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ABSTRACT 
In order to obtain quality cable products in the thermoplastic extrusion process, it is important that during the 
polymer extrusion process, a melt that is homogenous in both temperature and composition is delivered. To 
achieve this, it is important to control, monitor, identify and select the important parameters during the 
extrusion process which directly impacts the product output. Some of these parameters include the melt 
pressure, temperature, line speed, screw speed, amongst others. In developing countries, however, these 
parameters are often selected on a trial and error basis which often leads to waste of material and the 
production of poor quality cables. This paper focuses on a technique which can be used to predict realistic 
extrusion process parameters for medium to high voltage cable insulations using artificial neural network. 
Real life datasets for the extrusion of Polyethylene (PE) thermoplastic were obtained and a three-layered 
feed-forward neural network as developed in the MATLAB environment. The neural network model 
developed can predict the manufacturing extrusion process parameters for different grades of PE 
thermoplastic which is used for medium to high voltage electrical cable insulation. A regression value of 
0.99569 was obtained and a mean square error of 2.98052 ൈ 10ି was achieved.  
 
Keywords: Insulation Cables, Extrusion Process, Polyethylene, Cable Industries, ANN, Machine Learning 
 
1. INTRODUCTION  
 

Electrical cables are one of the most 
important components that are used in the 
transmission and distribution of electrical power. 
However, in developing countries, the 
manufacturing of electrical cables are often faced 
with different challenges [1]. Some of these 
challenges often occur generally during the extrusion 
process in thermoplastic extrusion  [2]. Extrusion is 
a process that is used to deposit a compact and 
uniform layer of thermoplastic (polymer) on an 
electrical conductor [3]. The extrusion process is not 
an entirely new process and it has existed for a very 
long period. For example, injection molding has 
been used in the 19th century to eject melted plastic 
in order to fill a mold cavity [4]. Figure 1.0 shows a 

block representation of an extrusion process. The 
extruder is divided into three main functional zones. 
These include the feed, melting, and pumping zones 
[5]. Polymer granules are passed through a hopper, 
and different inhibitors are added to the granules in 
the hopper. The granules subsequently absorb heat as 
through the heaters that are attached to the barrels of 
the extruder which produces a molten flow that is 
moved by a screw and pushed through a die at a 
particular pressure. Figure 2.0 shows the 
diagrammatic representation of a typical single 
screw extruder (Abeykoon, 2016). 
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Figure 1: Block representation of the extrusion process [2] 

 

Figure 2.0: Diagrammatic representation of a single 
screw extruder [6]. 

Different types of thermoplastic materials 
are often extruded in cable manufacturing industries. 
These include the Polyvinyl Chloride (PVC), 
Polyethylene (PE) and the Cross-linked 
Polyethylene (XLPE). While the PVC is ideal for 
low voltage applications, PE and XLPE are suitable 
for medium to high voltage applications [7]. PE and 
XLPE are suitable for medium to high voltage 
applications due to their unique features which have 
made them suitable for cable insulation. For 
example, they exist in a very pure state and have a 
dielectric strength which is around the range of 
750MV/m to 850MV/m [7]. This paper focuses on 
the extrusion of PE thermoplastic for medium to high 
voltage applications.  

Due to the number of process parameters 
associated with the extrusion process, the process is 
often very complex [8]. The quality of an electrical 
cable is dependent on the choice of the process 
parameters and operating conditions [9].  Improper 
operations during the extrusion process often lead to 
the production of poor quality electrical cables [10]. 
Poor quality cables are often associated with defects 
that affect cable insulation. These defects include 
cracking, voids, thickness variation, etc. [1] [11].  
The utilization of poor quality electrical cables can 
lead to different problems in electrical transmission 
and distribution such as insulation breakdown that 
can cause the loss of the life or properties.  It is 
therefore important to develop techniques to further 
improve the extrusion process during electrical cable 
insulation [5].  

In order to obtain high-quality cable 
production while reducing the downtime, waster of 
material and manufacturing cost, different 
techniques have been developed over the years. 
Different research has been done in order to improve 
the thermoplastic extrusion process as well as bridge 
the gap between simulations and manufacturing 
execution systems. Furthermore, non-linear 
modeling techniques have been utilized in order to 
accurately estimate the process parameters or 
improve the efficiency of the extrusion process [5]. 
Abdulkareem and his colleagues investigated the 
technique to improve thermoplastic material in the 
industry. They were able to determine that the PVC 
quality that is used in the cable manufacturing 
industries can largely affect the quality from an 
extruder, hence they formulated a new PVC based on 
locally sourced material which was used to produce 
quality cable insulation with reduced cost and high 
quality [1].  Deng et al. also introduced a low-cost 
energy monitoring system that is used to monitor the 
process settings during the extrusion process [6]. 
Chamil and his colleagues also discovered that 
energy efficiency is very vital in the extrusion 
process and a technique to optimize energy 
efficiency was presented [12]. Zinnatullin et al. and 
Abeykoon also presented the use of automatic 
control systems in the extrusion process in order to 
further improve thermoplastic extrusion processes 
[9] [10]. They were able to establish that one of the 
major process parameter that can greatly impact the 
output from an extruder is the melt temperature. The 
system which was developed was able to achieve the 
melt temperature that was desired for the 
thermoplastic extrusion process. The use of finite 
element simulation was also considered by 
Sivaprasad et al. in order to determine the best 
process parameters that can be utilized in an 
extrusion process [13]. The technique for utilizing 
process parameters for high-density polyethylene 
(HDPE) using the Taguchi approach was also 
presented by Dharmendra and Sunil. Other 
researchers also utilized the Taguchi approach to 
obtain promising results in optimizing extrusion 
parameters in the thermoplastic extrusion process 
[14] [15] [16] [17]. Regression techniques have also 
been used by Garcia and colleagues to predict 
extrusion quality in thermoplastic extrusion [18]. 
They also established that the quality of the extrusion 
process cannot be overemphasized in the 
manufacturing process. Other techniques such as the 
fuzzy logic [19], and artificial neural network [2] 
have been utilized to predict realistic extrusion 
process parameters. Abdulkareem et al. were able to 
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accurately predict insulation thickness for electrical 
cable using an artificial neural network [2].  

This paper focuses on predicting the 
extrusion process parameters for polyethylene 
thermoplastic material (PE) which is used in medium 
to high voltage electrical cables insulation using an 
artificial neural network.   

 

2. MATERIALS AND METHODS 
 
2.1 Dataset Material 
 

This paper considered the extrusion process 
parameters prediction for polyethylene 
thermoplastic material. Relevant dataset that 
includes the datasheet of different grades of PE and 
process parameters settings were obtained from 
Coleman Wires and Cables, Nigeria which is one of 
the best cable manufacturing companies in West 
Africa. This company was selected based on its 
capability to produce high-quality cables. The 
complete dataset which was acquired is as shown in 
Table 1.0 -  Table 3.0. The data consists of different 
process parameters settings for different grades of 
PE thermoplastic as well as the corresponding 
datasheet. 

 
2.2 Artificial Neural Network 

 
An artificial neural network (popularly 

known as ANN) has become really popular in 
solving different challenges in the world today. It is 
a machine learning technique that is developed based 
on the way the human brain/biological system 
works. ANN is capable of good generalization which 
simply denotes its ability to obtain outputs based on 
inputs that have not been encountered during 
training. This has made the use of ANN very crucial 
in solving the thermoplastic extrusion process in 
cable manufacturing processes. The diagrammatic 
representation of a neuron is as shown in Figure 3.0. 
It consists of input signals, synaptic weights, an 
adder for summing the inputs, an activation function 
and an output. It can be expressed mathematically as 
shown in equations 1 and 2. 

 
𝑣 ൌ ∑ 𝑤𝑥


ୀ  𝑏    (1) 

𝑦 ൌ 𝜑ሺ𝑣ሻ    (2) 

Where 𝑤 are the weights, 𝑥 are the inputs, 𝑏 are 
the biases, 𝜑 is the activation function and 𝑦 is the 
output. 

Figure 3.0: Representation of a simple neuron 

The activation functions that are used in the 
neuron are of different types. These include the 
gaussian, sigmoid, and linear functions amongst 
others. The most commonly used type, however, is 
the sigmoid function. The sigmoid function is 
expressed in equation 3 below, The ANN model that 
was utilized in this study is the multilayer perceptron 
model generally known as MLP.  

φሺ𝑣ሻ ൌ
ଵ

ଵାషೡೖ
      (3) 

The MLP neural network consists of an input layer, 
one or more hidden layers and an output layer. 
Figure 4.0 shows the schematic diagram of a typical 
MLP neural network. 

Figure 4.0:  Multilayer Perceptron Schematic Diagram 
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Table 1.0: 30 different grades of Polyethylene dataset 

Grade P273
5 

P287
0 

P3301 P400 E803 E124 E130
3 

E170 E177
0 

PB130G
1 

Max Operating 
temp 

196 187 199 190 195 190 192 195 194 192 

Specific Gravity 0.953 0.95 0.956 0.96
9 

0.92
8 

0.92
5 

0.925 0.92
5 

0.924 0.905 

Melt flow rate 0.06 0.09 0.09 0.06 0.08 0.09 0.09 0.09 0.06 0.06 

Melt Index 0.09 0.06 0.08 0.06 0.07 0.07 0.09 0.06 0.09 0.09 

Tensile Strength 23 22 14 6 7 22 14 20 19 12 

Elongation at 
break 

555 760 800 825 936 540 700 585 640 800 

Softening 
Temperature 

143 136 137 134 126 144 136 145 132 125 

Melting Point  130 132 137 130 140 135 130 136 138 139 

Shore Hardness, 
A 

90 86 86 80 90 90 88 90 90 92 

Stability 
(Thermal) 

60 60 60 80 120 120 100 120 90 150 

Ageing 
Temperature 

90 80 80 80 100 100 100 100 90 100 

Tensile Strength 
Variation 

20 20 20 20 20 20 20 20 20 20 

Elongation 
Break Variation 

20 20 20 20 20 20 20 20 20 20 

Profile Settings           

1st Zone  130 130 120 130 130 130 128 132 130 129 

2nd Zone  145 150 135 155 150 155 145 155 150 153 

3rd Zone  150 165 140 160 165 160 155 161 160 160 

4th Zone  160 160 150 160 160 160 160 159 165 159 

5th Zone  160 160 150 160 160 160 160 161 165 161 

6th Zone  165 160 155 160 160 160 160 160 160 161 

7th Zone  165 175 155 165 175 165 175 161 160 160 

Clamp  170 175 160 175 175 175 175 171 172 170 

Neck  155 155 160 150 155 150 155 154 155 156 

Cross head  170 170 160 170 170 170 165 171 170 170 

Die  170 170 155 175 170 175 170 169 180 175 

Screw Speed 172 171 172 172 173 172 173 172 171 173 

 

Table 2.0: 30 different grades of Polyethylene dataset (Continued) 

Grade PE00 PE00 CP10 CP00 PE00 PE03 2303 2202
F 

P182
0 

P234
0 

Max Operating 
temp 

190 190 190 190 200 191 198 195 187 200 

Specific Gravity 0.92 0.92 0.92 0.92 0.92 0.92
1 

0.92
3 

0.921 0.937 0.944 

Melt flow rate 0.06 0.06 0.06 0.06 0.09 0.06 0.09 0.06 0.07 0.09 

Melt Index 0.06 0.06 0.06 0.06 0.08 0.06 0.06 0.07 0.08 0.08 
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Tensile Strength 14 14 14 14 14 14 18 16 17 25 

Elongation at break 500 500 500 500 500 500 400 600 750 740 

Softening 
Temperature 

123 123 123 123 143 133 125 149 149 126 

Melting Point  130 130 130 130 132 135 139 137 140 135 

Shore Hardness, A 90 86 86 80 90 90 88 90 90 92 

Stability (Thermal) 110 90 100 80 120 120 120 150 200 200 

Ageing 
Temperature 

80 80 80 80 80 80 100 135 135 135 

Tensile Strength 
Variation 

25 25 25 20 25 20 20 20 20 20 

Elongation Break 
Variation 

25 25 25 20 25 20 20 20 20 20 

Profile Settings           

1st Zone  160 160 160 160 160 160 159 159 158 160 

2nd Zone  165 165 165 165 163 167 166 163 180 180 

3rd Zone  170 170 170 170 172 172 172 170 180 185 

4th Zone  175 175 175 175 176 176 176 177 180 185 

5th Zone  180 180 180 180 181 180 182 181 180 185 

6th Zone  185 185 185 185 185 186 184 186 180 185 

7th Zone  190 190 190 190 193 190 192 193 180 185 

Clamp  195 195 195 195 196 194 194 195 185 190 

Neck  195 195 195 195 195 195 196 196 160 160 

Cross head  195 195 195 195 196 195 196 196 165 170 

Die  200 200 200 200 200 200 200 199 150 165 

Screw Speed 170 170 170 170 172 172 171 173 172 173 

 

Table 3.0: 30 different grades of Polyethylene dataset (Continued) 

Grade PB14
0 

F15 WD2 D388 D477 D777 D682 L181 M1A M30 

Max Operating temp 193 197 198 181 193 199 187 187 192 193 

Specific Gravity 0.905 0.92 0.96 0.91
9 

0.94
3 

0.92
1 

0.93
2 

0.93
8 

0.93
8 

0.93
2 

Melt flow rate 0.09 0.08 0.08 0.09 0.06 0.08 0.09 0.09 0.06 0.08 

Melt Index 0.08 0.06 0.09 0.08 0.07 0.09 0.07 0.07 0.09 0.06 

Tensile Strength 14 20 20 15 17 14 20 17 14 20 

Elongation at break 600 500 400 740 597 749 424 588 600 500 

Softening 
Temperature 

134 123 146 134 141 135 137 136 134 123 

Melting Point  133 140 131 136 132 139 136 133 133 140 

Shore Hardness, A 90 86 95 93 86 93 92 93 120 120 

Thermal Stability 60 60 240 100 60 100 80 100 80 100 

Ageing Temprature 80 80 135 80 80 80 80 63 20 25 

Variations of TS 20 20 25 25 20 25 20 20 20 25 

Variations of EB 20 20 25 25 20 25 20 20 20 20 
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Profile Settings          

1st Zone  129 132 170 140 140 150 140 140 130 140 

2nd Zone  153 153 180 170 150 160 160 160 150 160 

3rd Zone  160 162 180 170 150 160 170 170 160 160 

4th Zone  159 160 190 170 160 160 170 170 165 170 

5th Zone  161 162 190 175 165 175 170 170 170 170 

6th Zone  160 161 195 170 170 175 160 165 160 170 

7th Zone  171 160 190 180 170 180 170 175 170 165 

Clamp  155 171 200 160 180 170 170 170 160 160 

Neck  170 155 180 180 170 200 160 160 180 180 

Cross head  169 170 180 170 180 180 160 170 180 180 

Die  175 175 180 160 190 180 170 170 190 175 

Screw Speed 173 171 173 170 170 170 170 173 172 171 

 

The MLP neural network is trained with a 
backpropagation algorithm. Training is the process 
in which the network is modified using an 
appropriate learning mode to adjust the weights to 
ensure that the network attempts to produce the 
desired output. Different forms of training 
algorithms include the Levenberg Marquardt, 
Gradient Descent, Newton, Conjugate Gradient, and 
the Quasi-Newton training algorithm. The Bayesian 
Regularization neural network was utilized in this 
research. The Bayesian regularization is a training 
function which changes the values of the biases and 
the value of the weight based on the Levenberg 
Marquardt algorithm. The use of Bayesian 
regularization provides a good generalization for 
small data and help to solve overfitting problems 
[20]. 

2.3 Structure Description of the ANN model 

This paper presents an MLP neural network 
for the prediction of extrusion process parameter for 
Polyethylene thermoplastic developed in the 
MATLAB. The MLP consists of three (3) layers. 
The input layers consist of thirteen (13) input 
neurons which consist of the maximum operating 
temperature, specific gravity, melt flow rate, melt 
index, tensile strength, elongation at break, softening 
temperature, melting point, hardness, thermal 
stability, aging temperature, tensile strength and 
elongation break variations. These data were 
obtained from the datasheet of different types of PE 
thermoplastic material which is used in the electrical 
cable insulation process in cable manufacturing 
industries. The model also consists of one (1) hidden 
layer with thirty (30) neurons which was chosen 

based on a heuristic approach and one (1) output 
layer with twelve (12) neurons which consists of the 
desired process parameters. These process 
parameters consist of temperature profiles from zone 
1 to 7, clamp temperature, die temperature, melt 
pressure, as well as the screw speed. Figure 6.0 
highlights the ANN model utilized in this study. 
Figure 5.0 shows the network diagram for the neural 
network for predicting extrusion process parameters 
for PE thermoplastic extrusion process. 

 
Figure 5.0: Network diagram for ANN model used for the 
PE extrusion process parameters prediction 
 

Figure 6.0: Diagrammatic representation of the neural 
network model 
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2.4 The Bayesian Algorithm 

ANN often suffer from overfitting or 
underfitting problems. The overfitting problem is 
more serious due to the fact that it can lead to the 
predictions of data that are not in the range of the 
training dataset. Overfitting generally occurs 
anytime a network model fits the data in the training 
dataset accurately, thereby leading to a large 
generalization error. The Bayesian regularization 
can be used to prevent overfitting problems.  The 
Bayesian algorithm generally modifies the early 
stopping objective function shown in equation 4. 

𝐸ሺ𝐷|𝑤, 𝑀ሻ ൌ ∑ ሺ𝑡 െ 𝑡పഥሻଶ
ୀଵ    (4) 

𝐷 ൌ  ሼ𝑡, ሺ𝑝ሻୀଵ…ሽ    (5) 

Where 𝑝 is a vector input for 𝑖 neurons, 𝑡 
is the vector output variable, 𝑤 is the weights, 𝑀 is 
a specific network architecture, and 𝐸 is the mean 
square error. The Bayesian regularization modifies 
the objective function by adding an extra term 𝐸௪ 
which is used to adjust large weights in order to 
achieve better generalization and smooth mapping. 
In order to minimize the modified function shown in 
equation 6, a gradient-based optimization technique 
is utilized [21]. 

𝐹 ൌ 𝛽𝐸ሺ𝐷|𝑤, 𝑀ሻ  𝛼𝐸௪ሺ𝑤|𝑀ሻ   (6) 

Where 𝐸௪ሺ𝑤|𝑀ሻ is the sum of the squares 
of the architecture weights, 𝑀 is a specific network 
architecture, 𝛼 and 𝛽 are hyper-parameters which 
takes values that will be adaptively estimated, 𝛼𝐸௪ 
is the weight decay and 𝛼 is the decay rate which 
favors a small value of the weights and reduces the 
probability of a model to overfit. When 𝛼 ≪ 𝛽, 
errors will be made smaller by the training algorithm 
and it 𝛽 ≫ 𝛼, the training will reduce weight size at 
the expense of the network error. This technique 
enables the neural network system to produce a 
smooth network response. In neural networks, the 
weights are often random variables and they do not 
have a deep meaning before training begins, 
however when the training begins, the weights are 
updated according to Bayes’ rule. The Bayes’ rule is 
expressed in equation 7 below [22]. 

𝑃ሺ𝑤|𝐷, 𝛼, 𝛽, 𝑀ሻ ൌ
ሺ|௪,ఉ,ெሻሺ௪|ఈ,ெሻ

ሺ|ఈ,ఉ,ெሻ
  (7) 

Where 𝐷 is the training data, 𝑀 is  the 
neural network that is being considered, 

𝑃ሺ𝑤|𝐷, 𝛼, 𝛽, 𝑀ሻ and 𝑃ሺ𝐷|𝑤, 𝛽, 𝑀ሻ  is the posterior 
probability and likelihood function of 𝑤 
respectively, 𝑃ሺ𝑤|𝛼, 𝑀ሻ is the old weights under 𝑀 
(probability of observing 𝑤), and 𝑃ሺ𝐷|𝛼, 𝛽, 𝑀ሻ is 
the normalization factor for 𝛼 and 𝛽. 

Since the normalization does not depend on 
𝑤, it can be expressed as in equation 8 [21] 

𝑃ሺ𝐷|𝛼, 𝛽, 𝑀ሻ ൌ  𝑃ሺ𝐷|𝑤, 𝛽, 𝑀ሻ 𝑃ሺ𝑤|𝛼, 𝑀ሻ𝑑𝑤  (8) 

When the weight 𝑤 is assumed to be 
distributed identically, the probability of observing 
𝑤 (joint density factor) is given as shown in equation 
9 [23] 

𝑃ሺ𝑤|𝛼, 𝑀ሻ ∝ ∏ 𝑒ି
ഀೢೖೕ

మ

మ
ୀଵ ൌ 𝑒ି

ഀಶೢሺೢ|ಾሻ
మ   (9) 

𝑃ሺ𝑤|𝛼, 𝑀ሻ ൌ 𝑒
ష

ഀಶೢሺೢ|ಾሻ
మ

ೋೢሺഀሻ     (10) 

Where 𝑍௪ሺ𝛼ሻ ൌ ሺ
ଶగ

ఈ
ሻ


మ     (11) 

Since target variable 𝑡 is a function of the 
input variables 𝑝, this relationship can be modeled as 
𝑡 ൌ 𝑓ሺ𝑝ሻ. Therefore, the joint density function for 
target variables based on provided input variables 𝛽 
and 𝑀 is expressed in equation 12. 

𝑃ሺ𝑡|𝑝, 𝑤, 𝛽, 𝑀ሻ ൌ
ఉ

ଶగ

ಿ
మ 𝑒ି

ഁ
మ

∑ ሺ௧షሺሻమሻಿ
సభ    (12) 

𝑃ሺ𝑡|𝑝, 𝑤, 𝛽, 𝑀ሻ ൌ
ఉ

ଶగ

ಿ
మ 𝑒ି

ഁ
మ

ாವ൫𝐷ห𝑤, 𝑀൯  (13) 

The posterior density in equation 7 can be 
modified with the equations above. If 𝑍ሺ𝛽ሻ ൌ

  𝑒ି
ഁ
మ

ாವ൫𝐷ห𝑤, 𝑀൯ ൌ ሺ
ଶగ

ఉ
ሻ

ಿ
మ , the modified posterior 

density equation can be expressed as in equation 14 
[23]. 

𝑃ሺ𝑤|𝐷, 𝛼, 𝛽, 𝑀ሻ ൌ
భ

ೋഏሺഀሻೋವሺഁሻష
భ
మሺഁಶವశഀಶೈሻ

ሺ|ఈ,ఉ,ெሻ
ൌ

ଵ

ಷሺఈ,ఉሻ
𝑒ି

ಷሺೢሻ
మ      (14) 

Where 𝑍ிሺ𝛼, 𝛽ሻ ൌ ൫𝑍௪ሺ𝛼ሻ𝑍ሺ𝛽ሻ 𝑃ሺ𝑤|𝐷, 𝛼, 𝛽, 𝑀ሻ൯ 
and (15) 𝐹 ൌ 𝛽𝐸  𝛼𝐸ௐ  (16) 
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In the Bayesian regularization, the neural 
network model chooses the best weights which can 
optimize the posterior density 𝑃ሺ𝑤|𝐷, 𝛼, 𝛽, 𝑀ሻ 
which is similar to minimizing the regularized 
objective function 𝐹 in equation 16. Obtaining the 
minimum value of the objective function 𝐹 is similar 
to finding a posteriori estimate denoted as 𝑤ெ and 
the minimization of 𝐸 is identical to finding the 
maximum estimate denoted by 𝑤ெ. The use of the 
Levenberg Marquardt can be adopted to locate the 
lowest value of F [24]. The modification of the 
Gauss-Newton algorithm by the Levenberg 
Marquardt optimization is as seen in equation 17. 

ሺ𝜇𝐼ሻ𝛿 ൌ 𝐽ᇱ𝑒     (17) 

The Hessian matrix is approximated as 

𝐻 ൌ  𝐽ᇱ𝐽    (18) 

Where 𝐽 is the Jacobian matrix, 𝜇 is the 
Levenberg damping factor, and 𝛿 is the parameter 
update vector. The parameter update vector simply 
indicates the degree at which the values of the weight 
is needed to be altered to obtain a better prediction. 
The Jacobian matrix (a partial derivative of the 
output with respect to the weight) 𝐽 has the form: 
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   (19) 

The stepwise algorithm that is utilized by 
the Bayesian regularization learning algorithm is 
clearly highlighted below. Figure 7.0 also shows the 
flow diagram of the algorithm. (1) Use the 
Levenberg Algorithm to reduce the objective 
function and obtain the present value of w. This is 
done by computing the Jacobian matrix, error 
gradient, Hessian matrix, and the objective function 
before the weight are updated. (2) Compute the 
effective number of parameters using the LM 
algorithm. (3) Compute the new hyper-parameter 
values. (4) Repeat steps 2-4 until convergence. 

2.5 Performance Evaluation Metric 
 

Evaluating the performance of the 
developed neural network model is very important in 
order to ensure that the model developed is very 

good. Different performance indices that can be 
utilized include the mean square error, mean relative 
error, mean absolute error, mean accuracy 
percentage error. The mean squared error, popularly 
known as MSE was utilized in this study. Equation 
20 shows the mathematical expression for the MSE 
performance metric. 
 

𝑀𝑆𝐸 ൌ  
ଵ

ೞ
∑ ሺ𝑑 െ 𝑦ሻଶೞ

ୀଵ    (20) 

 
Figure 7.0: Flow diagram of the Bayesian Regularization 
Neural Network 
 
2.6 System Specification 
 
A computer system running a Windows Operating 
System with a memory of 8GB RAM was utilized in 
this study. The MATLAB software by MathWorks 
was used to develop the ANN model using inbuilt 
features such as the neural network toolbox which 
was used in this paper. Its graphical output is 
optimized for interaction, good data plotting tools in 
different colors, sizes, and scales. 
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3. RESULTS AND DISCUSSIONS 
 

The results obtained from the work in this 
paper are presented in this section. Necessary tables, 
figures and accompanying graphical representations 
are also presented. The results were also discussed 
and important points were clearly highlighted. 

 
3.1 Predicting Extrusion Process Parameters for 

PE thermoplastic material 
 

Table 4.0 shows the design summary for the 
MLP model that was utilized in the study. Thirty (30) 
different grades of PE thermoplastic was obtained in 
which about 80% was used for training the neural 
network and the 20% was used for validation and 
testing the neural network. 
 
Table 4: Multilayered Perceptron neural network design 

approach. 

Material PE 

Number of data 30 

Training data 26 

Validation data 4 

Training Method Bayesian 

Regularization 

Activation Function Purelin and Tansig 

Training Time 10 seconds 

Number of Iterations 600 

Performance Evaluation  MSE 

Number of Inputs Layers 1 

Number of Input Neurons 13  

Hidden Layers 1 

Hidden Neurons  30 

Output Layer 1 

Output Neuron 12  

 

The regression plot for the MLP model is as shown 
in Figure 8.0. The regression plots clearly show the 
regression values (R values) for the training and 
testing dataset. Table 5 also shows the mean squared 
error (MSE) and R-values for the developed model. 
It can be observed that the R-values are very close to 
1 and the mean squared error is very low which 
invariably signifies a very good model. This 

indicates that the model developed is capable of 
accurately predicting the extrusion process 
parameters for PE thermoplastic extrusion process. 
 

Figure 8.0: Regression analysis plot for Bayesian 
Regularization (PE process parameters). 
 
 
Table 5: MSE and R-value for the training and testing 

 Mean Squared Error Regression 

Training 8.54430 ൈ 10ିଵଵ 0.99998 

Test 2.98052 ൈ 10ି 0.97826 

All - 0.99569 

 
Four (4) different grades of PE which were 

not used in the training of the neural network was 
used to determine the performance of the neural 
network developed. The model that was developed 
can predict the process parameters for different PE 
thermoplastic material. The relationship between the 
actual and the predicted values are presented in 
Tables 6 and 7. The graphical relationships are also 
presented in Figures 9 to 12. A close relationship 
between the actual and the predicted values can be 
observed in the relationship table and graphical 
representations.  

 
It can be observed from the results that the 

artificial neural network is capable of predicting the 
extrusion process parameters for different grades of 
PE thermoplastic extrusion process. This technique 
can really improve the production of quality 
electrical cables by enabling production managers to 
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be equipped with the right tools to produce high-
quality cables. 
 

Table 6: Differences between the predicted and production values for M30 and M1A 

Name M30 M1A 

Settings Actual 

Value 

Predicted 

Value 

Error Actual Value Predicted 

Value 

Error 

1st Zone  140 140.874 -0.87359 130 133.421 -3.42093 
2nd Zone  160 165.543 -5.54338 150 154.667 -4.66665 
3rd Zone  160 161.797 -1.79724 160 159.277 0.722649 
4th Zone  170 166.355 3.644722 165 166.189 -1.18879 
5th Zone  170 169.075 0.925284 170 168.119 1.881291 
6th Zone  170 167.093 2.907409 160 161.32 -1.31982 
7th Zone  165 164.15 0.849624 170 167.265 2.734684 
Clamp  160 154.657 5.343137 160 157.717 2.283157 
Neck  180 182.265 -2.26505 180 179.402 0.598131 
Cross head  180 174.14 5.86047 180 180.762 -0.76151 
Die  175 173.6919 1.308136 190 187.3623 2.637666 
Screw Speed 171 170.5832 0.416815 172 171.1655 0.834487 

 

Table 7: Differences between the predicted and production values for L1810F1 and D682PC 

Name L1810F1 D682PC 

Settings Actual  Predicted  Error Actual Value Predicted  Error 

1st Zone  140 140.26 -0.26018 140 136.35 3.650402 
2nd Zone  160 163.981 -3.98057 160 161.84 -1.8401 
3rd Zone  170 171.156 -1.15586 170 171.129 -1.12894 
4th Zone  170 167.872 2.127889 170 167.423 2.577056 
5th Zone  170 168.496 1.503746 170 167.602 2.398219 
6th Zone  165 165.546 -0.54635 160 161.185 -1.18509 
7th Zone  175 174.253 0.746952 170 167.016 2.983731 
Clamp  170 172.025 -2.02538 170 169.625 0.375336 
Neck  160 161.932 -1.93181 160 152.2 7.799841 
Cross head  170 169.472 0.528084 160 165.201 -5.20077 
Die  170 170.5028 -0.5028 170 168.0235 1.976487 
Screw Speed 173 171.046 1.953973 170 170.7827 -0.78274 
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Figure 9: Graphical relationship between actual 
and predicted values (M30) 

Figure 10: Graphical relationship between actual 
and predicted values (M1A) 

 
Figure 11: Graphical relationship between actual 
and predicted values (L1810F1) 
 
 
 

Figure 12: Graphical relationship between actual 
and predicted values (D682PC) 
 
4. CONCLUSION 
 
This paper presents a technique that can be used to 
predict extrusion process parameters for PE 
thermoplastic extrusion process which is useful for 
electrical cable insulation for medium to high 
voltage applications. A multi layered network 
which was trained with the Bayesian regularization 
technique was utilized. The paper shows that the 
developed ANN model is can predict extrusion 
process parameters for different grades of 
polyethylene material. This technique can be 
incorporated into manufacturing processes in order 
to improve the production of high-quality electrical 
cables. The use of trial and error techniques can be 
eradicated in the thermoplastic extrusion process, 
which generally will improve the efficiency in 
cable manufacturing processes. Further research 
work can still be done in order to further improve 
the thermoplastic extrusion process by integration 
neural network controllers to further solve 
industrial problems. 
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