneity and ANOVA P-values for the Right EL-MLP-controller 

 
 

           
                                   (a) Left EL-ANFIS-controller                                                (b) Right EL-ANFIS-controller 

Figure 5: Eligible and chosen combinations: {ρ1 ; ρ2} for each EL-ANFIS-controller 

 



Journal of Theoretical and Applied Information Technology 
020. Vol.98. No 232 December th15 

ongoing  JATIT & LLS –© 2005  

 

3195-1817ISSN: -E                                                      www.jatit.org8645                                                                  -1992ISSN:  

 
3829 

 

6. EL-MLP VERSUS EL-ANFIS 
COMPARISON 
 

In the previous section, a “double” EL-
MLP with 15 and 16 hidden neurons respectively, 
and a “double” EL-ANFIS with {4; 2} and {4; 3} 
fuzzy terms respectively, were presented, to control 
both the robot motors to perform the wall-following 
navigation task. Talking about the SSE mean 
shown by the left and right motor respectively, 0.04 
and 0.02 was measured for the EL-MLP-based 
controllers, while 0.02 and 0.01 was measured for 
the EL-ANFIS-based controllers. So, at first sight, 
EL-ANFIS seems to show better generalization 
than EL-MLP, because they have less SSE mean in 
each robot motor. Since we need to know if that 
difference has statistical significance, we performed 
30 optimizations for each controller type. Figures 6 
and 7 detail histograms about the obtained 
controllers, and there we can see that the ANOVA 
based optimization technique gives diverse 
configurations for both controller types, thus the 
best SSE mean changes with each optimization run.  

 

 
Figure 6: Distribution of Φ for optimized EL-MLP 

 
 

 
Figure 7: Distribution of {P1; P2} for optimized EL-

ANFIS 

In order to determine which controller type 
achieve the lower SSE mean, as generalization 
capability indicator, we performed an hypothesis 
testing for the means comparison between two 
population samples, often called: t-Test [9]. Each 
population has 10 samples by each of the 30 
previously optimized controllers, i.e. 300 samples 
of each type, in order to have the typical power of 
80% (β = 0.2) with a tolerance (δ = 0.005). So, it 
evaluated unilaterally, with 95% of confidence (α = 
0.05), which controller type achieve a SSE mean 
significantly lower.  

Table 1: Statistical comparison of SSE means 

Motor μ1 μ2 P-value (μ1 - μ2)

Left 0.04549 0.01809 5.175E - 28

Right 0.02440 0.00680 6.053E - 52

 

Table 2: Statistical comparison of SSE variances 

Motor σ1 σ2 P-value (σ1
2 / σ2

2)

Left 0.03652 0.01748 1.341E - 34

Right 0.01614 0.00584 2.836E - 60

 

 

Figure 8: SSE box-plots and means of Left motor 
 

 
 

Figure 9: SSE box-plots and means of Right motor 
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Denoting each EL-MLP-based controller 
SSE mean as μ1, and each EL-ANFIS-based 
controller SSE mean as μ2, the table 1 displays its 
respective values, for both left and right robot 
motors. There, we can detail that the EL-ANFIS 
SSE means are less than the corresponding EL-
MLP SSE means, in both motors. Furthermore, 
their respective standard deviations, in the table 2, 
and the box-plots in figures 8 and 9, show that EL-
ANFIS is less dispersal than EL-MLP, in both 
motors. With the P-values in the table 1 we accept 

that SSE means are significantly different (μ1 > μ2) 
in both motors, after accept that the SSE variances 
are significantly different too (σ1

2 > σ2
2) in both 

motors, using the P-values in the table 2. So, we 
can assert that in this study, EL-ANFIS shows 
better generalization than EL-MLP, consuming 
about 7 ms. more in training time, maximum, 
because each EL-MLP was trained in a maximum 
of 21 ms., while each EL-ANFIS was trained in a 
maximum of 28 ms. 

 

     
(a) Possible input situations                                                              (b) Desirable output actuations  

Figure 10: Training set for both EL-MLP and EL-ANFIS “double” controllers 

 

     
(a) Response of the “double” EL-MLP                                            (b) Response of the “double” EL-ANFIS 



Journal of Theoretical and Applied Information Technology 
020. Vol.98. No 232 December th15 

ongoing  JATIT & LLS –© 2005  

 

3195-1817ISSN: -E                                                      www.jatit.org8645                                                                  -1992ISSN:  

 
3831 

 

Figure 11: Graphic example of the achieved generalization in each controller type 
Finally, in order to detail a graphic 

example of the achieved generalization in each 
controller type, we considered the more frequent 
optimized values for Φ and {P1; P2}, according to 
figures 6 and 7. So, a “double” EL-MLP with 15 
and 14 hidden neurons, in addition to a “double” 
EL-ANFIS with {4; 2} and {3; 2} fuzzy terms, 
were trained. Figure 10 details the 64 examples of 
training set used throughout this work. There, 
figure 10a shows its respective input situations and 
figure 10b shows its respective desirable responses. 

 Thus, figure 11 shows the 64 obtained 
responses to the situations in figure 10a, over the 
responses to 2000 random situations, uniformly 
distributed among those in figure 10a. An 
additional value that can be calculated here is the 
adjust coefficient R2, given the desirable and 
obtained outputs for the validation examples. 
Respectively for each motor, the EL-MLP has R2 of 
0.9851 and 0.9698, and EL-ANFIS is definitely 
better: 0.9949 and 0.9959.  
7. CONCLUSIONS 

In this paper we report a statistical 
comparison between Multi-Layer Perceptron (MLP) 
and the Adaptive-Network-based Fuzzy Inference 
System (ANFIS), used as PD controllers for a 
differential mobile robot, performing the wall-
following task. Here, it was verified that the 
Extreme Learning Machines (ELM) method trained 
such systems in the order of milliseconds, very 
much faster than with back-propagation (BP) [36], 
and that facilitates its structural optimization by 
means of the statistical technique called: Analysis 
of Variance (ANOVA). Aforementioned 
optimization method was recently proposed for 
neural networks trained by means of BP [5], and in 
this paper we show its application to Single Layer 
Feedforward Networks (SLFN) trained by means of 
ELM. Since ELM tends to give SLFN with great 
generalization capability [36], for this case study 
we have statistically demonstrated that the best EL-
ANFIS-based controllers has better generalization 
capability than the best EL-MLP-based controllers. 
The quantitative evidence of it is an hypothesis 
testing that compared the validation error mean of 
30 optimized controllers of each type. The great 
advantage of this work is that the optimization and 
comparison are performed with respect to the 
controllers generalization capability, and in a 
statistically measurable way, in contrast to the 
behavioral comparison shown in [25]. 

Considering that among the diverse 
comparisons between MLP and ANFIS, the last one 
tends to be more efficient and robust than the first 
one, it is important to notice that in this work EL-
ANFIS clearly shows the same tendency. However, 
there is no reason why EL-MLP should be a priori 
rejected. Regarding the application of ANOVA as 
optimization method for EL-ANFIS, it is noticed 
that it is not recommended to explore values higher 
than seven fuzzy terms, because the fast increment 
of the number of Betas implies, as disadvantages, 
the increment of the training time and the increment 
of the on-line processing time, as a mobile robot 
controller. The use of such optimization method in 
other kind of applications could demand more data 
by treatment, but the use of ELM enables to obtain 
them quickly. In future works we could recommend, 
on the one hand, to consider the number of fuzzy 
rules as another factor in the ANOVA based 
optimization of EL-ANFIS. On the other hand, 
Radial Basis Function (RBF) neural networks could 
be included in the statistical comparison, training 
them with ELM and optimizing them with ANOVA 
too, just like we did with the EL-MLP here. 
Additionally, it is recommended to compare the 
performance of those controllers, using them in real 
robots, due to the comparison in this work was 
limited to estimate theoretically the generalization 
capability. Finally, it could investigate statistically 
if there is significant difference in the on-line 
processing time, controlling real robots with 
optimized examples of aforementioned systems. 
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