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ABSTRACT 

 
Databases are integral part of current world’s scenario of rich technology. Greater amount of the data in the 
world is stored in the databases. That amount of data storages can be utilized for various purposes in data 
science world.  Besides potential usage and benefits of available data amounts, the requirement of formal 
language to access the databases is a huge hurdle. Structured Query language (SQL) is one of such formal 
languages to access the database. Besides its impact and powerful as a language it is not a common 
knowledge. Therefore, domain experts of some particular databases cannot access their data freely and 
easily. Web interfaces to access that data has their own limitation and do not fulfil the purpose to the 
maximum of the potential of data. Natural Language Interface to Database (NLIDB) system is natural 
solution for such problems. Text to SQL task in NLIDB system is being experimented with since 70s. 
Previously it was based on integrated methods and techniques from Natural Language Processing (NLP) 
and Data Science areas, those integrated frameworks generally known as pipeline methods. Recently, 
machine learning showed promising performance for the solutions to semantic problems. Which is why, 
deep learning had been adopted for text to SQL task as well. Currently NLIDB systems research is going 
on with both of the approaches of pipeline methods and deep learning methods in parallel. It is important at 
this time to analyze the latest work with both approaches and compare and identify their unique challenges 
and issues as well as findings and potential of both approaches for the NLIDB systems. In this paper, a 
comparative analysis is presented to find out the achievements and issues of NLIDB with pipeline methods 
and with deep learning methods regarding each of them. 
 
Keywords: Structured Query language, Natural Language Processing, Natural Language Interface to Databas
 
1. INTRODUCTION  
 

Currently majority of the data in the world is 
stored in the form of databases. That data is being 
used for various purposes including huge 
contribution in the research. A prominent hurdle 
from that data being utilized to the full of its 
potential is the need of structure query languages to 
access the databases. Structured query languages 
are not possible for everyone to learn [1].  This 
problem creates a gap between the domain experts 
and the database experts who can access the 
database. Text to SQL task propose the possible 
solution for this problem in the form of NLIDB [2]. 
Natural Language Interface to Database (NLIDB) 
provides and easy front end for users to access the 

data from databases without using the structured 
query language.  

 
Building natural language interfaces to databases 

(NLIDB) is a long-standing open problem and has 
significant implications for many application 
domains [3]. Besides many advantages NLIDB is 
not adopted widely and considered traditionally 
difficult area, because of inherently ambiguous 
nature of natural language. Most challenging part of 
whole process is understanding user’s intentions, 
because of inherently ambiguous nature of natural 
language [4]. In Pipeline method this part is called 
keyword mapping. This part has been focused 
significantly in recent efforts for the work area. 
Despite of introducing various upgradations for this 
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part, it is still not resolved effectively. Hence, 
NLIDB system overall is still unable to get 
practical enough accuracy results. Recently the area 

of machine learning has been raised and came  
 

in limelight significantly [5]. It opened gates for 
many other areas to boom again.  Semantic parsing 
is one of such example areas as shown in figure 1. 
Semantic parsing received a new interest from 
researchers after machine learning ideas. With 
recent advancements in the field of deep learning 
and semantic parsing, generating SQL queries from 
natural language questions has gained a renewed 
interest as well [6-9]. Therefore, NLIDB with deep 
learning is an arising focus of this area. Deep 
learning methods integrating Natural language 
processing techniques along with them and showed 
potential results. Although initial accuracy results 
are less than pipeline methods still the learning rate 
of deep learning model is promising for possible 
improved NLIDB systems [10]. Also, NLIDB with 
deep learning showed potential solution for the 
critical hurdles faced by pipeline methods for the 
task. Although deep learning methods for NLIDB 
looks potential solution for existing limitations in 
Pipeline methods, but still they are also not being 
able to produce any realistically implementable 
results [11]. Currently, both approaches, NLIDB 
with pipeline methods and deep learning methods 
are being studied and tested in parallel. Much work 
has been invested in NLIDB with deep learning in 
last few years as well as pipeline methods has also 
not being dropped. Various novel ideas for the 
problems and challenges has been proposed 
bringing up new issues linked with them in the 
light. Similarly pipeline methods also known as 
grammar based, lexical based systems, have 
proposed new ideas with latest issues and 
problems[12]. With ongoing work based on both 
approaches it is need of time to analyze the recent 
efforts and compare the issues and benefits from 
both approaches. It is also important to find out the 
limitations and hurdles for each of them. A 
comparison of both approaches will be useful to 

find out the brief picture of situation in the rea. 
Therefore, we aim to display a brief comparative 
analysis for both approaches in this paper. Our goal 

is to put together their benefits and limitations 
along with available solutions. This will provide an 
overview about current research trends and 
achieved performance for each of these 
architectural approaches as shown in figure 2. 
Remaining paper is organized as Background study 
in section 2, Related Work in section 3, 
Comparative Study in section 4 and Conclusion is 
drawn in section 5. 
 
 
2. BACK GROUND STUDY 
 

Natural Language Interface to database has 
various basic concepts like keyword mapping, 
sentence analysis, SQL generation for pipeline 
methods. There are some basic concepts about deep 
learning NLIDB concepts as well like encoder, 
decoder, word embedding, sequence to sequence 
learning etc. All these basic concepts for both of the 
approaches are important to explain for better 
understanding of the pros and cons for both 
approaches. Following are these ideas and concepts 
explained in detail one by one. Scope of an NLIDB 
system is common concept for both type of 

Figure 1. Illustration of NLIDB system.  
 

Figure 2. Taxonomy of the paper. 
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NLIDBs. It is explained further below. 
 

2.1. SCOPE OF EXISTING NLIDB SYSTEMS 
It is important to know until now what kind of 
natural language queries are supported in existing 
NLIDB systems. That can be characterized in 4 
types of systems described below. 
 
A- Ad-hoc Natural Language Queries: 
In an ideal situation, NLIDB systems should be 
able to work with ad hoc style of natural language 
questions. There are some NLIDB systems such 
NLIR which are working toward this idea [13]. But 
overall NLIDB systems are not able to parse ad hoc 
queries and this is an open issue for the area. In 
order to handle the ad hoc queries NLIDB systems 
need to rely on parser error handling heavily. 
Generally controlled natural language questions are 
the pattern to avoid parsing errors. Controlled 
natural language questions meaning restricted type 
of question support in the system. Such as [14] 
suggested the tractability of queries to find the 
subset of the natural language questions for the 
purpose of translating into structured queries. [15] 
defined a grammar beforehand, based on which 
natural language questions could be formatted for 
the convenience of the system. Similarly, [16] also 
had a defined criteria foe natural language 
questions to limit scope for minimizing parsing 
errors. Contribution by [17]  suggested the domain 
specific template based natural language question 
structure. With such systems parsing errors are 
minimized in NLIDB area but it brought other 
challenges in the light such as: 

1- Training of users to understand and learn the 
structured language rules enough to use it 
effectively and in error free manner.  

2- Making sure that user can express the 
complete requirement in the question while 
remaining under the scope of structure rules.   

Another factor that defines the scope of NLIDB 
system is whether it is a conversational system or 
not.  Impact of this factor is important to 
understand for NLIDB systems overall. Therefore, 
detailed explanation is provided to understand this 
idea completely. 
 

B- Stateful NLIDB System:  
NLIDB systems that keep the context and able to 
answer the follow up questions are conversational 
of stateful NLIDB systems [18]. Ideally NLIDB 
system should be conversational and should have 
the capability to handle follow up queries based on 
the history of conversation. Significant 

contributions in such regard has been made by [18] 
and [19]. 
 
C- Non Conversational NLIDB System: 
NLIDB system that handle the queries separately 
and independently from each other with no context 
with the history queries, they are stateless or non-
conversational NLIDB systems. Current work in 
the area of text to SQL task most of the work is 
being done in stateless NLIDB systems [20]. 
Interaction history might be utilized only to add the 
quality in current query prediction but not utilized 
to provide complete conversational context. 
Sometimes, the pattern of a user interaction might 
appear as conversational with a stateless NLIDB 
system as well [21]. 

 
Table 1. NLIDB system scope categories 

Categories of 
questions 

Description 

Ad‐hoc Natural 
Language Queries 

Unstructured 
spontaneous natural 
language questions. 

Stateful Conversational NLIDB 
system 

Stateless Non‐Conversation NLIDB 
system 

 
 

2.2. PIPELINE NLIDB BASIC CONCEPTS 
 

A. Tokenizer and POS Tagging 
As a first step in pipeline method of natural 
language translation, question from the user is 
tokenized with the help of Stanford parser[14]. It 
separates the words from query as unique tokens. 
Part of Speech (POS) tagger take those tokens as 
input to further process them by extracting the parts 
of the speech from the words. Parts of speech act as 
huge support for building up the structured query. 
Those part of speech include conjunctions, proper 
nouns or nouns in the sentence [22]. It helps to 
identify the keywords of the sentence. For example, 
in the sentence “Number of Provinces in Pakistan”, 
knowing that “Pakistan” is a proper noun and 
Province is a noun help in recognizing them as 
keywords of the sentence. 
 

B. Dependency Parsing 
Next step in the pipeline is relation extraction of a 
sentence. It is done by dependency parsing of the 
sentence. Tokens extracted from tokenized stage 
are feed as input to the dependency parser. 
Dependency parser extracts the relationships 
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between keywords identified previously. Such as, 
“Get me highest rating 3 movies” example has the 
vagueness of number 3 related to rating or movies. 
In this step dependency parsing comes to action 
and find the relation of number 3 with the word 
movies which is keyword in the sentence. Basic 
structure of the query is built up on the base of 
these relationships [12]. Following is the figure. 3 
illustrating the dependency parsing.  
 

 

Table 2. Overview of NLIDB with pipeline method 
concepts. 

Concepts  Description 

Tokenizer 
and POS 
Tagging 

Create tokens from sentence 
and identifying the parts of 
speech. 

Dependency 
Parsing 

Finding the words relationship 
intra sentence. 

Syntactic 
Parsing 

Finding the phrases 
relationships in a sentence. 

Building SQL 
Query 

Consists of entity extraction, 
Relation operator, Unit 
conversion and intermediate 
query. 

Ontology 
building 

Building a lexicon of database 
entities and components. 

 
 
C. Syntactic Parsing 
Besides dependency parser there is another way to 
find the relationship between words in natural 
language sentence. It is known with 2 labels such 
as constituency parser or syntactic parsing. 
Syntactic parser breaks the sentence into 
meaningful parts or phrases which highlight the 
relationship between them. On the other hand 
dependency parser portrays the links and 
connections between individual word tokens [23]. 
Fig 3 in the following shows the illustration of 
syntactic parsing. 
D. Building SQL Query 

SQL query building part consists of four subtasks 
generally. They are explained one by one in the 
following. 

1- Entity extraction: Extracting entities 
information from the database is an 
important part as to translate a question into 
query column and table names are important 
part of knowledge. To get that knowledge a 
set of column and table names is maintained 
along with their respective set of synonym 
words [24]. When a user interacts with a 
natural language question, synonyms of 
entity names in tables are identified and 
converted to the actual entity names in 
according to the targeted database. For 
example, if we have a question with “age” in 
it and we have a column of “date”, then 
“age” will be translated according to the 
“date” column. 

 
2- Relation Operator Extraction: In this step 

all the words in the natural language query 
that express the relation operator are 
converted into the operators. For example, 
with a natural language question of “which 
country has higher import than the china?”, 
higher here represents the comparison 
operator between the import of different 
countries. For this purpose, a dictionary of 
possible operators is build up to handle the 
issue. Comparison words in the question are 
directly mapped to the relation operators in 
the list for the structured queries.  

3- Unit Conversion: In the database there is 
usually one standard unit stored for 
something. User ask for information in their 
desired units. In order the translate the 
natural language question into SQL query 
according to the targeted database, unit 
conversion is important part. For example, if 
Natural language question is “Give youngest 
employ in the department” and database 
store the date of birth of employees in date 

Figure 4. Syntactic parsing illustration. 

Figure 3. Dependency parsing illustration. 
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format then that has to be converted into 
years [25]. 

4- Intermediate Query: In this part of the 
process complex queries are divided into 
subqueries. There are complex and difficult 
queries which otherwise can create 
vagueness, they are divided into sub tasks to 
make things more appropriate. For example, 
if there is a natural language question of 
“Youngest employee of the month” is 
divided into “employees of the month” and 
“youngest employee”. This part is mainly 
done by dependency parser. These sub 
queries represent the intermediate query in 
this process. 

 
E. Ontology Building 
Building ontology meaning building a dictionary of 
database components and entities to use as 
component of external knowledge. There is various 
way to define the criteria for an ontology, defining 
hand written rules is one of them. Three basic rules 
used for this purpose are classes learning, hierarchy 
learning and properties learning rules. After the 
normalization process of database, columns and 
entities are all divided and spread into normalized 
relations and pieces. Therefore, it is difficult to map 
the right tokens to the accurate database columns 
[26]. Building an ontology makes things organized 
and manageable thus easier to map the semantics 
used in the natural language question and in the 
database as shown in figure 4. Following are the 
five rules category that are mostly utilized for 
ontology building purpose. 

1. Classes Learning rules.  
2. Properties Learning rules.  
3. Hierarchy Learning rules.  
4. Cardinality Learning rules.  
5. Instances Learning rule. 

 
 
2.3. DEEP LEARNING NLIDB SYSTEM 

BASIC CONCEPTS 
 

A. Encoder 
Encoder is the collection of recurrent units such as 
GRU and LSTM networks working together taking 
one element at a time from input token sequence to 
calculate hidden state for that particular component 

based on related information gathered [27]. 
Calculated hidden state then passed forward for 
further processing. In text to SQL translation task, 
tokens of sentence are passed as input to the 
encoder and hidden state is calculated as output 
[28]. 
 
Table. 3 Overview of NLIDB with deep learning basic 
concepts. 
 
Encoder vector is the output produced from this 
unit in the form of hidden state. Hidden state of the 
input sequence contains the information regarding 
each element separately in the form of capsule like 
component as shown in figure 5. All that relevant 
information capsuled in hidden state helps the 
decoder to make the right prediction. That hidden 
state is fed as input to the decoder of the particular 
model. 

 
B. Decoder:  
Collection of recurrent units that are combined 
together for the prediction of output. Every 
recurrent unit takes the hidden states from the 
encoder as input and produce the output based on 
that as prediction [29]. Every unit produce hidden 
state as intermediate form and last unit produce the 

Concepts Description 
Encoder Encodes the input sequence in 

hidden states. 
Decoder Predicts the output based on 

encoded hidden states. 
Word 
Embedding 

Representation of words with 
context. 

Attention 
Mechanisms 

Relationship and 
dependencies between given 
components. 

Figure 4. Pipeline method illustration. 

Figure 5. Encoder illustration. 
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final output of the model. In cased of text to SQL 
task, output of decoder is usually a sequence of 
structured query components [30]. Weights are 
calculated for all the hidden state at some particular 
time step. Then SoftMax (a probability distributer) 
is used to calculate the probability vector to find the 
final output sentence. 

 
 

 
 

C. Word Embedding:  
For text to SQL task with deep learning word 
embedding is an important part of the process. 
Achieving the representation of a word with its 
complete context according to the whole document 
is main purpose of this procedure. Most used 
representation of complete document vocabulary is 
word embedding because of it vide spread 
capabilities. It has the ability to extract complete 
context of the words from document, it can capture 
the relationship between words as well as identify 
the similarity of semantics and syntax of document 
[31]. To find the exact meaning of word 
embedding, it can be said that it is vector for each 
word particularly. Most important attribute of word 
embedding is that they generate common 
representation for the words which synonym 
meanings for them. It is popular for text to SQL 
translation tasks particularly with deep learning, 
because of its impressive performance as 
distributed representation of text.  Glove word 
embedding is one of the popular off the shelf word 
embedding library [32]. 
 
D. Attention Mechanisms:  
Attention mechanisms in deep learning are based 
on the concept of literal meaning of “attention”. 
Meaning of this word is to focus on something and 
taking into account especially. Therefore, attention 
mechanism of deep learning also takes some factors 
into account especially after calculating them form 

given data. It is a component of broader system and 
mainly handles the interdependencies of the given 
elements [33]. It highlights the relationship of 
particular components given at a particular time 
step. Following are common types of attention that 
are being used generally.  

1. Attention mechanism for input-output 
elements. This is known as general attention 
mechanism. 

2. Self-attention mechanism is the attention 
between input elements. 

For example, for text to SQL task where natural 
language question is “give me capital of Pakistan” 
and SQL query for the question is “Select city from 
City where Country=” Pakistan” and Capital is Yes. 
For this example, the attention mechanism will 
calculate most relevant part for SQL query from the 
input question to enhance the context and accuracy 
of the predicted query. 

 

 
3. RELATED WORK 

 
As much as review study is need of the area right 

now, review study on this topic is not being focused 
recently. Not much work is available in this regard 
[34]. Available review papers provide basic concept 
of NLIDB by explaining primary components of 
NLIDB, beginner systems in this area and 
advantages/disadvantages of NLIDB in general [35, 
36]. More specific and up-to-date review study has 
been carried on by [37]. Scope of their study is 
broader and covers general NLIDB systems [38]. 
Recent literature review study focused on the 
comparison of NL Interface for SQL and noSql 
based frameworks. They concluded that 70% of 
work in NLIDB has been carried out for SQL [39]. 
Another work effort by [40] focused mainly on 
only pipeline methods findings and challenges.  In 
our paper we are going to focus on the comparison 
of NL interface for SQL frameworks with pipeline 
methods and machine learning methods. In this 
section we provide a brief literature overview for 
each of these [41]. 

 
Pipeline NLIDBs are constructed by the 

approach to combine techniques from Natural 

Figure 6. Decoder illustration. 

Figure 7. Deep learning NLIDB system illustration. 
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Language Processing and database areas. Basic of 
these approach stand on the 4 steps of the process 
[42]. POS (Part of speech) tagging, text analysis, 
keyword mapping and generating SQL query 
finally. Research in this area goes back to sixties 
when domain specific NLIDB systems were created 
from manual built up grammar [43, 44]. Recent 
research in pipeline methods is more general and 
based on advancements in NLP [1, 45]. Recent 
works utilize the intermediate representations.  Ref 
[4] Utilized parsed tree in additional processes like 
Parse Tree node mapper and Parse tree structure 
adjuster to get more accurate and fine form of 
Query tree [46]. They also inserted user interaction 
via Interactive communicator. An ontology based 
approach was proposed by [47]. They proposed to 
create a domain specific ontology from given 
database schema. Map NLQ to intermediate 
ontology query language and then subsequently 
translate to the SQL with user interaction to select 
final query among top ranked candidate queries. 
Another important contribution is made by [8]. 
They proposed an iterative synthesis program for 
parse tree repairing [48]. Proposed system takes a 
parse tree sketch as input and repair it with iterative 
synthesize program and finally provides candidate 
SQL queries to the user. [49] Proposed a method to 
bridge semantic gap by utilizing SQL query logs 
for keyword mapping process. Query fragment 
graph generated from query log improve the 
understanding of user intention and helps to resolve 
NL ambiguity [50]. They achieved up to 85% of 
accuracy with yelp dataset and also covered joins. 
Work by [25] mainly worked on unit conversion by 
NLP techniques like POS (part of speech). They 
handled yes/no questions and “wh” questions only. 
Basic ground of this work is Dependency grammar 
semantic parsing like much other work in the area. 

As alternative approach to the pipelining 
methods, deep learning NLIDB systems are being 
studied. Advances in deep learning inspired and 
end to end deep learning framework to handle NL 
queries. One of the pioneer work by [51] to show 
that Deep Neural Nets can be used to perform “End 
to End” Translation through Seq2Seq Learning. 
They demonstrated that LSTM can be used with 
minimum assumptions, proposing a 2 LSTM (an 
“Encoder”- “Decoder”) architecture to do Language 
Translation, showing the promise of Neural 
Machine Translation (NMT) over Statistical 
Machine Translation (SMT) with a limited 
vocabulary. [9] Extended Seq2Seq into Seq2SQL 
model. This model rewards from in-the-loop query 

execution on a database using a mixed objective, 
combining cross entropy losses and policy-based 
reinforcement learning RL. It resolves the issue of 
queries unordered nature. [7] Proposed SQLNet for 
the sequence-to-set generation to resolve “order 
matters” problem in sequence-to-sequence models. 
It further proposes a novel attention structure called 
column attention which handles the ambiguity in 
where clause. Their test results show that it 
outperforms Seq2SQL by 9 to 13 points on the 
WikiSQL dataset. Recent work for this area by [52] 
suggested an integration of dual RNN model for 
user interaction with SQLNet model as black box 
for query generation. Proposed system, DialSQL 
can detected potential errors in generated query and 
validate by user dialogues with system.  
Additionally, a simulator also proposed to bootstrap 
training data for user system dialogue sets.  

We present this paper where we can put together 
and analyze all this work in terms of understanding 
research challenges and their proposed solutions as 
well as outcomes and limitations of those solutions. 
This will provide an overall picture of current areas 
being focused or areas needs to be focused for text 
to Sql research. 

 
Table 4 Review papers for NLIDB system 

Reference Study Focus Limitations 
E U and P C 
2017 

Covered state of 
the art NLIDB 
starting from 
70s. 

Not up to dated, 
Lack of 
analysis, Lack 
of latest work. 

Y. Li and D. 
Rafiei, 2017 

Findings and 
challenges 
explained. 

Only pipeline 
methods 
included. 

S Dar, I Lali 
et al. 2019 

Analysis of 
latest work on 
text to structured 
queries. 

Less focus on 
text to SQL 
task specifically 

Affolter, 
Stockinger 
et al. 2019 

Latest NLIDB 
work analysis 

No direct 
comparison of 
Deep learning 
work with 
pipeline 
NLIDB 
systems. 

 
Pipeline NLIDBs are constructed by the 

approach to combine techniques from Natural 
Language Processing and database areas. Basic of 
these approach stand on the 4 steps of the process 
[42]. POS (Part of speech) tagging, text analysis, 
keyword mapping and generating SQL query 
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finally. Research in this area goes back to sixties 
when domain specific NLIDB systems were created 
from manual built up grammar [43, 44]. Recent 
research in pipeline methods is more general and 
based on advancements in NLP [1, 45]. Recent 
works utilize the intermediate representations.  Ref 
[4] Utilized parsed tree in additional processes like 
Parse Tree node mapper and Parse tree structure 
adjuster to get more accurate and fine form of 
Query tree [46]. They also inserted user interaction 
via Interactive communicator. An ontology based 
approach was proposed by [47]. They proposed to 
create a domain specific ontology from given 
database schema. Map NLQ to intermediate 
ontology query language and then subsequently 
translate to the SQL with user interaction to select 
final query among top ranked candidate queries. 
Another important contribution is made by [8]. 
They proposed an iterative synthesis program for 
parse tree repairing [48]. Proposed system takes a 
parse tree sketch as input and repair it with iterative 
synthesize program and finally provides candidate 
SQL queries to the user. [49] Proposed a method to 
bridge semantic gap by utilizing SQL query logs 
for keyword mapping process. Query fragment 
graph generated from query log improve the 
understanding of user intention and helps to resolve 
NL ambiguity [50]. They achieved up to 85% of 
accuracy with yelp dataset and also covered joins. 
Work by [25] mainly worked on unit conversion by 
NLP techniques like POS (part of speech). They 
handled yes/no questions and “wh” questions only. 
Basic ground of this work is Dependency grammar 
semantic parsing like much other work in the area. 

As alternative approach to the pipelining 
methods, deep learning NLIDB systems are being 
studied. Advances in deep learning inspired and 
end to end deep learning framework to handle NL 
queries. One of the pioneer work by [51] to show 
that Deep Neural Nets can be used to perform “End 
to End” Translation through Seq2Seq Learning. 
They demonstrated that LSTM can be used with 
minimum assumptions, proposing a 2 LSTM (an 
“Encoder”- “Decoder”) architecture to do Language 
Translation, showing the promise of Neural 
Machine Translation (NMT) over Statistical 
Machine Translation (SMT) with a limited 
vocabulary. [9] Extended Seq2Seq into Seq2SQL 
model. This model rewards from in-the-loop query 
execution on a database using a mixed objective, 
combining cross entropy losses and policy-based 
reinforcement learning RL. It resolves the issue of 
queries unordered nature. [7] Proposed SQLNet for 

the sequence-to-set generation to resolve “order 
matters” problem in sequence-to-sequence models. 
It further proposes a novel attention structure called 
column attention which handles the ambiguity in 
where clause. Their test results show that it 
outperforms Seq2SQL by 9 to 13 points on the 
WikiSQL dataset. Recent work for this area by [52] 
suggested an integration of dual RNN model for 
user interaction with SQLNet model as black box 
for query generation. Proposed system, DialSQL 
can detected potential errors in generated query and 
validate by user dialogues with system.  
Additionally, a simulator also proposed to bootstrap 
training data for user system dialogue sets.  

We present this paper where we can put together 
and analyze all this work in terms of understanding 
research challenges and their proposed solutions as 
well as outcomes and limitations of those solutions. 
This will provide an overall picture of current areas 
being focused or areas needs to be focused for text 
to Sql research. 

 
4. COMPARATIVE STUDY 

 
4.1. CHALLENGES FOR PIPELINING 

METHODS NLIDB 
Pipeline methods are build up by integrating 
subtasks together to find the final query. Natural 
language processing techniques and data science 
techniques are integrated to build affective 
framework for the text to SQL task. Work on 
NLIDB with pipeline methods have been done 
since 70s but it has its complications linked which 
prove to be challenges for further progress in the 
area [52].  Variety of work has been invested to 
resolve those problems but still accuracy is not 
enough for industrial usage of the system. 
Following are the major challenges and issues 
discussed in detail. Techniques proposed to cope 
with those issues are also highlighted to explain and 
bring their shortcomings into light as well.  
A. Manual Integration of Techniques: 
In pipelining methods Each sub problem is 
explicitly handled and separate techniques and 
methods [49]. After every phase output of that 
particular phase is input for the next one. These are 
the intermediate states of the input data and 
understanding of Intermediate representations is 
critical to manipulate the processes individually. 
This understanding is critically required to integrate 
the sub processes effectively for building up the 
whole NLIDB system [53]. Pipelining methods are 
combination of techniques from NLP and database 
communities. Therefore, understanding of both 
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areas is necessary to formulate any variations in 
processes. Also, integrating various steps manually 
like Parsed tree, query sketch, ontology building, 
explicitly defining semantic coverage have more 
error margin, and each step needs separate effort 
and attention. Besides all problems, this situation is 
being utilized to improve system performance. 
1. Intermediate states utilization:   To improve 

system performance with pipeline methods, 
work focus is Innovations and experimenting 
with intermediate representations of NL to 
SQL. Such as Splitting key word mapper, 
integrating novel scoring methods, ontology 
based Intermediate query language, Parse tree 
repairing [4, 8, 47, 49]. To Utilizing these 
intermediate states more steps, need to be 
added or split existing once into multiple. 
Complication of process increase with every 
additional step which increase compatible 
considerations and cost as well.  

2. User Interaction for individual steps: User 
interaction for NLIDBs help to understand 
user’s intention more clearly. In pipeline 
method user interaction can be integrated at 
any stage. Any intermediate representation can 
be validated from user [4, 47, 49]. For this 
approach, expert users are required who can 
understand the intermediate state. Although in 
mentioned systems they proposed description 
along with intermediate states but that cannot 
be generally understandable for layman users 
accessing the database. 

 
4.2.  SYSTEM EXPANSION LIMITATIONS 
Pipeline Methods NLIDB have limited scope of 
system expansion like cross domain or cross 
language system. As they work based on carefully 
designed rules and domain based ontologies. Rule 
based systems are especially difficult for cross 
language expansions[52]. 
1. Working directly with DB schema: Working 

directly with database schema means 
incorporating the database schema in the 
process directly. This way whole schema 
information including relations and entities 
become part of the process and unseen schema 
can also get handled. Recent efforts have been 
made to make pipeline NLIDBs domain 
independent by involving database schema 
directly in the process. It makes system more 
portable [4]. But it does not capture the full 
domain semantics hence not fully capable for 
cross domain application.   

2. Ontology Driven Systems: Ontology based 
NLIDB shown to be useful for cross domain 

application. [47] displayed up to 88.9% recall 
on FIN dataset with an ontology driven NLIDB 
. This work is implementable if ontology to 
database mapping is provided. Generating 
ontology from database itself is an open 
research problem 

 
4.3. CHALLENGES FOR DEEP LEARNING 

NLIDB 
A. Dataset Unavailability: 
Recent state of the art Deep learning NLIDB [7, 54] 
show promising results in the text to SQL 
conversion with large volumes of training data set. 
But as pointed out by [49] with small set of training 
data deep learning methods are impractical [55]. 
Until this point we have few labelled datasets with 
basic level of simple queries [56]. Hence state of 
the art systems has been trained and tested on 
simple queries datasets only i.e with no joins [57, 
58]. Following is the discussion of contributes that 
have been made to solve these issues with the trade-
offs of cost, time or practicality of method. 
a- Manually synthesizing NL SQL pairs: 

Manually synthesizing means creating the 
SQL from the Natural language questions 
manually for training dataset as well as test 
dataset. This is a long and hectic process to 
create a dataset from scratch that too 
manually. Besides its difficulty some recent 
efforts have been made to create manual 
labelled data of NLQ-SQL [6, 59]but it is 
costly and time consuming process. 

b- NL Generation from SQL: SQL query logs 
can provide the generally asked queries of a 
particular database. Reverse generating the 
natural language question from those queries 
can provide with labeled dataset. Driving NL 
questions from user SQL queries is another 
way to create labelled data [60][18] but data is 
not real time which results in biased 
experimental results [56, 61]. Hence this 
approach is neither efficient nor practical [62]. 
This is another hectic method and also 
generated dataset will be biased. Natural 
language questions asked by laymen will be 
different from the questions generated by the 
experts from the queries. Therefore, this 
generated cannot represent the complexity 
level of real time data. 

c- Use of Transfer learning with limited 
domain data: Training the model on the 
dataset of a different but available domain and 
then utilizing pre-trained model for the 
targeted domain which has small dataset is  
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Research 
Challenges 

Approaches in 
Practice 

Limitations 

Deep Learning NLIDB 

Labelled 
Dataset 
Unavailability 

Manual Labelling Cost and time issues 

NL generation from SQL Biased Dataset 

Transfer learning with 
another domain dataset 

Cost and time doubles 

Data augmentation  Limited expansion of data 

Simulators usage data Not realistic 

Black Box 
Property of 
Deep 
Learning 

Input Representation Pre-
processing 

Time and cost without real knowledge of affect 
ratio   

Output validation from 
user 

Dialogue data unavailability 

 Vaguely defined criteria of Human expertise  

Pipelining NLIDB 

Manual 
Integration of 
Techniques 

Intermediate states 
utilization 

Increased complexity of Process, More 
considerations  for process compatibility   

User Interaction for 
individual steps 

Experts required 

System 
Expansion 
Limitations 

Working directly with DB 
schema 

Full domain semantics not captured 

Ontology Driven Systems Generating ontology to DB mapping 

the intuition behind this method. [63, 64] Displayed 
an approach to develop deep learning NLIDB for 
domains with small datasets. This improved the 
results but still not enough to be used practically 
[65]. Also cost and time wise it is not practical to 
train a model on one domain before getting in use 
for target domain [66]. This way it will increase 
training time for training the model on 2 datasets as 
well as parsing errors can increase because of 
semantic issues not covered properly for the 
targeted domain. 
d- Augmentation techniques: Augmentation 

means expanding the dataset from given 
dataset by duplicating examples with small 
variations. However, this method generates 
biased datasets like manual synthesizing.  
Recent end-to-end deep learning systems [7, 
9, 59] show the great promise of learning 
from large volumes of NLQ-SQL pairs. 
However, manually creating labelled 
NLQSQL pairs is costly and time-consuming. 
Despite recent efforts to synthesize NLQ-SQL 
pairs [6, 59] or derive them from user 
descriptions of SQL queries[60], obtaining 
realistic labelled data remains an open 
research challenge. As a result, state-of the-art 
deep learning systems [7, 9] have thus far 
only been tested on datasets of simple NLQs 
requiring no join. 

 
 
 

B. Deep Learning Black Box Property: 
Having that deep learning systems implicitly tackle 
many challenges, at the same time the lack of 
understanding of the mechanisms behind Neural 
Network’s effectiveness limits further 
improvements on the architecture [67]. Therefore, 
input representation manipulation [19] or output 
post processing [15] are the possible ways to get 
improved results for NLIDB systems. Network 
selection from available deep learning networks is 
another factor for improving results as 
experimented by [16], but it has limited options to 
offer. 
a- Input Representation Pre-processing: Input 

representation pre-processing displayed by 
[63] includes Gan-based augmentation 
method to expand data set which contributed 
in improving results despite the fact that it is 
not much realistic [68, 69]. Data 
augmentation or recombination [70], keyword 
scoring vector integration are popular ways to 
change input representation for better results 
in deep learning based NLIDBs [71].  Despite 
the fact that these approaches can change the 
output ratios, it’s still difficult to understand 
which factor affected the part of process most 
and in what ways [72]. 

b- Output validation from user: As 
understanding user intention and influencing 
the system with this factor is critical for 
NLIDB [73]. For this this purpose 
incorporating Human in the loop structure in 
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NLIDB as pre/post process is another popular 
approach for improving results [4, 8, 52]. 
Human in the loop with deep learning invites 
2 more challenges; how to get dialogue data 
for training and evaluation of the system [74]. 
[52] solved these issues by using a simulator 
but again that cannot reflect real time data. 
Also performance of the systems with human 
in loop rely mostly on involved human’s 
expertise, which cannot be defined concretely 
[75]. 
 

5. CONCLUSION 
 

This comparative study is based on the literature 
review available for NLIDB with pipeline methods 
and deep NLISB systems with deep learning. In this 
paper we have briefly explained the existing work 
for both approaches as well as their background 
knowledge of basic ideas and concepts have been 
explained in detail. All these perspectives are 
provided to portray more clear picture of current 
work situation in this area. Observing the current 
trends and work ideas a comparative analysis for 
both approaches have been provided. With all the 
available literature and background study we have 
concluded that NLIDB with pipeline methods are 
still in trend somewhat but not popular as much as 
deep learning NLIDB systems. Reason is there 
manual integration of each step that increases the 
error chances overall. On the other hand, Deep 
learning NLIDBs are proving to be need of time 
because of their quick learning and great potential 
of further progress and expansion. Deep learning 
NLIDB have more potential of expansion across 
domains and different languages as well as it is 
automating the whole process which makes it less 
complicated to study and experiment.  Besides all 
this benefits deep learning NLIDB face a major 
issue of data unavailability which is a huge hurdle 
for further progress in the field currently. 
Therefore, transfer learning and meta learning are 
becoming trend of the research in this area because 
of their handling with small datasets.  
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