
Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3667

PIPELINE AND DEEP LEARNING APPROACH FOR NLIDB:
A COMPARATIVE STUDY

1SHANZA ABBAS, 2MUHAMMAD UMAIR KHAN, 3SCOTT UK-JIN LEE*, 4ASAD ABBAS
1,2 Department of Computer Science and Engineering, Hanyang University, Republic of Korea

3Department of Computer Science and Engineering, Major in Bio Artificial Intelligence, Hanyang
University, Republic of Korea

4Faculty of Information Technology, University of Central Punjab, Lahore, Pakistan

*Corresponding Author: 3SCOTT UK-JIN LEE

E-mail: 1shanza92@hanyang.ac.kr, 2mumairkhan@hanyang.ac.kr, 3*scottlee@hanyang.ac.kr,
4asadabbas.grw@ucp.edu.pk

ABSTRACT

Databases are integral part of current world’s scenario of rich technology. Greater amount of the data in the
world is stored in the databases. That amount of data storages can be utilized for various purposes in data
science world. Besides potential usage and benefits of available data amounts, the requirement of formal
language to access the databases is a huge hurdle. Structured Query language (SQL) is one of such formal
languages to access the database. Besides its impact and powerful as a language it is not a common
knowledge. Therefore, domain experts of some particular databases cannot access their data freely and
easily. Web interfaces to access that data has their own limitation and do not fulfil the purpose to the
maximum of the potential of data. Natural Language Interface to Database (NLIDB) system is natural
solution for such problems. Text to SQL task in NLIDB system is being experimented with since 70s.
Previously it was based on integrated methods and techniques from Natural Language Processing (NLP)
and Data Science areas, those integrated frameworks generally known as pipeline methods. Recently,
machine learning showed promising performance for the solutions to semantic problems. Which is why,
deep learning had been adopted for text to SQL task as well. Currently NLIDB systems research is going
on with both of the approaches of pipeline methods and deep learning methods in parallel. It is important at
this time to analyze the latest work with both approaches and compare and identify their unique challenges
and issues as well as findings and potential of both approaches for the NLIDB systems. In this paper, a
comparative analysis is presented to find out the achievements and issues of NLIDB with pipeline methods
and with deep learning methods regarding each of them.

Keywords: Structured Query language, Natural Language Processing, Natural Language Interface to Databas

1. INTRODUCTION

Currently majority of the data in the world is
stored in the form of databases. That data is being
used for various purposes including huge
contribution in the research. A prominent hurdle
from that data being utilized to the full of its
potential is the need of structure query languages to
access the databases. Structured query languages
are not possible for everyone to learn [1]. This
problem creates a gap between the domain experts
and the database experts who can access the
database. Text to SQL task propose the possible
solution for this problem in the form of NLIDB [2].
Natural Language Interface to Database (NLIDB)
provides and easy front end for users to access the

data from databases without using the structured
query language.

Building natural language interfaces to databases

(NLIDB) is a long-standing open problem and has
significant implications for many application
domains [3]. Besides many advantages NLIDB is
not adopted widely and considered traditionally
difficult area, because of inherently ambiguous
nature of natural language. Most challenging part of
whole process is understanding user’s intentions,
because of inherently ambiguous nature of natural
language [4]. In Pipeline method this part is called
keyword mapping. This part has been focused
significantly in recent efforts for the work area.
Despite of introducing various upgradations for this

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3668

part, it is still not resolved effectively. Hence,
NLIDB system overall is still unable to get
practical enough accuracy results. Recently the area

of machine learning has been raised and came

in limelight significantly [5]. It opened gates for
many other areas to boom again. Semantic parsing
is one of such example areas as shown in figure 1.
Semantic parsing received a new interest from
researchers after machine learning ideas. With
recent advancements in the field of deep learning
and semantic parsing, generating SQL queries from
natural language questions has gained a renewed
interest as well [6-9]. Therefore, NLIDB with deep
learning is an arising focus of this area. Deep
learning methods integrating Natural language
processing techniques along with them and showed
potential results. Although initial accuracy results
are less than pipeline methods still the learning rate
of deep learning model is promising for possible
improved NLIDB systems [10]. Also, NLIDB with
deep learning showed potential solution for the
critical hurdles faced by pipeline methods for the
task. Although deep learning methods for NLIDB
looks potential solution for existing limitations in
Pipeline methods, but still they are also not being
able to produce any realistically implementable
results [11]. Currently, both approaches, NLIDB
with pipeline methods and deep learning methods
are being studied and tested in parallel. Much work
has been invested in NLIDB with deep learning in
last few years as well as pipeline methods has also
not being dropped. Various novel ideas for the
problems and challenges has been proposed
bringing up new issues linked with them in the
light. Similarly pipeline methods also known as
grammar based, lexical based systems, have
proposed new ideas with latest issues and
problems[12]. With ongoing work based on both
approaches it is need of time to analyze the recent
efforts and compare the issues and benefits from
both approaches. It is also important to find out the
limitations and hurdles for each of them. A
comparison of both approaches will be useful to

find out the brief picture of situation in the rea.
Therefore, we aim to display a brief comparative
analysis for both approaches in this paper. Our goal

is to put together their benefits and limitations
along with available solutions. This will provide an
overview about current research trends and
achieved performance for each of these
architectural approaches as shown in figure 2.
Remaining paper is organized as Background study
in section 2, Related Work in section 3,
Comparative Study in section 4 and Conclusion is
drawn in section 5.

2. BACK GROUND STUDY

Natural Language Interface to database has
various basic concepts like keyword mapping,
sentence analysis, SQL generation for pipeline
methods. There are some basic concepts about deep
learning NLIDB concepts as well like encoder,
decoder, word embedding, sequence to sequence
learning etc. All these basic concepts for both of the
approaches are important to explain for better
understanding of the pros and cons for both
approaches. Following are these ideas and concepts
explained in detail one by one. Scope of an NLIDB
system is common concept for both type of

Figure 1. Illustration of NLIDB system.

Figure 2. Taxonomy of the paper.

Introduction

Background
Study

Scope
Definition of

NLIDBs

Pipeline NLIDB
Concepts

Deep Learning
NLIDB Concepts

Related Work Review Work
Contribution

Pipelining
NLIDBs

Deep Learning
NLIDBs

Comparative
Study

Challenges for
Pipeline NLIDB

Challenges for
deep learning

NLIDB

Conclusion

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3669

NLIDBs. It is explained further below.

2.1. SCOPE OF EXISTING NLIDB SYSTEMS
It is important to know until now what kind of
natural language queries are supported in existing
NLIDB systems. That can be characterized in 4
types of systems described below.

A- Ad-hoc Natural Language Queries:
In an ideal situation, NLIDB systems should be
able to work with ad hoc style of natural language
questions. There are some NLIDB systems such
NLIR which are working toward this idea [13]. But
overall NLIDB systems are not able to parse ad hoc
queries and this is an open issue for the area. In
order to handle the ad hoc queries NLIDB systems
need to rely on parser error handling heavily.
Generally controlled natural language questions are
the pattern to avoid parsing errors. Controlled
natural language questions meaning restricted type
of question support in the system. Such as [14]
suggested the tractability of queries to find the
subset of the natural language questions for the
purpose of translating into structured queries. [15]
defined a grammar beforehand, based on which
natural language questions could be formatted for
the convenience of the system. Similarly, [16] also
had a defined criteria foe natural language
questions to limit scope for minimizing parsing
errors. Contribution by [17] suggested the domain
specific template based natural language question
structure. With such systems parsing errors are
minimized in NLIDB area but it brought other
challenges in the light such as:

1- Training of users to understand and learn the
structured language rules enough to use it
effectively and in error free manner.

2- Making sure that user can express the
complete requirement in the question while
remaining under the scope of structure rules.

Another factor that defines the scope of NLIDB
system is whether it is a conversational system or
not. Impact of this factor is important to
understand for NLIDB systems overall. Therefore,
detailed explanation is provided to understand this
idea completely.

B- Stateful NLIDB System:
NLIDB systems that keep the context and able to
answer the follow up questions are conversational
of stateful NLIDB systems [18]. Ideally NLIDB
system should be conversational and should have
the capability to handle follow up queries based on
the history of conversation. Significant

contributions in such regard has been made by [18]
and [19].

C- Non Conversational NLIDB System:
NLIDB system that handle the queries separately
and independently from each other with no context
with the history queries, they are stateless or non-
conversational NLIDB systems. Current work in
the area of text to SQL task most of the work is
being done in stateless NLIDB systems [20].
Interaction history might be utilized only to add the
quality in current query prediction but not utilized
to provide complete conversational context.
Sometimes, the pattern of a user interaction might
appear as conversational with a stateless NLIDB
system as well [21].

Table 1. NLIDB system scope categories

Categories of
questions

Description

Ad‐hoc Natural
Language Queries

Unstructured
spontaneous natural
language questions.

Stateful Conversational NLIDB
system

Stateless Non‐Conversation NLIDB
system

2.2. PIPELINE NLIDB BASIC CONCEPTS

A. Tokenizer and POS Tagging
As a first step in pipeline method of natural
language translation, question from the user is
tokenized with the help of Stanford parser[14]. It
separates the words from query as unique tokens.
Part of Speech (POS) tagger take those tokens as
input to further process them by extracting the parts
of the speech from the words. Parts of speech act as
huge support for building up the structured query.
Those part of speech include conjunctions, proper
nouns or nouns in the sentence [22]. It helps to
identify the keywords of the sentence. For example,
in the sentence “Number of Provinces in Pakistan”,
knowing that “Pakistan” is a proper noun and
Province is a noun help in recognizing them as
keywords of the sentence.

B. Dependency Parsing
Next step in the pipeline is relation extraction of a
sentence. It is done by dependency parsing of the
sentence. Tokens extracted from tokenized stage
are feed as input to the dependency parser.
Dependency parser extracts the relationships

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3670

between keywords identified previously. Such as,
“Get me highest rating 3 movies” example has the
vagueness of number 3 related to rating or movies.
In this step dependency parsing comes to action
and find the relation of number 3 with the word
movies which is keyword in the sentence. Basic
structure of the query is built up on the base of
these relationships [12]. Following is the figure. 3
illustrating the dependency parsing.

Table 2. Overview of NLIDB with pipeline method
concepts.

Concepts Description

Tokenizer
and POS
Tagging

Create tokens from sentence
and identifying the parts of
speech.

Dependency
Parsing

Finding the words relationship
intra sentence.

Syntactic
Parsing

Finding the phrases
relationships in a sentence.

Building SQL
Query

Consists of entity extraction,
Relation operator, Unit
conversion and intermediate
query.

Ontology
building

Building a lexicon of database
entities and components.

C. Syntactic Parsing
Besides dependency parser there is another way to
find the relationship between words in natural
language sentence. It is known with 2 labels such
as constituency parser or syntactic parsing.
Syntactic parser breaks the sentence into
meaningful parts or phrases which highlight the
relationship between them. On the other hand
dependency parser portrays the links and
connections between individual word tokens [23].
Fig 3 in the following shows the illustration of
syntactic parsing.
D. Building SQL Query

SQL query building part consists of four subtasks
generally. They are explained one by one in the
following.

1- Entity extraction: Extracting entities
information from the database is an
important part as to translate a question into
query column and table names are important
part of knowledge. To get that knowledge a
set of column and table names is maintained
along with their respective set of synonym
words [24]. When a user interacts with a
natural language question, synonyms of
entity names in tables are identified and
converted to the actual entity names in
according to the targeted database. For
example, if we have a question with “age” in
it and we have a column of “date”, then
“age” will be translated according to the
“date” column.

2- Relation Operator Extraction: In this step

all the words in the natural language query
that express the relation operator are
converted into the operators. For example,
with a natural language question of “which
country has higher import than the china?”,
higher here represents the comparison
operator between the import of different
countries. For this purpose, a dictionary of
possible operators is build up to handle the
issue. Comparison words in the question are
directly mapped to the relation operators in
the list for the structured queries.

3- Unit Conversion: In the database there is
usually one standard unit stored for
something. User ask for information in their
desired units. In order the translate the
natural language question into SQL query
according to the targeted database, unit
conversion is important part. For example, if
Natural language question is “Give youngest
employ in the department” and database
store the date of birth of employees in date

Figure 4. Syntactic parsing illustration.

Figure 3. Dependency parsing illustration.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3671

format then that has to be converted into
years [25].

4- Intermediate Query: In this part of the
process complex queries are divided into
subqueries. There are complex and difficult
queries which otherwise can create
vagueness, they are divided into sub tasks to
make things more appropriate. For example,
if there is a natural language question of
“Youngest employee of the month” is
divided into “employees of the month” and
“youngest employee”. This part is mainly
done by dependency parser. These sub
queries represent the intermediate query in
this process.

E. Ontology Building
Building ontology meaning building a dictionary of
database components and entities to use as
component of external knowledge. There is various
way to define the criteria for an ontology, defining
hand written rules is one of them. Three basic rules
used for this purpose are classes learning, hierarchy
learning and properties learning rules. After the
normalization process of database, columns and
entities are all divided and spread into normalized
relations and pieces. Therefore, it is difficult to map
the right tokens to the accurate database columns
[26]. Building an ontology makes things organized
and manageable thus easier to map the semantics
used in the natural language question and in the
database as shown in figure 4. Following are the
five rules category that are mostly utilized for
ontology building purpose.

1. Classes Learning rules.
2. Properties Learning rules.
3. Hierarchy Learning rules.
4. Cardinality Learning rules.
5. Instances Learning rule.

2.3. DEEP LEARNING NLIDB SYSTEM

BASIC CONCEPTS

A. Encoder
Encoder is the collection of recurrent units such as
GRU and LSTM networks working together taking
one element at a time from input token sequence to
calculate hidden state for that particular component

based on related information gathered [27].
Calculated hidden state then passed forward for
further processing. In text to SQL translation task,
tokens of sentence are passed as input to the
encoder and hidden state is calculated as output
[28].

Table. 3 Overview of NLIDB with deep learning basic
concepts.

Encoder vector is the output produced from this
unit in the form of hidden state. Hidden state of the
input sequence contains the information regarding
each element separately in the form of capsule like
component as shown in figure 5. All that relevant
information capsuled in hidden state helps the
decoder to make the right prediction. That hidden
state is fed as input to the decoder of the particular
model.

B. Decoder:
Collection of recurrent units that are combined
together for the prediction of output. Every
recurrent unit takes the hidden states from the
encoder as input and produce the output based on
that as prediction [29]. Every unit produce hidden
state as intermediate form and last unit produce the

Concepts Description
Encoder Encodes the input sequence in

hidden states.
Decoder Predicts the output based on

encoded hidden states.
Word
Embedding

Representation of words with
context.

Attention
Mechanisms

Relationship and
dependencies between given
components.

Figure 4. Pipeline method illustration.

Figure 5. Encoder illustration.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3672

final output of the model. In cased of text to SQL
task, output of decoder is usually a sequence of
structured query components [30]. Weights are
calculated for all the hidden state at some particular
time step. Then SoftMax (a probability distributer)
is used to calculate the probability vector to find the
final output sentence.

C. Word Embedding:
For text to SQL task with deep learning word
embedding is an important part of the process.
Achieving the representation of a word with its
complete context according to the whole document
is main purpose of this procedure. Most used
representation of complete document vocabulary is
word embedding because of it vide spread
capabilities. It has the ability to extract complete
context of the words from document, it can capture
the relationship between words as well as identify
the similarity of semantics and syntax of document
[31]. To find the exact meaning of word
embedding, it can be said that it is vector for each
word particularly. Most important attribute of word
embedding is that they generate common
representation for the words which synonym
meanings for them. It is popular for text to SQL
translation tasks particularly with deep learning,
because of its impressive performance as
distributed representation of text. Glove word
embedding is one of the popular off the shelf word
embedding library [32].

D. Attention Mechanisms:
Attention mechanisms in deep learning are based
on the concept of literal meaning of “attention”.
Meaning of this word is to focus on something and
taking into account especially. Therefore, attention
mechanism of deep learning also takes some factors
into account especially after calculating them form

given data. It is a component of broader system and
mainly handles the interdependencies of the given
elements [33]. It highlights the relationship of
particular components given at a particular time
step. Following are common types of attention that
are being used generally.

1. Attention mechanism for input-output
elements. This is known as general attention
mechanism.

2. Self-attention mechanism is the attention
between input elements.

For example, for text to SQL task where natural
language question is “give me capital of Pakistan”
and SQL query for the question is “Select city from
City where Country=” Pakistan” and Capital is Yes.
For this example, the attention mechanism will
calculate most relevant part for SQL query from the
input question to enhance the context and accuracy
of the predicted query.

3. RELATED WORK

As much as review study is need of the area right

now, review study on this topic is not being focused
recently. Not much work is available in this regard
[34]. Available review papers provide basic concept
of NLIDB by explaining primary components of
NLIDB, beginner systems in this area and
advantages/disadvantages of NLIDB in general [35,
36]. More specific and up-to-date review study has
been carried on by [37]. Scope of their study is
broader and covers general NLIDB systems [38].
Recent literature review study focused on the
comparison of NL Interface for SQL and noSql
based frameworks. They concluded that 70% of
work in NLIDB has been carried out for SQL [39].
Another work effort by [40] focused mainly on
only pipeline methods findings and challenges. In
our paper we are going to focus on the comparison
of NL interface for SQL frameworks with pipeline
methods and machine learning methods. In this
section we provide a brief literature overview for
each of these [41].

Pipeline NLIDBs are constructed by the

approach to combine techniques from Natural

Figure 6. Decoder illustration.

Figure 7. Deep learning NLIDB system illustration.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3673

Language Processing and database areas. Basic of
these approach stand on the 4 steps of the process
[42]. POS (Part of speech) tagging, text analysis,
keyword mapping and generating SQL query
finally. Research in this area goes back to sixties
when domain specific NLIDB systems were created
from manual built up grammar [43, 44]. Recent
research in pipeline methods is more general and
based on advancements in NLP [1, 45]. Recent
works utilize the intermediate representations. Ref
[4] Utilized parsed tree in additional processes like
Parse Tree node mapper and Parse tree structure
adjuster to get more accurate and fine form of
Query tree [46]. They also inserted user interaction
via Interactive communicator. An ontology based
approach was proposed by [47]. They proposed to
create a domain specific ontology from given
database schema. Map NLQ to intermediate
ontology query language and then subsequently
translate to the SQL with user interaction to select
final query among top ranked candidate queries.
Another important contribution is made by [8].
They proposed an iterative synthesis program for
parse tree repairing [48]. Proposed system takes a
parse tree sketch as input and repair it with iterative
synthesize program and finally provides candidate
SQL queries to the user. [49] Proposed a method to
bridge semantic gap by utilizing SQL query logs
for keyword mapping process. Query fragment
graph generated from query log improve the
understanding of user intention and helps to resolve
NL ambiguity [50]. They achieved up to 85% of
accuracy with yelp dataset and also covered joins.
Work by [25] mainly worked on unit conversion by
NLP techniques like POS (part of speech). They
handled yes/no questions and “wh” questions only.
Basic ground of this work is Dependency grammar
semantic parsing like much other work in the area.

As alternative approach to the pipelining
methods, deep learning NLIDB systems are being
studied. Advances in deep learning inspired and
end to end deep learning framework to handle NL
queries. One of the pioneer work by [51] to show
that Deep Neural Nets can be used to perform “End
to End” Translation through Seq2Seq Learning.
They demonstrated that LSTM can be used with
minimum assumptions, proposing a 2 LSTM (an
“Encoder”- “Decoder”) architecture to do Language
Translation, showing the promise of Neural
Machine Translation (NMT) over Statistical
Machine Translation (SMT) with a limited
vocabulary. [9] Extended Seq2Seq into Seq2SQL
model. This model rewards from in-the-loop query

execution on a database using a mixed objective,
combining cross entropy losses and policy-based
reinforcement learning RL. It resolves the issue of
queries unordered nature. [7] Proposed SQLNet for
the sequence-to-set generation to resolve “order
matters” problem in sequence-to-sequence models.
It further proposes a novel attention structure called
column attention which handles the ambiguity in
where clause. Their test results show that it
outperforms Seq2SQL by 9 to 13 points on the
WikiSQL dataset. Recent work for this area by [52]
suggested an integration of dual RNN model for
user interaction with SQLNet model as black box
for query generation. Proposed system, DialSQL
can detected potential errors in generated query and
validate by user dialogues with system.
Additionally, a simulator also proposed to bootstrap
training data for user system dialogue sets.

We present this paper where we can put together
and analyze all this work in terms of understanding
research challenges and their proposed solutions as
well as outcomes and limitations of those solutions.
This will provide an overall picture of current areas
being focused or areas needs to be focused for text
to Sql research.

Table 4 Review papers for NLIDB system

Reference Study Focus Limitations
E U and P C
2017

Covered state of
the art NLIDB
starting from
70s.

Not up to dated,
Lack of
analysis, Lack
of latest work.

Y. Li and D.
Rafiei, 2017

Findings and
challenges
explained.

Only pipeline
methods
included.

S Dar, I Lali
et al. 2019

Analysis of
latest work on
text to structured
queries.

Less focus on
text to SQL
task specifically

Affolter,
Stockinger
et al. 2019

Latest NLIDB
work analysis

No direct
comparison of
Deep learning
work with
pipeline
NLIDB
systems.

Pipeline NLIDBs are constructed by the

approach to combine techniques from Natural
Language Processing and database areas. Basic of
these approach stand on the 4 steps of the process
[42]. POS (Part of speech) tagging, text analysis,
keyword mapping and generating SQL query

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3674

finally. Research in this area goes back to sixties
when domain specific NLIDB systems were created
from manual built up grammar [43, 44]. Recent
research in pipeline methods is more general and
based on advancements in NLP [1, 45]. Recent
works utilize the intermediate representations. Ref
[4] Utilized parsed tree in additional processes like
Parse Tree node mapper and Parse tree structure
adjuster to get more accurate and fine form of
Query tree [46]. They also inserted user interaction
via Interactive communicator. An ontology based
approach was proposed by [47]. They proposed to
create a domain specific ontology from given
database schema. Map NLQ to intermediate
ontology query language and then subsequently
translate to the SQL with user interaction to select
final query among top ranked candidate queries.
Another important contribution is made by [8].
They proposed an iterative synthesis program for
parse tree repairing [48]. Proposed system takes a
parse tree sketch as input and repair it with iterative
synthesize program and finally provides candidate
SQL queries to the user. [49] Proposed a method to
bridge semantic gap by utilizing SQL query logs
for keyword mapping process. Query fragment
graph generated from query log improve the
understanding of user intention and helps to resolve
NL ambiguity [50]. They achieved up to 85% of
accuracy with yelp dataset and also covered joins.
Work by [25] mainly worked on unit conversion by
NLP techniques like POS (part of speech). They
handled yes/no questions and “wh” questions only.
Basic ground of this work is Dependency grammar
semantic parsing like much other work in the area.

As alternative approach to the pipelining
methods, deep learning NLIDB systems are being
studied. Advances in deep learning inspired and
end to end deep learning framework to handle NL
queries. One of the pioneer work by [51] to show
that Deep Neural Nets can be used to perform “End
to End” Translation through Seq2Seq Learning.
They demonstrated that LSTM can be used with
minimum assumptions, proposing a 2 LSTM (an
“Encoder”- “Decoder”) architecture to do Language
Translation, showing the promise of Neural
Machine Translation (NMT) over Statistical
Machine Translation (SMT) with a limited
vocabulary. [9] Extended Seq2Seq into Seq2SQL
model. This model rewards from in-the-loop query
execution on a database using a mixed objective,
combining cross entropy losses and policy-based
reinforcement learning RL. It resolves the issue of
queries unordered nature. [7] Proposed SQLNet for

the sequence-to-set generation to resolve “order
matters” problem in sequence-to-sequence models.
It further proposes a novel attention structure called
column attention which handles the ambiguity in
where clause. Their test results show that it
outperforms Seq2SQL by 9 to 13 points on the
WikiSQL dataset. Recent work for this area by [52]
suggested an integration of dual RNN model for
user interaction with SQLNet model as black box
for query generation. Proposed system, DialSQL
can detected potential errors in generated query and
validate by user dialogues with system.
Additionally, a simulator also proposed to bootstrap
training data for user system dialogue sets.

We present this paper where we can put together
and analyze all this work in terms of understanding
research challenges and their proposed solutions as
well as outcomes and limitations of those solutions.
This will provide an overall picture of current areas
being focused or areas needs to be focused for text
to Sql research.

4. COMPARATIVE STUDY

4.1. CHALLENGES FOR PIPELINING

METHODS NLIDB
Pipeline methods are build up by integrating
subtasks together to find the final query. Natural
language processing techniques and data science
techniques are integrated to build affective
framework for the text to SQL task. Work on
NLIDB with pipeline methods have been done
since 70s but it has its complications linked which
prove to be challenges for further progress in the
area [52]. Variety of work has been invested to
resolve those problems but still accuracy is not
enough for industrial usage of the system.
Following are the major challenges and issues
discussed in detail. Techniques proposed to cope
with those issues are also highlighted to explain and
bring their shortcomings into light as well.
A. Manual Integration of Techniques:
In pipelining methods Each sub problem is
explicitly handled and separate techniques and
methods [49]. After every phase output of that
particular phase is input for the next one. These are
the intermediate states of the input data and
understanding of Intermediate representations is
critical to manipulate the processes individually.
This understanding is critically required to integrate
the sub processes effectively for building up the
whole NLIDB system [53]. Pipelining methods are
combination of techniques from NLP and database
communities. Therefore, understanding of both

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3675

areas is necessary to formulate any variations in
processes. Also, integrating various steps manually
like Parsed tree, query sketch, ontology building,
explicitly defining semantic coverage have more
error margin, and each step needs separate effort
and attention. Besides all problems, this situation is
being utilized to improve system performance.
1. Intermediate states utilization: To improve

system performance with pipeline methods,
work focus is Innovations and experimenting
with intermediate representations of NL to
SQL. Such as Splitting key word mapper,
integrating novel scoring methods, ontology
based Intermediate query language, Parse tree
repairing [4, 8, 47, 49]. To Utilizing these
intermediate states more steps, need to be
added or split existing once into multiple.
Complication of process increase with every
additional step which increase compatible
considerations and cost as well.

2. User Interaction for individual steps: User
interaction for NLIDBs help to understand
user’s intention more clearly. In pipeline
method user interaction can be integrated at
any stage. Any intermediate representation can
be validated from user [4, 47, 49]. For this
approach, expert users are required who can
understand the intermediate state. Although in
mentioned systems they proposed description
along with intermediate states but that cannot
be generally understandable for layman users
accessing the database.

4.2. SYSTEM EXPANSION LIMITATIONS
Pipeline Methods NLIDB have limited scope of
system expansion like cross domain or cross
language system. As they work based on carefully
designed rules and domain based ontologies. Rule
based systems are especially difficult for cross
language expansions[52].
1. Working directly with DB schema: Working

directly with database schema means
incorporating the database schema in the
process directly. This way whole schema
information including relations and entities
become part of the process and unseen schema
can also get handled. Recent efforts have been
made to make pipeline NLIDBs domain
independent by involving database schema
directly in the process. It makes system more
portable [4]. But it does not capture the full
domain semantics hence not fully capable for
cross domain application.

2. Ontology Driven Systems: Ontology based
NLIDB shown to be useful for cross domain

application. [47] displayed up to 88.9% recall
on FIN dataset with an ontology driven NLIDB
. This work is implementable if ontology to
database mapping is provided. Generating
ontology from database itself is an open
research problem

4.3. CHALLENGES FOR DEEP LEARNING

NLIDB
A. Dataset Unavailability:
Recent state of the art Deep learning NLIDB [7, 54]
show promising results in the text to SQL
conversion with large volumes of training data set.
But as pointed out by [49] with small set of training
data deep learning methods are impractical [55].
Until this point we have few labelled datasets with
basic level of simple queries [56]. Hence state of
the art systems has been trained and tested on
simple queries datasets only i.e with no joins [57,
58]. Following is the discussion of contributes that
have been made to solve these issues with the trade-
offs of cost, time or practicality of method.
a- Manually synthesizing NL SQL pairs:

Manually synthesizing means creating the
SQL from the Natural language questions
manually for training dataset as well as test
dataset. This is a long and hectic process to
create a dataset from scratch that too
manually. Besides its difficulty some recent
efforts have been made to create manual
labelled data of NLQ-SQL [6, 59]but it is
costly and time consuming process.

b- NL Generation from SQL: SQL query logs
can provide the generally asked queries of a
particular database. Reverse generating the
natural language question from those queries
can provide with labeled dataset. Driving NL
questions from user SQL queries is another
way to create labelled data [60][18] but data is
not real time which results in biased
experimental results [56, 61]. Hence this
approach is neither efficient nor practical [62].
This is another hectic method and also
generated dataset will be biased. Natural
language questions asked by laymen will be
different from the questions generated by the
experts from the queries. Therefore, this
generated cannot represent the complexity
level of real time data.

c- Use of Transfer learning with limited
domain data: Training the model on the
dataset of a different but available domain and
then utilizing pre-trained model for the
targeted domain which has small dataset is

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3676

Research
Challenges

Approaches in
Practice

Limitations

Deep Learning NLIDB

Labelled
Dataset
Unavailability

Manual Labelling Cost and time issues

NL generation from SQL Biased Dataset

Transfer learning with
another domain dataset

Cost and time doubles

Data augmentation Limited expansion of data

Simulators usage data Not realistic

Black Box
Property of
Deep
Learning

Input Representation Pre-
processing

Time and cost without real knowledge of affect
ratio

Output validation from
user

Dialogue data unavailability

 Vaguely defined criteria of Human expertise

Pipelining NLIDB

Manual
Integration of
Techniques

Intermediate states
utilization

Increased complexity of Process, More
considerations for process compatibility

User Interaction for
individual steps

Experts required

System
Expansion
Limitations

Working directly with DB
schema

Full domain semantics not captured

Ontology Driven Systems Generating ontology to DB mapping

the intuition behind this method. [63, 64] Displayed
an approach to develop deep learning NLIDB for
domains with small datasets. This improved the
results but still not enough to be used practically
[65]. Also cost and time wise it is not practical to
train a model on one domain before getting in use
for target domain [66]. This way it will increase
training time for training the model on 2 datasets as
well as parsing errors can increase because of
semantic issues not covered properly for the
targeted domain.
d- Augmentation techniques: Augmentation

means expanding the dataset from given
dataset by duplicating examples with small
variations. However, this method generates
biased datasets like manual synthesizing.
Recent end-to-end deep learning systems [7,
9, 59] show the great promise of learning
from large volumes of NLQ-SQL pairs.
However, manually creating labelled
NLQSQL pairs is costly and time-consuming.
Despite recent efforts to synthesize NLQ-SQL
pairs [6, 59] or derive them from user
descriptions of SQL queries[60], obtaining
realistic labelled data remains an open
research challenge. As a result, state-of the-art
deep learning systems [7, 9] have thus far
only been tested on datasets of simple NLQs
requiring no join.

B. Deep Learning Black Box Property:
Having that deep learning systems implicitly tackle
many challenges, at the same time the lack of
understanding of the mechanisms behind Neural
Network’s effectiveness limits further
improvements on the architecture [67]. Therefore,
input representation manipulation [19] or output
post processing [15] are the possible ways to get
improved results for NLIDB systems. Network
selection from available deep learning networks is
another factor for improving results as
experimented by [16], but it has limited options to
offer.
a- Input Representation Pre-processing: Input

representation pre-processing displayed by
[63] includes Gan-based augmentation
method to expand data set which contributed
in improving results despite the fact that it is
not much realistic [68, 69]. Data
augmentation or recombination [70], keyword
scoring vector integration are popular ways to
change input representation for better results
in deep learning based NLIDBs [71]. Despite
the fact that these approaches can change the
output ratios, it’s still difficult to understand
which factor affected the part of process most
and in what ways [72].

b- Output validation from user: As
understanding user intention and influencing
the system with this factor is critical for
NLIDB [73]. For this this purpose
incorporating Human in the loop structure in

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3677

NLIDB as pre/post process is another popular
approach for improving results [4, 8, 52].
Human in the loop with deep learning invites
2 more challenges; how to get dialogue data
for training and evaluation of the system [74].
[52] solved these issues by using a simulator
but again that cannot reflect real time data.
Also performance of the systems with human
in loop rely mostly on involved human’s
expertise, which cannot be defined concretely
[75].

5. CONCLUSION

This comparative study is based on the literature
review available for NLIDB with pipeline methods
and deep NLISB systems with deep learning. In this
paper we have briefly explained the existing work
for both approaches as well as their background
knowledge of basic ideas and concepts have been
explained in detail. All these perspectives are
provided to portray more clear picture of current
work situation in this area. Observing the current
trends and work ideas a comparative analysis for
both approaches have been provided. With all the
available literature and background study we have
concluded that NLIDB with pipeline methods are
still in trend somewhat but not popular as much as
deep learning NLIDB systems. Reason is there
manual integration of each step that increases the
error chances overall. On the other hand, Deep
learning NLIDBs are proving to be need of time
because of their quick learning and great potential
of further progress and expansion. Deep learning
NLIDB have more potential of expansion across
domains and different languages as well as it is
automating the whole process which makes it less
complicated to study and experiment. Besides all
this benefits deep learning NLIDB face a major
issue of data unavailability which is a huge hurdle
for further progress in the field currently.
Therefore, transfer learning and meta learning are
becoming trend of the research in this area because
of their handling with small datasets.
6. ACKNOWLEDGEMENT
This research was supported by the MISP(Ministry
of Science, ICT), Korea, under the National
Program for Excellence in SW)(2018-0-00192)
supervised by the IITP(Institute of Information &
communications Technology Planning &
Evaluation)"(2018-0-00192).

REFERENCES

[1]. C. Finegan-Dollak et al., "Improving text-to-
SQL evaluation methodology," in ACL 2018
- 56th Annual Meeting of the Association for
Computational Linguistics, Proceedings of
the Conference (Long Papers), 2018, vol. 1,
pp. 351-360, doi: 10.18653/v1/p18-1033.
[Online]. Available:

[2]. Androutsopoulos, G. D. Ritchie, and P.
Thanisch, "Natural language interfaces to
databases-an introduction," arXiv preprint
cmp-lg/9503016, 1995.

[3]. B. Bogin, M. Gardner, and J. Berant,
"Representing schema structure with graph
neural networks for text-to-sql parsing,"
arXiv preprint arXiv:1905.06241, 2019.

[4]. F. Li and H. Jagadish, "Constructing an
interactive natural language interface for
relational databases," Proceedings of the
VLDB Endowment, vol. 8, no. 1, pp. 73-84,
2014.

[5]. P. He, Y. Mao, K. Chakrabarti, and W.
Chen, "X-SQL: reinforce schema
representation with context," arXiv preprint
arXiv:1908.08113, 2019.

[6]. S. Iyer, I. Konstas, A. Cheung, J.
Krishnamurthy, and L. Zettlemoyer,
"Learning a neural semantic parser from user
feedback," arXiv preprint arXiv:1704.08760,
2017.

[7]. X. Xu, C. Liu, and D. Song, "SQLNet:
Generating structured queries from natural
language without reinforcement learning,"
2018.

[8]. N. Yaghmazadeh, Y. Wang, I. Dillig, and T.
Dillig, "SQLizer: query synthesis from
natural language," Proceedings of the ACM
on Programming Languages, vol. 1, no.
OOPSLA, pp. 1-26, 2017.

[9]. V. Zhong, C. Xiong, and R. Socher,
"Seq2sql: Generating structured queries from
natural language using reinforcement
learning," arXiv preprint arXiv:1709.00103,
2017.

[10]. B. Bogin, M. Gardner, and J. Berant, "Global
reasoning over database structures for text-
to-sql parsing," arXiv preprint
arXiv:1908.11214, 2019.

[11]. D. Choi, M. C. Shin, E. Kim, and D. R. Shin,
"RYANSQL: Recursively Applying Sketch-
based Slot Fillings for Complex Text-to-

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3678

SQL in Cross-Domain Databases," arXiv
preprint arXiv:2004.03125, 2020.

[12]. V. Wudaru, N. Koditala, A. Reddy, and R.
Mamidi, "Question Answering on Structured
Data using NLIDB Approach," in 2019 5th
International Conference on Advanced
Computing & Communication Systems
(ICACCS), 2019: IEEE, pp. 1-4.

[13]. F. Li and H. V. Jagadish, "NaLIR: an
interactive natural language interface for
querying relational databases," in
Proceedings of the 2014 ACM SIGMOD
international conference on Management of
data, 2014, pp. 709-712.

[14]. A.-M. Popescu, A. Armanasu, O. Etzioni, D.
Ko, and A. Yates, "Modern natural language
interfaces to databases: Composing statistical
parsing with semantic tractability," in
COLING 2004: Proceedings of the 20th
International Conference on Computational
Linguistics, 2004, pp. 141-147.

[15]. Y. Li, H. Yang, and H. Jagadish, "NaLIX: A
generic natural language search environment
for XML data," ACM Transactions on
database systems (TODS), vol. 32, no. 4, pp.
30-es, 2007.

[16]. Y. Li, H. Yang, and H. Jagadish,
"Constructing a generic natural language
interface for an XML database," in
International Conference on Extending
Database Technology, 2006: Springer, pp.
737-754.

[17]. N. Stratica, L. Kosseim, and B. C. Desai,
"Using semantic templates for a natural
language interface to the CINDI virtual
library," Data & Knowledge Engineering,
vol. 55, no. 1, pp. 4-19, 2005.

[18]. E. M. Eisman, M. Navarro, and J. L. Castro,
"A multi-agent conversational system with
heterogeneous data sources access," Expert
Systems with Applications, vol. 53, pp. 172-
191, 2016.

[19]. G. Cai, H. Wang, A. M. MacEachren, and S.
Fuhrmann, "Natural conversational
interfaces to geospatial databases,"
Transactions in GIS, vol. 9, no. 2, pp. 199-
221, 2005.

[20]. N. Yaghmazadeh, Y. Wang, I. Dillig, and T.
Dillig, "Type-and content-driven synthesis of
SQL queries from natural language," arXiv
preprint arXiv:1702.01168, 2017.

[21]. C. Wang, M. Brockschmidt, and R. Singh,
"Pointing out SQL queries from text," 2018.

[22]. D. H. Warren and F. C. Pereira, "An efficient
easily adaptable system for interpreting
natural language queries," American journal
of computational linguistics, vol. 8, no. 3-4,
pp. 110-122, 1982.

[23]. H. Ghassani and T. E. Widagdo, "Access to
Relational Databases Using Interrogative
Sentences in Indonesian Language," in 2018
5th International Conference on Data and
Software Engineering (ICoDSE), 2018:
IEEE, pp. 1-6.

[24]. C. Wang, A. Cheung, and R. Bodik,
"Synthesizing highly expressive SQL queries
from input-output examples," in Proceedings
of the 38th ACM SIGPLAN Conference on
Programming Language Design and
Implementation, 2017, pp. 452-466.

[25]. F. Reinaldha and T. E. Widagdo, "Natural
language interfaces to database (NLIDB):
Question handling and unit conversion," in
2014 International Conference on Data and
Software Engineering (ICODSE), 2014:
IEEE, pp. 1-6.

[26]. K. Affolter, K. Stockinger, and A. Bernstein,
"A comparative survey of recent natural
language interfaces for databases," The
VLDB Journal, vol. 28, no. 5, pp. 793-819,
2019.

[27]. W. Wang, Y. Tian, H. Xiong, H. Wang, and
W.-S. Ku, "A transfer-learnable natural
language interface for databases," arXiv
preprint arXiv:1809.02649, 2018.

[28]. J. Zeng et al., "Photon: A Robust Cross-
Domain Text-to-SQL System," arXiv
preprint arXiv:2007.15280, 2020.

[29]. Z. Yao, Y. Su, H. Sun, and W. T. Yih,
"Model-based interactive semantic parsing:
A unified framework and a text-to-SQL case
study," in EMNLP-IJCNLP 2019 - 2019
Conference on Empirical Methods in Natural
Language Processing and 9th International
Joint Conference on Natural Language
Processing, Proceedings of the Conference,
2020, pp. 5447-5458.

[30]. S. Yavuz, I. Gur, Y. Su, and X. Yan, "What
it takes to achieve 100% condition accuracy
on wikisql," in Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, 2018, pp. 1702-1711.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3679

[31]. C. D. Manning, M. Surdeanu, J. Bauer, J. R.
Finkel, S. Bethard, and D. McClosky, "The
Stanford CoreNLP natural language
processing toolkit," in Proceedings of 52nd
annual meeting of the association for
computational linguistics: system
demonstrations, 2014, pp. 55-60.

[32]. J. Pennington, R. Socher, and C. D.
Manning, "Glove: Global vectors for word
representation," in Proceedings of the 2014
conference on empirical methods in natural
language processing (EMNLP), 2014, pp.
1532-1543.

[33]. Y. Sun et al., "Semantic parsing with syntax-
and table-aware sql generation," arXiv
preprint arXiv:1804.08338, 2018.

[34]. J. Devlin, M.-W. Chang, K. Lee, and K.
Toutanova, "Bert: Pre-training of deep
bidirectional transformers for language
understanding," arXiv preprint
arXiv:1810.04805, 2018.

[35]. J. Patel and J. Dave, "A Survey: Natural
Language Interface to Databases,"
International Journal of Advance
Engineering and Research Development
(IJAERD), 2015.

[36]. E. Reshma and P. Remya, "A review of
different approaches in natural language
interfaces to databases," in 2017
International Conference on Intelligent
Sustainable Systems (ICISS), 2017: IEEE,
pp. 801-804.

[37]. Y. Li and D. Rafiei, "Natural Language Data
Management and Interfaces," Synthesis
Lectures on Data Management, vol. 10, no.
2, pp. 1-156, 2018.

[38]. L. Dong and M. Lapata, "Coarse-to-fine
decoding for neural semantic parsing," arXiv
preprint arXiv:1805.04793, 2018.

[39]. H. S. Dar, M. I. Lali, M. U. Din, K. M.
Malik, and S. A. C. Bukhari, "Frameworks
for Querying Databases Using Natural
Language: A Literature Review," arXiv
preprint arXiv:1909.01822, 2019.

[40]. Y. Li and D. Rafiei, "Natural language data
management and interfaces: Recent
development and open challenges," in
Proceedings of the 2017 ACM International
Conference on Management of Data, 2017,
pp. 1765-1770.

[41]. Z. Dong, S. Sun, H. Liu, J.-G. Lou, and D.
Zhang, "Data-Anonymous encoding for
Text-to-SQL generation," in Proceedings of
the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th
International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP),
2019, pp. 5408-5417.

[42]. A. Elgohary, S. Hosseini, and A. H.
Awadallah, "Speak to your Parser:
Interactive Text-to-SQL with Natural
Language Feedback," arXiv preprint
arXiv:2005.02539, 2020.

[43]. E. D. Sacerdoti, "Language access to
distributed data with error recovery," SRI
INTERNATIONAL MENLO PARK CA
ARTIFICIAL INTELLIGENCE CENTER,
1977.

[44]. W. Woods, "The lunar sciences natural
language information system," BBN report,
1972.

[45]. A. Giordani and A. Moschitti, "Generating
SQL queries using natural language syntactic
dependencies and metadata," in International
Conference on Application of Natural
Language to Information Systems, 2012:
Springer, pp. 164-170.

[46]. J. Guo et al., "Towards complex text-to-sql
in cross-domain database with intermediate
representation," arXiv preprint
arXiv:1905.08205, 2019.

[47]. D. Saha, A. Floratou, K. Sankaranarayanan,
U. F. Minhas, A. R. Mittal, and F. Özcan,
"ATHENA: an ontology-driven system for
natural language querying over relational
data stores," Proceedings of the VLDB
Endowment, vol. 9, no. 12, pp. 1209-1220,
2016.

[48]. T. Shi, K. Tatwawadi, K. Chakrabarti, Y.
Mao, O. Polozov, and W. Chen, "Incsql:
Training incremental text-to-sql parsers with
non-deterministic oracles," arXiv preprint
arXiv:1809.05054, 2018.

[49]. C. Baik, H. V. Jagadish, and Y. Li,
"Bridging the semantic gap with SQL query
logs in natural language interfaces to
databases," in 2019 IEEE 35th International
Conference on Data Engineering (ICDE),
2019: IEEE, pp. 374-385.

[50]. R. Zhang et al., "Editing-Based SQL Query
Generation for Cross-Domain Context-

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3680

Dependent Questions," arXiv preprint
arXiv:1909.00786, 2019.

[51]. I. Sutskever, O. Vinyals, and Q. V. Le,
"Sequence to sequence learning with neural
networks," in Advances in neural
information processing systems, 2014, pp.
3104-3112.

[52]. Gur, S. Yavuz, Y. Su, and X. Yan,
"DialSQL: Dialogue based structured query
generation," in ACL 2018 - 56th Annual
Meeting of the Association for
Computational Linguistics, Proceedings of
the Conference, 2018, vol. 1, pp. 1339-1349.

[53]. J. Sen, A. R. Mittal, D. Saha, and K.
Sankaranarayanan, "Functional Partitioning
of Ontologies for Natural Language Query
Completion in Question Answering
Systems," in IJCAI, 2018, pp. 4331-4337.

[54]. P.-S. Huang, C. Wang, R. Singh, W.-t. Yih,
and X. He, "Natural language to structured
query generation via meta-learning," arXiv
preprint arXiv:1803.02400, 2018.

[55]. T. Yu et al., "Spider: A large-scale human-
labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL
task," in Proceedings of the 2018 Conference
on Empirical Methods in Natural Language
Processing, EMNLP 2018, 2020, pp. 3911-
3921.

[56]. Z. Lu, H. Li, and B. Kao, "Neural enquirer:
learning to query tables in natural language,"
IEEE Data Eng. Bull., vol. 39, no. 3, pp. 63-
73, 2016.

[57]. H. Liu, L. Fang, Q. Liu, B. Chen, J. G. Lou,
and Z. Li, "Leveraging adjective-noun
phrasing knowledge for comparison relation
prediction in text-to-SQL," in EMNLP-
IJCNLP 2019 - 2019 Conference on
Empirical Methods in Natural Language
Processing and 9th International Joint
Conference on Natural Language Processing,
Proceedings of the Conference, 2020, pp.
3515-3520.

[58]. B. Wang, R. Shin, X. Liu, O. Polozov, and
M. Richardson, "Rat-sql: Relation-aware
schema encoding and linking for text-to-sql
parsers," arXiv preprint arXiv:1911.04942,
2019.

[59]. P. Utama et al., "An end-to-end neural
natural language interface for databases,"
arXiv preprint arXiv:1804.00401, 2018.

[60]. F. Brad, R. Iacob, I. Hosu, and T. Rebedea,
"Dataset for a neural natural language
interface for databases (NNLIDB)," arXiv
preprint arXiv:1707.03172, 2017.

[61]. W. Wang, "A cross-domain natural language
interface to databases using adversarial text
method," in CEUR Workshop Proceedings,
2019, vol. 2399.

[62]. U. Brunner and K. Stockinger, "ValueNet: A
Neural Text-to-SQL Architecture
Incorporating Values," arXiv preprint
arXiv:2006.00888, 2020.

[63]. H. Xiong and R. Sun, "Transferable natural
language interface to structured queries
aided by adversarial generation," in 2019
IEEE 13th International Conference on
Semantic Computing (ICSC), 2019: IEEE,
pp. 255-262.

[64]. C. Lawrence and S. Riezler, "Nlmaps: A
natural language interface to query
openstreetmap," in Proceedings of COLING
2016, the 26th International Conference on
Computational Linguistics: System
Demonstrations, 2016, pp. 6-10.

[65]. D. Lee, J. Yoon, J. Song, S. Lee, and S.
Yoon, "One-shot learning for text-to-sql
generation," arXiv preprint
arXiv:1905.11499, 2019.

[66]. K. Lin, B. Bogin, M. Neumann, J. Berant,
and M. Gardner, "Grammar-based neural
text-to-sql generation," arXiv preprint
arXiv:1905.13326, 2019.

[67]. Y. Ming et al., "Understanding hidden
memories of recurrent neural networks," in
2017 IEEE Conference on Visual Analytics
Science and Technology (VAST), 2017:
IEEE, pp. 13-24.

[68]. T. Guo and H. Gao, "Content Enhanced
BERT-based Text-to-SQL Generation,"
arXiv preprint arXiv:1910.07179, 2019.

[69]. T. Yu, Z. Li, Z. Zhang, R. Zhang, and D.
Radev, "Typesql: Knowledge-based type-
aware neural text-to-sql generation," arXiv
preprint arXiv:1804.09769, 2018.

[70]. R. Jia and P. Liang, "Data recombination for
neural semantic parsing," arXiv preprint
arXiv:1606.03622, 2016.

[71]. G. Huilin, G. Tong, W. Fan, and M. Chao,
"Bidirectional Attention for SQL
Generation," in 2019 IEEE 4th International
Conference on Cloud Computing and Big

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3681

Data Analysis (ICCCBDA), 2019: IEEE, pp.
676-682.

[72]. W. Hwang, J. Yim, S. Park, and M. Seo, "A
comprehensive exploration on wikisql with
table-aware word contextualization," arXiv
preprint arXiv:1902.01069, 2019.

[73]. I.A. Hosu, R. C. A. Iacob, F. Brad, S. Ruseti,
and T. Rebedea, "Natural language interface
for databases using a Dual-Encoder model,"
in Proceedings of the 27th International
Conference on Computational Linguistics,
2018, pp. 514-524.

[74]. A. Kelkar, R. Relan, V. Bhardwaj, S.
Vaichal, and P. Relan, "Bertrand-DR:
Improving Text-to-SQL using a
Discriminative Re-ranker," arXiv preprint
arXiv:2002.00557, 2020.

[75]. D. Lee, "Clause-Wise and Recursive
Decoding for Complex and Cross-Domain
Text-to-SQL Generation," arXiv preprint
arXiv:1904.08835, 2019.

