
Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3625

OPTIFOG: OPTIMIZATION OF HETEROGENEOUS FOG
COMPUTING FOR QOS IN HEALTH CARE

1PRATIK KANANI, 2DR. MAMTA PADOLE
1 Assistant Professor, Dwarkadas J. Sanghvi College of Engineering, University of Mumbai, India

2 Associate Professor, CSE Dept, The Maharaja Sayajirao University of Baroda, Gujarat, India

E-mail: 1pratikkanani123@gmail.com

ABSTRACT

A patient’s life can be saved if it is possible to make quicker decisions based on faster processing of real-
time health care data, such as ECG processing. To achieve faster decision making, contemporary health
care applications use cloud computing for such data. When cloud computing is used, data transmission
deferrals may cause delays in the decision-making process. To overcome this, Fog Computing is used. Fog
Computing saves energy, bandwidth and prevents transmission latencies but, lacks in computing power as
compared to Cloud Computing. To enhance the computing power of the Fog node, a Cluster of Raspberry
Pi having heterogeneous configurations can be used. In Health Care applications the Fog Computing
performance can be assessed by measuring the time elapsed between the generation of the health care data
and decision-making. In this paper, ECG signal analysis is taken as a processing job in Fog Computing.
Dispy is used to facilitate the scalability and parallel data processing on a Cluster of Raspberry Pi used for
Fog Computing, to enable faster decision making. Further, the performance of the Raspberry Pi cluster-
systems using dispy are analyzed and optimized step by step based on different parameters. The first
parameter is data transmission time which is improvised by minimizing network overheads. Other
optimization parameters like CPU usage, number of cores, response time and available memory space,
these parameters are considered and varied, to assess the performance of Heterogeneous Raspberry Pi
cluster. Based on the results obtained, a novel optimization approach “OptiFog” is proposed to achieve
faster computation in worst-case scenarios by varying and assigning jobs to the nodes to measure
performance parameters in Distributed Fog Computing. Based on the obtained results “OptiFog” assures
best possible improvement in the performance of the Distributed Fog Computing environment.

Keywords: Dispy, Distributed Fog Computing, ECG Analytics, Heterogeneous Fog Computing, Optifog,
Optimization In Fog Computing, Raspberry Pi Cluster

1. INTRODUCTION

IoT sensors help in collecting patient’s real-time
data which is time-sensitive with regard to decision
making. The volume of this data depends on the
sampling frequency of data generated and the
density of sensors spread over the region. This data
is time-sensitive data i.e., a timely decision should
be made based on it; else, the data will have no
value. If this data is related to health care data then,
it is more time-sensitive in terms of decision
making e.g. real-time ECG monitoring data. In
traditional IoT architecture, this data is sent over the
cloud for processing and for storage for future
reference, but the transmission delays are very high
and as a result, redundant data keeps on streaming
over the cloud on which real-time decision making
cannot be done. An alternative to this is the Fog
Computing [1] approach where data is processed in

the LAN and only the significant and future referral
data will be sent over the cloud. The remaining data
is managed at the fog layer itself [2]. Fog
Computing saves network bandwidth, redundant
data transmission, and energy thus, reducing
latency. So, if we give time-sensitive health care
data to the fog then, it can process the data faster, as
a result, it helps to avail medical facilities faster and
hence preventing patient mortality. But fog lags in
terms of computing power. Fog layer cannot handle
many data streams due to its computational
limitations. To overcome these limitations
distributed computing can be used in the Fog
Computing paradigm.

Raspberry Pi (R-Pi) can be used as a Fog
Computing node [3]. To improve the overall
computation capabilities of the Fog Computing
layer, the Raspberry Pi cluster can be used. The

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3626

Raspberry Pi cluster is a device made up of multiple
Raspberry Pi, having different configurations. In
this paper, the Raspberry Pi cluster is acting as a
Fog Computing Node. Raspberry Pi cluster forms a
distributed system on which it does processing in
parallel for faster computation. In subsection of
section one, Raspberry Pi and its cluster are
discussed in detail.

To implement distributed computing on
Raspberry Pi cluster, “dispy” is used. Dispy is
responsible to make parallel processing possible
across all nodes in the Pi cluster. It creates n
channels for n slaves and keeps on assigning the
task to each slave through these channels and waits
for their reply. After getting a reply on the channel,
it allocates a new task to the node and so on.
Distributed computing and dispy are discussed in
detail in section three.

Every algorithm gives the best possible results if
it is working in the best-case scenario (Big Omega
(Ω) case). But if any approach can generate the best
results in the worst-case (Big Oh (O)) scenarios
then it will definitely work well on average (Big
Theta (Θ)) and best-case scenarios. In this paper, a
comparative study/implementation of existing
techniques is done and proposes an approach that
works well even when all nodes of the cluster are
preloaded with other computation tasks. It is being
done to make sure that the proposed "OptiFog"
algorithm would perform best in worst-case
scenarios too. In section four, the working
environment is explained in terms of its
heterogeneity, hardware and software
configurations. Section four also discusses an
important aspect of analyzing ECG signal and their
techniques in detail. This paper considers the
computation task of ECG signal analysis and this
analysis is done by ECG signals of varying lengths.

In section five, the dispy setup is installed on all
the nodes of the cluster and ECG signal analysis is
performed by master-slave architecture. In the
initial run, the sub job is considering a set of two
ECG waves and computation readings are recorded.
After analyzing these readings, the sub job task is
modified in terms of the number of ECG waves to
reduce the overheads. Performance parameters for
each of these cases are explained. Various logical
terms, technical terms, symbols and related
functions are presented and explained in section six.

In any computing system, there are many
parameters on which the overall computation is
relying on. In this paper, few of these parameters
like CPU usage, number of cores, memory and

response time are identified. The planned
heterogeneous set up is run against each of these
parameters and readings are recorded to understand
the impact of these parameters in the given
computation. After the experiment is performed,
each graph representing every parameter is
discussed in detail. Section seven is all about these
parameters and understanding their impact on the
computational task.

In Section eight, the proposed "OptiFog"
algorithm is explained in detail with its design and
working. The parameters used in the algorithm are
explained, the expected performance outcome and
performance improvement is discussed at length. In
the last section, the proposed algorithm is tested on
different data sets to prove its validity. The Speedup
factor and the percentage of improvement is
presented at the end.

1.1 Aim and Objectives

• To extend the distributed computing in the
Fog Computing to support latency-sensitive IoT
based health care applications

• To design the smart Fog Computing
cluster with smart job allocation to satisfy the SLAs
in terms of ensuring the optimal response time and
resource utilization

• To develop an algorithm, to dynamically
decide node capability, that enables to identify the
node that can be assigned the appropriate task for
health care applications in Fog Computing

• To develop an optimized Fog Computing
based performance model in the health care domain
to serve the community better

1.2 Focus of the paper

• Considering a Low latency health care
application for delay-sensitive real-time
applications

• Analyzing dispy performance in fog-
distributed computing

• Analyzing and understanding other
processing factors and techniques to get the best out
of it

• Explaining different performing
parameters and their impact on the computational
task

• Developing the algorithm best suited for
health care applications and Raspberry pi cluster in
Fog Computing

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3627

1.3 Raspberry Pi and R-Pi cluster

Raspberry Pi was introduced by the Raspberry Pi
Foundation and is a series of small single-board
computers [4]. Although they were intended to be
used for teaching the basics of computer science,
now they have surpassed it. Today it can be used
for everything from Home Entertainment System to
Cryptocurrency Mining [5-6].

A Raspberry Pi cluster is a collection of
Raspberry Pi, all running as a single computer using
parallel computing [7]. Raspberry Pi Clusters use an
architecture involving a Master node and Slave
node, the master node is responsible for giving
instructions for the tasks that need to be performed
[8-9]. Experiment and research conducted in the
field of cloud computing have shown that it is
possible to run edge computing on these Raspberry
Pi clusters [8, 10]. These clusters can have a variety
of different applications from running as MQTT
Broker [9], Fog Computing framework for
Wearable IoT Devices [11] to teaching distributed
computing [12]. The presence of multiple
Raspberry Pi nodes in the system improves the
reliability of the system.

Figure 1: Raspberry Pi Cluster used in the system

2. LITERATURE REVIEW

The literature review studied is targeting
the systems which have used or optimized system
related to Distributed computing in terms of
performance. It also focuses on the usage and
improvements in the system due to memory,
response time, CPU usage and the number of cores.
Later it is aiming at the work related to Fog
Computing in context to performance
improvement.

Helen Karatza et al. [13] have addressed
the issues faced while scheduling parallel jobs on a
cluster of distributed processors. Two types of
routing schemes are considered. Also, 3 types of
scheduling techniques are considered. The
objective of this paper is to analyze the
performance of these task scheduling algorithms in
each case of routing. Various other system
parameters that need to be considered for job
submission and task scheduling are also studied and
tabulated in this paper. This paper analyses the
feasibility of each scheduling algorithm in each
routing scenario and the impact of the system
parameters in task scheduling. Simulation is used to
analyze the performance of the algorithms in
different system load conditions. By analyzing the
simulation we can understand the impact of the
scheduling policies on the system performance.

Abdou Guermouche et al. [14] have
proposed a system that aims at improving the
working of a parallel multifrontal solver, MUMPS.
This scheduling approach is memory-based.
Memory constraints are used to choose a
processor’s slaves and/or associates. Slaves are
chosen according to their memory availability. It
aims at reducing the used stack size at run time. Li
Xiao et al [15] have proposed a paper that tries to
enhance the effective usage of global memory. Job
distribution strategies are also built accordingly.
When a node has insufficient memory to accept
jobs, the extra load is then migrated to other
associates with sufficient memory availability.
Unbalanced memory allocations for jobs cause
page faults, so the motive is to minimize the same
thereby improving efficiency. The load sharing
policy proposed improves the performance of
memory-bound jobs. Yuyan Sun et al. [16] have
proposed a paper in which they describe distributed
systems. In distributed systems, it is essential to
have a fair load-sharing policy to ensure that the
computational capacity is completely utilized. The
load sharing policy has a major impact on
performance. The system memory has a major role
in system performance. Therefore available
memory becomes the base of the load sharing
systems. In memory-bound jobs, memory-based
load sharing system has higher performance. The
developed algorithm shows better performance than
FCFS and Round Robin algorithm in load sharing
systems. The memory-based load sharing systems
are more adaptive in terms of performance and they
are sensitive towards the memory variance.
Kizhakkethil et al. [17] present a memory-based
hybrid Dragonfly algorithm for optimization.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3628

Nawwaf Kharma et al. [18] have proposed
H2GS which is a two-phase scheduling algorithm.
It works on distributed systems, while the main
focus is on heterogeneous systems. A highly
efficient schedule is generated using a heuristic list-
based algorithm that makes up phase one. In phase
two shorter schedules are evolved. Tasks to be
scheduled are given priorities. The ready task with
the highest priority is selected for scheduling. The
next phase is where the processor is selected. Here
a task is selected and submitted to the processor to
minimize the time of execution. In the paper
presented by Haluk Topcuoglu et al. [19], an
algorithm for scheduling is implemented on
processors whose numbers are predefined. The
motive is to meet efficient scheduling and enhanced
performance simultaneously. The name of the
algorithm is Heterogeneous Earliest Finish Time
(HEFT). At each step, the maximum upward rank
value is chosen and assigned to a processor. Based
on an insertion-based approach, the earliest
completion time is minimized. HEFT algorithm is
robust and performs well over a wide range of
graph structures.

Bao Liu et al. [20] have presented several
scheduling/co-scheduling techniques employed in
distributed systems. Predictive scheduling and
Proportional-sharing scheduling are the types of
local scheduling introduced here. Predictive
scheduling provides adaptivity, intelligence, and
proactivity to adopt new architectures and changes
in the environment automatically. It learns new
architectures, algorithms, and methods that are
embedded in the system. The allocator aggregates
previous inputs, in the form of a vector of
performance information (CPU usage), into sets.
Each set corresponds to a scheduling decision. Sets
are split or merged, to keep a limited memory
demand, by the allocator. Marjan Khosravi Talebi
et al. [21] have presented an algorithm that is used
for scheduling in the cloud computing environment.
In this algorithm, parameters like processor status
are used to obtain the node on which the job should
be scheduled. The goal is to obtain an efficient
scheduling method that minimizes the overall
processing time of all the loads by distributing the
loads amongst all the available processors. The
processor to which the current job has to be
assigned is decided by a formula that takes into
account the history of scheduling along with the
processing power and link time.

 Alfredo Goldman et al. [22] have
presented an article about the different scheduling

algorithms used in distributed computing in cloud
computing. The prominent difference between
distributed computing and cloud-based computing
is the incorporation of virtualized systems. Virtual
Machine (VM) allocation is performed to
strengthen the server. Here, the scheduler pool is
denominated as the software being considered for
scheduling. Hardware requirements (number of
cores in the system and their usage statistics, etc.)
are used by the scheduler for scheduling. Zafeirios
Papazachos et al. [23] have studied various gang
scheduling algorithms and analyzed their efficiency
for clusters consisting of multi-core systems. Gangs
are scheduled in multi-core cluster systems using
the suggested migration structure. An evaluation
model provides results on the performance of the
system. In gang scheduling, fragmentation is
caused when the size of the gangs prevents them
from fitting in idle cores. Flexible and adjustable
schedules are made by dynamically migrating
parallel jobs. Migrations are given importance as it
satisfies the requirement of load balancing.

 Salim Bitam et al. [24] have focused to
develop a job scheduling task for mobile users in
Fog Computing. They have used the Bees Swarm
algorithm with CPU execution time and the total
amount of memory. One of the important aspects is
to save the network bandwidth in communication,
Frank et al. [25] have suggested to compress the
raw data and resend it, and decompress it for
processing on the receiver side. But, this
compression and decompression save the network
bandwidth but increases response time in health
care which is very critical.

3. DISTRIBUTED COMPUTING AND
DISPY

 Distributed Systems are a group of independent
computers that connect to offer various services.
They share and store data without physically
sharing memory or processor with other computers.
These machines have a shared state, operate
concurrently and can fail independently without
affecting the whole system’s uptime. A distributed
computer system comprises multiple software
components that run on multiple computers but act
as a single machine. A distributed system allows
reduced computational time over massive datasets
[26]. Distributed systems are classified into two
major categories: centralized (client-server) and
decentralized (peer to peer) system. To facilitate
distributed computing, dispy is a very good tool.
The dispy tool is developed in python and it is

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3629

available for different needs and greed. The dispy
tool [27], is available for different distributed
computing tasks.

3.1 Why dispy?
 To implement the distributed computing for
Raspberry Pi cluster in Fog Computing “dispy” is
selected. Dispy is developed in python and python
works very well with Raspbian operating systems.
The main problem faced in deployments of
distributed computing is that each slave node has to
be configured for a particular application context. If
more slaves add-up then it needs more
configuration. This makes scalability in distributed
computing a bit difficult, but in case of dispy only
master node has to be configured and on all slave
nodes, only dispy should be installed. No need to
configure every slave. This makes a distributed
system more scalable if we use dispy.

4. UNDERSTANDING THE WORKING
ENVIRONMENT

To perform the experimentation different
hardware and software configurations are chosen.
Here, we will understand the need for different
configurations with their specifications. Each node
in the system is preloaded by some computation
and the processing job with its details are discussed
here.

4.1 The need for Heterogeneous Configuration
 In this system, two setups are used. In both the
setups we are varying the number of nodes in the
cluster from 1 to 4. This is to understand the effect
of computation-distribution by techniques like
memory, response time, CPU usage and the number
of cores. And we have taken two types of nodes in
the system and maximum nodes are four in the
cluster. In one setup all 4 nodes are homogeneous
in terms of its hardware. But, in another setup three
homogeneous and one heterogeneous node is taken.
This is to see the effect of processing, load
distribution, overall performance effect and
adaptiveness of the algorithm in a cluster, in
different configurations and parameters.

4.2 Hardware Configurations of the cluster

nodes
 For the projected system, Raspberry Pi 3 model
b+ [28] and Raspberry Pi 4 [29] models are used.
The hardware configurations are as follows.

Table 1: Hardware configurations of cluster nodes

Hardware
Module

Raspberry Pi 3
Model b+

Raspberry Pi 4

Processor Broadcom
BCM2837B0,
Quad-core
Cortex-A53
(ARMv8) 64-bit
SoC

Broadcom 2711,
Quad-core
Cortex-A72 64-
bit SoC

Operating
Frequency

1.4 GHz 1.5 GHz

Bluetooth 4.2 5.0
Wi-Fi 2.4 GHZ / 5.0

GHZ IEEE
802.11.b/g/n/ac/w
ireless LAN

2.4 GHZ / 5.0
GHZ IEEE
802.11.b/g/n/ac/
wireless LAN

Memory 1GB LPDDR2
SDRAM

4GB LPDDR4
SDRAM

SD Card
Support

Micro SD card Micro SD card

Operating
voltage &
current

DC 5V/2.5A DC DC 5V/3A

 The Raspberry Pi 4 node is having a higher
hardware configuration than the Raspberry Pi 3 b+
model. The Pi 4 node is higher in terms of
processing, communication, and memory.
Purposely the higher node is introduced in the
system so that the system behavior can be studied
over the other parameters and a good algorithm can
be designed accordingly. And in all varying nodes,
the dispy server node is always Raspberry Pi 3 b+.
Other computing parameters on which the system
performance relies are bus speed, internal clock
rate, instruction set architecture, cache memory and
processor. The details are given below in table 2.

Table 2: Number of nodes and nodes selection

Experimental
Configuration

Number of R-
Pi 3

Number of R-
Pi 4

1 node 1 -
2 nodes 2 -
3 nodes 3 -
4 nodes 4 -

4* nodes 3 1

 Thus, in our setup, cluster 1 comprises of all 4
nodes which are Raspberry Pi 3 b+ models and
cluster 2 comprises of 3 nodes which are Raspberry
Pi 3 b+ model and 1 node which is Raspberry Pi 4
model.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3630

4.3 Continuous Load on cluster nodes
 To design the best suitable algorithm to process
health care data efficiently in the Fog clustering
environment. All cluster nodes are kept busy in
some or the other computational work apart from
health care data processing. This computational
task keeps cluster node occupied till a certain level
of CPU usage and with that, the node is allowed to
perform the health care data processing task. To
create the system load, the "stress" tool is used in
the Raspbian operating system environment. The
“Stress” is a tool [30] used to test system
performances when they are loaded. System admin
uses this tool to see the performance of I/O syncs,
VM status, cache thrashing, CPU usage, driver
performance, and process creation and termination.
This tool can generate different sorts of load on the
system as specified in the option field. And it can
continue generating that much stress on the system
till the said time ends. Here, the following
command is used to generate the CPU load for the
needed time.
The “sudo stress –cpu 1 –timeout 20000”
command which keeps CPU busy for nearly 25%
for 20000 seconds, till we run and test all
algorithms in the system.

4.4 Processing Job Description and logic
 ECG is a periodic wave [31], it repeats its cycles
after a certain interval of time. It has P-Q-R-S-T-U
points as their reference points representing
respective peaks. Now the important part is to get
PR, QRS and QT intervals out of these waves for
each and every wave.

Table 3: Standard ECG Intervals for a healthy adult with

standard bpm
Intervals Normal Value Normal

Variation
QT Intervals 400 ms ±40ms
QRS Interval 100ms ±20ms
PR Interval 160 ms ±40ms

And based on the given table, one can find the time
intervals in milliseconds and by comparing it with
table 3 [32-35] we can find whether ECG waves are
normal or abnormal. The normal beats per minute
(bpm) is 60 to 100 bpm. Further, the windowing
algorithm [36] is used to detect different intervals.
R peaks are prominent peaks in the ECG signal,
and here they are the highest values in the cycle.
After detecting different intervals and comparing it
with table 3, the wave is normal or abnormal is
discovered. The algorithm written below is the
computational task, which is to be done by every
node for every single wave. And from the assigned

set of waves, if any abnormal wave is discovered
then the slave node will do the specified action and
it will report to the master dispy node.

Algorithm 1 Windowing Algorithm

 Input: ECG wave, Output: Ƞ

 // Ƞ ∈ {normal, abnormal}

 // i  each ECG wave ranging from P-T-R

1. procedure detect

2. for i 1 to n do

3 R-R interval is

4. P-R interval is

5. QRS interval is

6. QT interval is

7. bpm

8. end for

9. end procedure

5. PROCESSING ECG SIGNAL USING A
DISPY MANNER

 The series of ECG waves are divided into a set of
two waves to find the ECG intervals. From these
ECG intervals, the prediction for the wave is
normal or abnormal is made. Here, each job given
by master dispy node to the slaves containing two
ECG waves and the process continues for a
different number of waves. The time taken by
different nodes for a different number of waves is
as shown below in figure 2.

Figure 2: ECG signal processing using two ECG waves
in one sub job

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3631

 For the system set up mentioned and is used to
get figure 2 results, the dispy master node have to
do so many iterations to complete the job.

 Here every iteration involves communication
overhead, socket communication, and task
distribution work. Here the average ECG wave size
is of 1392 bytes. In any communication system
network performance [37] is measured by bits per
second. In Layer-2, the minimum frame size is 84
bytes and the maximum frame size is of 1538 bytes.
The payload every frame can carry are 46 bytes and
1500 bytes. So if we allow maximum number of
waves then it will allow larger frames and hence by
reducing the number of frames. This results in
lesser overhead of 38 bytes header per frame. So to
reduce the number of iterations, the different
number of waves are taken in a single job. Figure 3
shows the processing time details for different
nodes when each sub-job of the Slave node is
carrying the four ECG waves.

Figure 3: ECG signal processing using four ECG waves
in one sub job

When four waves are used in sub-jobs, it is
observed that the dispy system computes the task in
lesser time. This is due to fewer iterations which
are causing fewer delays and overheads. To check
further and to reduce processing time, the eight
ECG waves are used. In this grouping, every sub
job dispatched by master-dispy to the dispy slaves
is having eight sets of sequential ECG waves from
the main job.
 The time taken to process all waves is shown in
figure 4. When the set of eight waves are used, the
system performance is noticeably improved. It is
reducing the processing time very much and it is
due to fewer overheads caused in the dispy system.

Figure 4: ECG signal processing using eight ECG waves
in one sub job

To reduce it further the set of ten ECG waves in
one sub-job is tested. The performance measure for
the same is shown in figure 5.

Figure 5: ECG signal processing using ten ECG waves in

one sub job

The performance observed in ten wave scenario is
not better than the octa wave scenario. This is
because the cluster nodes are preloaded with
computation and they are receiving ten waves for
the processing in one job. These ten waves carry
more data to handle and more processing to do,
which is causing more computations on the pre-
loaded nodes and hence they are taking more
computation time for each sub job. So in the case of
deca waves, the task distribution and
communication overhead are overall lower than the
octa wave case, but the computation time is more.
This is the reason that the deca wave scenario is not
performing as expected. Hence further in this paper,
the octa wave as a sub job instance is taken as a
reference and further improvements are performed
on it.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3632

6. SYSTEM SYMBOLS, FUNCTIONS AND
PERFORMANCE INDICATORS AND
THEIR IMPLICATIONS

The different functions, terms, and symbols defined
in the proposed system are listed below.

6.1 System parameters

Table 4: System symbols and description
Symbol Description

J Complete available job at the master node
Ji Sub job of J, Ji⊆ {J} : sub job with i ECG

waves
M Master Node
S Slave Node
Si ith Slave Node
n Number of available slave nodes in the

dispy system
Xi Xth factor for ith slave node
s Sub job in sending context
r Sub job in receiving context

Ts Sending time of a particular sub-job on the
master node

Tr Receiving time of a particular sub-job on
the master node

Tis Sub job sending time to ith node from
master node

Tir Sub job receiving time of ith node on the
master node

Tijk T is timestamp value, where i: is slave node
number, j: is the sub-job number, k ϵ {s,r}

N Total number of sub-jobs
Jci Result of completed sub-job by ith node

SelectN
odei

ith node is selected for the further set of sub-
job processing

RT Response time
Ƞ Ƞ ϵ {normal, abnormal}, i.e., the

characteristic of ECG wave
CU CPU usage
MU Memory usage
NC Average of available core % on the node
Ɐ For all

RTo sum of all RTi , iⱯ {1,2,…n}
MUo sum of all MUi , iⱯ {1,2,…n}

Oi string_object having values timestamp,
MUi, CUi, and NCi

Oijr i: is slave number, j: is the sub-job number
and r: is receiving context

Or Returning object by ith slave
₽ Priority factor
Ͼ Capacity factor
Ƚ Time factor
µ Memory factor

 Impact factor

𝜶 Number of jobs in one go, where each job
has set of eight ECG waves

𝜶c Result of completed 𝜶 jobs
J𝜶 Sub jobs with 𝜶 number of jobs

* Multiplication
ms Milliseconds

PACO Performance time taken by Response Time
technique

PCU Performance time taken by CPU usage
technique

PMU Performance time taken by memory usage
technique

PNU Performance time taken by a number of
cores technique

POptiFog Performance time taken by OptiFog
algorithm

slave_id Number representing a slave
job_id Number representing a sub job

6.2 System Functions

Table 5: System functions and description
Functions Description

timestamp
sendTask(sub job,
slave_id);

sends sub-job data to a
particular slave bearing the
mentioned id and returns the
timestamp of that event

timestamp
receiveTask(result,
slave_id);

receive the result of the given
task from the slave having the
id number and note the
timestamp of that event

timestamp
getTimestamp();

returns timestamp

CPUUsageQueryCU(
slave_id);

returns CPU usage of
slave_id

MUsageQueryMU(sla
ve_id);

returns memory usage of
slave_id

NC
QueryNC(slave_id);

returns average availability of
cores of slave_id

timestamp
getFactors(subjob,
slave_id);

returns timestamp when
giving sub job to slave_id

string_objectreceiveF
actors(job_id,
slave_id);

returns string_object after
processing job_id on slave_id

calculate(Ͼ, Ƚ, µ); calculates capacity, time and
memory factor

7. FINDING DIFFERENT OPTIMIZATION
PARAMETERS AND USING THEM IN
THE SYSTEM TO UNDERSTAND ITS
EFFECT ON COMPUTATION

 To find different parameters and to introduce
optimization in the system, different bio-inspired
algorithms are studied like Ant Colony
Optimization and Genetic Algorithm. These
algorithms when compared in context to the
existing dispy systems, it is found that Ant Colony
Optimization is telling to consider the response
time as a performance factor and the Genetic
algorithm is indicating to use CPU usage, number
of cores and memory.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3633

7.1 Applying Response time in the proposed
System
 Before applying the Response time as a system
criterion, the response time is understood and its
significance is studied [38-39].
A) Understanding Response Time in process

execution

In an operating system there are different measures
of time:

1. Arrival time (AT) – The time at which the
process enters the ready queue

2. Waiting time – time spent by the process inside
the ready queue, waiting for execution

3. Response time (RT) – The time between the
arrival of the process inside the ready queue and
when it is executed/gets into the processor for the
first time.

RT = time when process gets first CPU – AT (1)

The time is taken between the submission of a
request and the very first response to that particular
request. For a good CPU scheduling, algorithm
response time should be minimum.

4. Burst time – Time for which the process is under
execution in CPU.

5. Completion time – Time at which the process is
completely executed.

6. Turn Around Time – The total time required by
the process to be executed and it is including the
waiting time.

 Response Time is important for interactivity but
a doubt might arise that the major concern should
be how quickly the process is being executed in its
entirety rather than the process being served for the
first time. But, this idea is fundamentally
incompatible since, to finish the process as soon as
possible, the job needs to be started quickly and
should not be interrupted in between. In the
proposed system, the goal is to reduce the
computation time of the job by using the Raspberry
Pi cluster and the distributed computing approach
using Dispy. After understanding the ACO, the
target sub-job is given to each and every node by
the master node and the completed jobs are taken
from the slave nodes. But while giving and taking
the jobs, the master node is keeping the records of
all the timestamps. And the response time of the
node is found out by using the difference in these
timestamps. Based on these response times (RT),
the better node is chosen for the job and the

remaining jobs are given to the node having the
best response time.
The algorithm is as follows.

Algorithm 2 Considering the Response Time to

process the Job J

 Input: Complete job J having continuous ECG

waves

Output: Ƞ for each and every wave

1. procedure find_ACO_Node

2. TisgetTimeStamp();

3. for i 1, 2, ……. n do

4. Tijs sendTask(Ji , Si);

5. TijrreceiveTask(Jci , Si);

6. RTiTijs - Tijr

7. end for

8. selectNodei min(RT1, RT2, ….. RTn);

10. for jn+1, n+2, ……. N do

11. Tijs sendTask(Ji , selectNodei);

12. TijrreceiveTask(Jci , selectNodei);

13. end for

14. TirgetTimeStamp();

15. PACO Tir - Tis

16. end procedure

Based on the ACO, a different number of nodes are
taken every time and the PACO is calculated. And it
is shown in the graph below.

Figure 6: ECG signal processing using response time

criteria

Graph Interpretation:

• The performance in 3 nodes and 4 nodes
are almost the same. Hence, after a particular time
number of nodes does not matter

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3634

• The effect of 4* node is seen in the
performance.

• In 1 Node and 2 Nodes, the performance is
not that improved due to the overhead of finding
the best node.

• For 4 Nodes, the performance is below the
Graph 4 observations, due to the overhead of
finding the smallest Response Time.

7.2 ECG signal processing by CPU Usage,
Available memory and Number of free cores

 Genetic Algorithm says “Survival of Fittest”. In
the proposed system, the fitness is identified by the
different parameters like

• CPU Usage

• Available Runtime memory

• Number of available free cores in the node

All these above three parameters are very essential
and they have a major impact on any processing
task. To understand the impact of the following
parameters in the proposed system, each parameter
is taken and the experimentation is performed for
the different number of waves and different
numbers of nodes.

7.2.1 ECG signal Processing based on CPU
Usage

 The Central Processing Unit (CPU) performs the
Arithmetic, logical and I/O control operations. The
fundamental operations of the CPU while executing
a process are fetch, decode and execute [40]. These
collective operations are known as the instruction
cycle. The program counter determines the fetch
address and fetches the information from memory.
After fetching Program counter jumps to the next
instruction present in the sequence. Instruction
register stores the fetch address.

 In Decode, previously fetched CPU instructions
are interrupted to determine CPU’s next operation
based on the instruction. Every instruction has its
unique opcodes, these opcodes are decoded to
decide the next operations to be performed.

 In Execution, CPU architecture decides to take a
single action or a sequence of actions. The
intermediate results are stored in the CPU’s register
for quick access by the very next instructions.
Based on the process explained above, the CPU
time is calculated as

 CPU time = Instruction Count × Clock
Cycles/instruction × Clock Cycle time (2)

 Furthermore, these basic instructions i.e. fetch,
decode and execute can be split into sub-operations
based on different CPU architecture to achieve a
higher degree of pipelining. Various devices in a
computer like (Memory, CPU, I/O and Other)
communicate with each other through different
buses. Types of buses that are most commonly used
in process execution are:

Address bus: Address bus carries the address of
the data to be accessed or written from the
processor to the memory.

Data bus: Data bus carries the data from the
processor to the memory and vice versa.

Control bus: The basic instructions are read/write
the data, and these control signals are given by the
processor to the memory via the control bus.

 Here since the CPU usage is found out every
time, the job is given to the node where the
availability of CPU is the maximum, i.e., the CPU
usage is minimum because CPU usage simply
shows how busy the CPU is. And minimum usage
will assign the task to the comparatively free node.

Algorithm 3 Considering CPU usage to process the Job J

 Input: Complete job J having continuous ECG

waves

Output: Ƞ for each and every wave

1. procedure find_CPU_Usage_Node

2. TisgetTimeStamp();

3. for i 1, 2, ……. j do

4. for i1, 2, ……. ndo

5. CUiqueryCU(Si);

6. end for

7. selectNodei min(CU1, CU2, ….. CUn);

8. Tijs sendTask(Ji , selectNodei);

9. TijrreceiveTask(Jci , selectNodei);

10. end for

11. TirgetTimeStamp();

12. PCUTir - Tis

13. end procedure

The performance time based on CPU usage is
shown in figure 7.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3635

Figure 7: ECG signal processing using CPU usage

criteria
Graph interpretation:
• For 1 node the performance is almost the
same as the dispy system
• Increase in number of nodes are not
helping to improve the performance as it is causing
query() to overhead on the system
• Improvement is seen in 4* nodes system

7.2.2 ECG signal Processing based on available

main memory
Two broad tasks should be achieved while the
operating system manages the computer's memory
[41]:

1. Each process must have sufficient
memory for its execution, and it
cannot overlap into the memory space
of another process.

2. The memory in the system should be
properly used such that each process
can run effectively.

A program under execution is called a process. A
program resides in the disk, and it is executed in the
main memory. So, it should be transferred from
disk to the main memory. From the computation
context, a process is defined by its CPU state,
memory contents and execution environment. A
CPU state is defined by various registers such as
Instruction register (IR), Stack Pointer (SP),
Program Counter (PC) and general-purpose
registers. The memory contains the program code
and its predefined data structures. Heap is the
reserved memory area for run-time dynamic
memory allocation to the program. The stack is
used to store the local variables, and the return
values of function calls, some register values are
also stored in the stack.

 What does a process look like in
memory?

The process memory is divided into four sections
[39]:

 The text section consists of the compiled
program code, which reads in from the
disk storage when the program is
executed.

 In the data section, the static and global
variables are stored before executing the
main function.

 The heap is used for dynamic memory
allocation. This data structure is managed
by using calls to new, free, malloc, delete,
etc.

 The stack is used for local variables. The
stack is reserved for local variables as and
when they are declared. When the
variables go out of scope, this space
becomes free. It is also used to store the
return values of the function.

The stack and the heap start at opposite ends of the
process's free space and proceeds towards each
other. Ideally, they should never meet, if it occurs
then either a call to new or malloc will fail, or else a
stack overflow error will occur due to insufficient
memory. Different processes in the main memory
have different address spaces. The memory
manager is responsible for managing memory.
Programs after completion have to be moved out of
the main memory to free the main memory for
other processes. Here, the memory usage is the
amount of main memory used by the system. For
the process, the average memory-access time is
calculated as

Average memory_access time = Hit rate + Miss
rate × Miss Penalty (3)

The algorithm to process ECG signal using
available main memory is as follows.

Algorithm 4 Considering Main Memory to process the

Job J

 Input: Complete job J having continuous ECG

waves

Output: Ƞ for each and every wave

1. procedure

find_min_MainMemoryUsage_Node

2. TisgetTimeStamp();

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3636

3. for i 1, 2, ……. j do

4. for i1, 2, ……. n do

5. MUiqueryMU(Si);

6. end for

7. selectNodei min(MU1, MU2, ….. MUn);

8. Tijs sendTask(Ji , selectNodei);

9. TijrreceiveTask(Jci , selectNodei);

10. end for

11. TirgetTimeStamp();

12. PMUTir - Tis

13. end procedure

The memory usage criteria is considered for the
system and its performance effect is shown below.

Figure 8: ECG signal processing using available main

Memory criteria

Graph Interpretation:
• Increase in number of nodes does not
improve the performance
• Less effective than other used techniques
• Asking for available memory is the more
overhead for more nodes
• Effect of 4* nodes can be seen

7.2.3 ECG signal Processing based number of

cores
 A CPU can have more than one processing unit,
where each of such units is having independent
ALU, registers and control unit [42]. These
processing units are called "core". Nowadays,
CPUs are available with 8, 10, and higher number
of cores. These cores help the CPU, in doing the
processing job in a faster manner. As all cores can
process simultaneously. There are communication
channels available between the cores to
communicate the data. The communication
channels are in mesh topology form. That is 4 cores
will be having six communication channels. In

CPU more number of cores can improve the
performance [43-44]. Here, every node is queried to
find number of cores and their respective usages in
percentages. Then every usage is subtracted from
100 to find the availability of the core. Likewise
every core availability is added and divided by the
number of cores in the node. This is the NC value
and the node with highest NC value is chosen and
called as node with more available number of cores.

Algorithm 5 Considering the free number of cores to

process the Job J

 Input: Complete job J having continuous ECG

waves

Output: Ƞ for each and every wave

1. procedure find_number_of_Free_cores_Node

2. TisgetTimeStamp();

3. for i 1, 2, ……. j do

4. for i1, 2, ……. n do

5. NCiqueryNC(Si);

6. end for

7. selectNodei max(NC1, NC2, ….. NCn);

8. Tijs sendTask(Ji , selectNodei);

9. TijrreceiveTask(Jci , selectNodei);

10. end for

11. TirgetTimeStamp();

12. PNCTir - Tis

13. end procedure

The Performance measure of this criteria is shown
in figure 9.

Figure 9: ECG signal processing using a number of

Cores criteria

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3637

Graph Interpretation:

• When the number of nodes is more than
one, the processing improvement can be seen

• Query overhead can also be seen

• The present of 4* node is helping to
improve the performance

8. OPTIFOG ALGORITHM

 The proposed idea is intended to perform
optimally in the heterogeneous scenario, by
exploiting the most available processing power
present in the system. We have used four
techniques that are memory-based, Response-time-
based, CPU-usage-based and number-of-cores-
based. Every technique is run when every node was
busy in some other computational work. This is just
to find out which technique is more weighted and
less weighted in heterogeneous computing
scenarios. And when the obtained graphs and
results are analyzed for greater jobs and higher
nodes, it is found that the CPU usage results are the
best and the second is the number of cores.
Response time gives the third greatest performance
followed by memory technique.

8.1 Insights to the OptiFog Algorithm

 OptiFog is a hybrid optimization algorithm that
finds the impact factor based on all the above four
mentioned techniques. This impact factor is the
value of every node and based on this value, the
number of jobs are allocated to each node in one
go. Every node will submit the job and its current
status of CPU usage, Cores and Memory to the
master node. Master nodes compute the Response
time and impact factor for each node in every
iteration and based on the impact factor () value,
it will assign the number of jobs.
 The CPU and cores on every node have different
capacities based on Operating Frequency, processor
specifications, cache size and the bus size. It
represents the processing capabilities of a node.
That is the other main reason to give higher priority
(₽) to this factor. Whereas the memory and
response time of a particular node can be compared
with other nodes in terms of size and unit like GB
and ms. Therefore, these two units memory and
response time are seen as collective units in the
distributed system.
 Impact factor is the overall capability of a node
in terms of memory, CPU, cores and response
time. But OptiFog uses three main factors to find
the impact factor. That is Capacity (Ͼ), Memory (µ)
and Time (Ƚ).

a) Capacity Factor (Ͼ): this factor is based on
the CPU usage and number of idle cores
technique. The CPU usage is related to the
number of cores. And these both
techniques are giving a very good
performance which is almost similar. So in
this case, these two values are combined
and the factor is calculated as

 Ͼ = (4)

b) Memory Factor (µ): In this factor, if

is less than the node performs better. Thus,
every node is found out and scaled to

1.The factor is calculated as

 (5)

c) Time Factor (Ƚ): The response time of a

node is inversely proportional to its
capacity. By keeping this in mind the
factor is designed in such a way that the
node with high response time will get low
rank and the node with less response time
will be treated with high ranks.

 (6)

After finding Ͼ, µ and Ƚ. The final is calculated

as
 (7)

where, numericals ϵ {₽}

The OptiFog Algorithm is as follows:

Algorithm 6 OptiFog Algorithm to process the Job J

 Input: Complete job J having continuous ECG

waves,

Output: Ƞ for each and every wave

1. procedure OptiFog

2. initialize RTo =0, MUo = 0

3. TsgetTimeStamp();

4. for i 1, 2, ……. n do

5. TijsgetFactors(Ji , Si);

6. OijrreceiveFactors(Jci , Si);

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3638

 Tijr get(Oijr);

 MUi get(Oijr);

 CUi get(Oijr);

 NCi get(Oijr);

7. RTiTijs - Tijr

8. RTo =RTo + RTi

9. MUo =MUo + MUi

10. end for

11. 𝜶i 1, Ɐ i ϵ [1,2,…n].

12.  0, Ɐ i ϵ [1,2,…n].

13. j = n+1, i=1

14. while j<=N do

15. calculate(Ͼi, Ƚi, µi);

16. 

17.

18. if > then

19. 𝜶i= 𝜶i +1;

20. assignTask(𝜶i, i);

21. end if

22. if < then

23. 𝜶i= 𝜶i -1;

24. assignTask(𝜶i, i);

25. end if

26. if 𝜶I >= 0 then

27. j = j + 𝜶i

28. end if

29. i = i + 1

30. if i > n then

31. i = 1

32. end if

33. end while

34. TrgetTimeStamp();

35. POptiFogTir - Tis

36. end procedure

37. Procedure assignTask(𝜶 , i)

38. if > 0 then

39. TisgetFactors(J𝜶 , Si);

40. OirreceiveFactors(J𝜶c , Si);

 Tir get(Oijr);

 MUi get(Oijr);

 CUi get(Oijr);

 NCi get(Oijr);

 RTiTir - Tis

41. end if

42. end procedure

After running the OptiFog Algorithm, the obtained
results are shown in figure 10 below.

Figure 10: ECG signal processing using OptiFog
Algorithm

Graph Interpretation:
• Effect of increasing nodes can be seen
• 4* nodes give very good performance
results
• It takes less computation time than ECG
octa wave and other techniques

9. TESTING OPTIFOG ALGORITHM

 The OptiFog algorithm is tested in three ways to
prove its rationality. In the first test case, the
speedup factor is considered. In the second test
case, the algorithm is run for a higher number of
ECG waves to see its performance. And in the last
test case the OptiFog algorithm is run for dispy
Deca wave case where dispy system which was not
giving good performance due to pre-loaded nodes
in the cluster.

9.1 Test case 1: Speedup

 Based on the above experiments done so far in
the Raspberry Pi clustering environment, every
parameter or the technique is indicating the way to
improvise the performance. These improvements
are reducing the job time J, which can be compared
by using the Speedup factor to see its impact.

 (8)

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3639

Here, the performance time of the dispy technique
with double ECG waves is taken as a benchmark
time and other techniques are compared to it. Also,
the step by step speedup between other techniques
is also shown in Table 6.
 Table 6, shows that the series of algorithms are
considered are improving the performance. The
OptiFog gives the maximum speedup of 14.4536 in
4* Nodes system and it speeds up the performance
by 1.1546 with respect to Octa waves in 4* Nodes
system.

Table 6: Speedup factors for 5000 ECG waves for 4
nodes and 4* Nodes system

Techniqu
e used (q)

Speedup w.r.t
Benchmark

Speedup w.r.t (q-1)
technique

4 Nodes
system

4*
Nodes
system

4 Nodes
system

4*
Nodes
system

Double
waves

1 1 - -

Tetra
Waves

5.9118 5.8417 5.9118 5.8417

Octa
Waves

11.256 12.5178 1.904 2.1428

OptiFog
Algo.

13.529 14.4536 1.2019 1.1546

 9.2 Test Case 2

The proposed algorithm OptiFog is tested on a
greater number of ECG waves. The system is tested
against the normal dispy system with octa waves
and OptiFog algorithm. The system is kept under a
loaded scenario to see the performance of the
OptiFog algorithm under the worst-case scenario.
The number of ECG waves are taken as 5000, 7500
and 10000. The results obtained by the dispy
system and OptiFog algorithm is shown in figure
11 and 12.

Figure 11: ECG signal processing by dispy system

From Figures 11 and 12, it is observed that OptiFog
outperforms the dispy system and other algorithms
in terms of computation. OptiFog shows better and
better results for larger jobs. In this test case, the
effect of 4* nodes in terms of performance is very
noticeable. For 4* Nodes system OptiFog is
showing a speedup of 1.183 for 10000 ECG waves.
This factor was 1.1546 for 5000 waves.

Figure 12: ECG signal processing by OptiFog Algorithm

This confirms that the Speedup factor is improved
for higher number of waves. The overall percentage
of improvement is shown in figure 13. As the
health care processing load increases the OptiFog
performs better and its computational performance
is increases concerning dispy system.

Figure 13: Percentage of improvement in the given test

case
9.3 Test case 3

 In this test case, the system where dispy was
processing ECG signal using deca waves is
considered. And when doing this the performance
was dropping. In this case, the network overhead is
observed lesser because a number of waves are
deca, but the loaded nodes are not able to handle
the deca wave loads and they are taking more time
than expected. But when the same case is

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3640

considered using OptiFog Algorithm which predicts
the job size based on individual node capability
status using impact value. The result of test case
3 is shown below where OptiFog algorithm is run
using deca waves.

Figure 14: Running Deca waves using OptiFog
Algorithm

Graph Interpretation:
 No improvement is seen for 1 node system in

comparison to the dispy deca wave graph
because of job load and existing preload

 In 2 Nodes system, the performance is
degrading because of the calculation overhead
of Ͼ, Ƚ, µ and .

 For 3 Nodes system, the results are better than
1 Node and 2 Nodes system as now Job
assigning and job size variation starts for
available nodes

 4 Nodes system performs better than 1 Node,
2 Nodes and 3 Nodes system

 Finally, 4* Nodes system outperforms because
OptiFog is able to detect good impact factors
every time and able to assign more and more
task in sub job for 4* system

OptiFog uses Distributed computing to strengthen
itself, and it is real-time processing algorithm
expected in [45]. The Use of Heterogeneous
computing and considering the worst case scenario
makes it different from the work done, so far in this
field.

10. CONCLUSION AND DISCUSSION

Real-time ECG analysis is a time-sensitive health
care application. Delay in this can be life-
threatening for patients. Fog Computing is able to
do this with reduced transmission delays but it
lacks in the computation power [46]. To get reduce
computational delay Raspberry Pi cluster is

suggested. Dispy is a good tool to use in Pi cluster
to facilitate ease of deployment and scalability in
distributed computing. To get good performance
from the dispy system, the assigned sub-job size
should be optimal. The master node iterations and
overheads depend on the sub-job size, which can
affect the system performance at greater levels.
Every hardware and software parameter matters a
lot in terms of computation. In this system, four
parameters namely response time, CPU usage,
number of cores and memory is used. Each
parameter has its effect on computation. For the
current system, the CPU usage and number of free
cores were having a good impact while response
time and memory had less impact on system
performance. By considering these effects and their
level of impact, OptiFog algorithm is designed with
respect to different priorities and factors. The
impact factor is a good measure to determine the
processing capability of any node. OptiFog
algorithm performs fairly well for the ECG health
care data using a Raspberry Pi cluster. OptiFog
algorithm is designed for the worst-case scenarios
so that it should always perform better. In a
heterogeneous environment it is able to decide and
assign the optimal job size for different nodes.
Shown test cases are justifying the performance of
the OptiFog algorithm as, if the number of nodes
and job increases, then the algorithm performance
will also gradually increase in comparison to dispy
systems. Hence OptiFog algorithm is able to
achieve better computations in the Heterogeneous
Raspberry Pi clustering environment in Fog
Computing. In the future, different computing
parameters like cache size, clock speed,
communication bus size, and processor type can be
considered to make this algorithm better and better.
Applying and analyzing OptiFog algorithm in
Vehicular Fog Computing for different application
domain is the open research issue.

REFRENCES:

[1] Bonomi, F., Milito, R., Zhu, J., and Addepalli S,

“Fog Computing and its role in the internet of
things”, ACM Proceedings of the first edition of
the MCC workshop on Mobile cloud computing,
pp.13-16, 2012

[2] Shi, Y., Ding, G., Wang, H., Roman, H. E., and
Lu, S, “The Fog Computing service for
healthcare”, IEEE 2nd International Symposium
on Future Information and Communication
Technologies for Ubiquitous HealthCare (Ubi-
HealthTech), pp.1-5, 2015.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3641

[3] Bharathi P.D., Ananthanarayanan V., Bagavathi
Sivakumar P. (2020) Fog Computing-Based
Environmental Monitoring Using Nordic
Thingy: 52 and Raspberry Pi. In: Somani A.,
Shekhawat R., Mundra A., Srivastava S., Verma
V. (eds) Smart Systems and IoT: Innovations in
Computing. Smart Innovation, Systems and
Technologies, vol 141. Springer, Singapore

[4] Gareth Mitchell. “The Raspberry Pi single-
board computer will revolutionise computer
science teaching [For & Against]”. In:
Engineering & Technology 7.3 (2012), 26-26.

[5] Andrew K Dennis. Raspberry Pi home
automation with Arduino. Packt Publishing Ltd,
2015.

[6] CG Raji et al. “Implementation of Bitcoin
Mining using Raspberry Pi”. In: 2019
International Conference on Smart Systems and
Inventive Technology (ICSSIT). IEEE. 2019, pp.
1087-1092.

[7] Suzanne J Matthews et al. “Portable parallel
computing with the raspberry pi”. In:
Proceedings of the 49th ACM Technical
Symposium on Computer Science Education.
2018, pp. 92-97.

[8] C. Pahl et al. “A Container-Based Edge Cloud
PaaS Architecture Based on Raspberry Pi
Clusters”. In: 2016 IEEE 4th International
Conference on Future Internet of Things and
Cloud Workshops (Fi-CloudW). 2016, 117-124.

[9] P. Jutadhamakorn et al. “A scalable and low-
cost MQTT broker clustering system”. In: 2017
2nd International Conference on Information
Technology (INCIT). 2017, pp. 1-5.

[10] Pekka Abrahamsson et al. “Affordable and
energy-efficient cloud computing clusters: The
bolzano raspberry pi cloud cluster experiment”.
In: 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science. vol.
2. IEEE. 2013, pp. 170-175.

[11] D. Borthakur et al. “Smart fog: Fog Computing
framework for unsupervised clustering analytics
in wearable Internet of Things”. In: 2017 IEEE
Global Conference on Signal and Information
Processing (GlobalSIP). 2017, pp. 472-476.

[12] Richard Brown et al. “Teaching Parallel and
Distributed Computing with MPI on Raspberry
Pi Clusters: (Abstract Only)”. In: Proceedings
of the 49th ACM Technical Symposium on
Computer Science Education. SIGCSE '18.
Baltimore, Maryland, USA: Association for
Computing Machinery, 2018, p. 1054. ISBN:
9781450351034.

[13] G. L. Stavrinides and H. D. Karatza, "Task
Group Scheduling in Distributed Systems,"
2018 International Conference on Computer,
Information and Telecommunication Systems
(CITS), Colmar, 2018, pp. 1-5.

[14] A. Guermouche and J. - L'Excellent, "Memory-
based scheduling for a parallel multifrontal
solver," 18th International Parallel and
Distributed Processing Symposium, 2004.
Proceedings, Santa Fe, NM, USA, 2004, pp. 71

[15] Xiaodong Zhang, Yanxia Qu and Li Xiao,
"Improving distributed workload performance
by sharing both CPU and memory resources,"
Proceedings 20th IEEE International
Conference on Distributed Computing Systems,
Taipei, Taiwan, 2000, pp. 233-241.

[16] L. Shi, Y. Sun and L. Wei, "Effect of
Scheduling Discipline on CPU-MEM Load
Sharing System," Sixth International
Conference on Grid and Cooperative
Computing (GCC 2007), Los Alamitos, CA,
2007, pp. 242-249.

[17] Kizhakkethil, Sree and S., Murugan. (2017).
Memory based Hybrid Dragonfly Algorithm for
Numerical Optimization Problems. Expert
Systems with Applications. 83.
10.1016/j.eswa.2017.04.033.

[18] Mohammad I. Daoud and Nawwaf Kharma, " A
hybrid heuristic–genetic algorithm for task
scheduling in heterogeneous processor
networks", Journal of Parallel and Distributed
Computing, Volume 71, Issue 11, November
2011, Pages 1518-1531.

[19] H. Topcuoglu, S. Hariri and Min-You Wu,
"Performance-effective and low-complexity
task scheduling for heterogeneous computing,"
in IEEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 3, pp. 260-274,
March 2002.

[20] Dongning Liang, Pei-Jung Ho, Bao Liu.
Scheduling in Distributed Systems.
https://cseweb.ucsd.edu/classes/sp99/cse221/pro
jects/Scheduling.pdf

[21] Arash Ghorbannia Delavar,Mahdi Javanmard ,
Mehrdad Barzegar Shabestari and Marjan
Khosravi Talebi, “RSDC (RELIABLE
SCHEDULING DISTRIBUTED IN CLOUD
COMPUTING)”, International Journal of
Computer Science, Engineering and
Applications (IJCSEA) Vol.2, No.3, June 2012.

[22] Luiz F. Bittencourt, Alfredo Goldman,
Edmundo R.M. Madeira, Nelson L.S. da
Fonseca, Rizos Sakellariou, "Scheduling in
distributed systems: A cloud computing

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3642

perspective", Computer Science Review 30
(2018) 31–54.

[23] Zafeirios C Papazachos, Helen D Karatza,
"Gang scheduling in multi-core clusters
implementing migrations", Future Generation
Computer Systems, Vol. 27, No. 8.

[24] Salim Bitam, SheraliZeadally and
AbdelhamidMellouk (2018) Fog Computing job
scheduling optimization based on bees swarm,
Enterprise Information Systems, 12:4, 373-397.

[25] F. A. Kraemer, A. E. Braten, N. Tamkittikhun
and D. Palma, "Fog Computing in Healthcare–
A Review and Discussion," in IEEE Access,
vol. 5, pp. 9206-9222, 2017.

[26] D. R. Ries and G. C. Smith, "Nested
Transactions in Distributed Systems," in IEEE
Transactions on Software Engineering, vol. SE-
8, no. 3, pp. 167-172, May 1982.

[27] dispy: Distributed and Parallel Computing
with/for Python by GiridharPemmasani,
https://pgiri.github.io/dispy/

[28] Raspberry Pi 3 Model B+,
https://www.raspberrypi.org/products/raspberry
-pi-3-model-b-plus/

[29] Raspberry Pi 4 Model-B with 4 GB RAM,
https://robu.in/product/raspberry-pi-4-model-b-
with-4-gb-ram/

[30] How to Impose High CPU Load and Stress Test
on Linux Using ‘Stress-ng’ Tool,
https://www.tecmint.com/linux-cpu-load-stress-
test-with-stress-ng-tool/

[31] Kanani P., Padole M. (2018) Recognizing Real
Time ECG Anomalies Using Arduino, AD8232
and Java. In: Singh M., Gupta P., Tyagi V.,
Flusser J., Ören T. (eds) Advances in
Computing and Data Sciences. ICACDS 2018.
Communications in Computer and Information
Science, vol 905. Springer, Singapore

[32] Cardiology Teaching Package.
http://www.nottingham.ac.uk/nursing/practice/r
esources/
cardiology/function/normal_duration.php

[33] Standard range of intervals, June 2017. E
MEDICINE.http://emedicine.medscape.com/
article/2172196-overview

[34] Normal ECG.
https://meds.queensu.ca/central/assets/modules/
ECG/normal_ecg.html

[35] Eduardo Jose da S. Luz et al., "ECG-based
heartbeat classification for arrhythmia
detection: A survey", Computer Methods and
Programs in Biomedicine, Volume 127, April
2016, Pages 144-164.

[36] Umer, Muhammad & Bhatti, Bilal & Tariq,
Muhammad & Zia-ul-Hassan, Muhammad &
Khan, Muhammad & Zaidi, Tahir. (2014).
Electrocardiogram Feature Extraction and
Pattern Recognition Using a Novel Windowing
Algorithm. Advances in Bioscience and
Biotechnology. 05. 886-894.

[37] Bandwidth, Packets Per Second, and Other
Network Performance Metrics,
https://tools.cisco.com/security/center/resources
/network_performance_metrics

[38] CPU Scheduling,
https://www.cs.uic.edu/~jbell/CourseNotes/Ope
ratingSystems/5_CPU_Scheduling.html

[39] Abraham Silberschatz, Greg Gagne, and Peter
Baer Galvin, "Operating System Concepts,
Eighth Edition ", Wiley.

[40] Patterson, David A.; Hennessy, John L.; Larus,
James R. (1999). Computer Organization and
Design: the Hardware/Software Interface (2.
ed., 3rd print. ed.). San Francisco: Kaufmann.
pp. 751. ISBN 978-1558604285.

[41] How Operating Systems Work,
https://computer.howstuffworks.com/operating-
system6.htm

[42] CPU and memory,
https://www.bbc.co.uk/bitesize/guides/zmb9mp
3/revision/2

[43] Monika Mukul and JyotiBala, " STUDY OF
MULTI CORE PROCESSOR AND IT’S
PERFORMANCE EVALUATION", IEEE
Student Conference on Cognizance of Applied
Engineering & Research, ICAER'10, UIET,
Panjab University, Chandigarh.

[44] Pandey, Raksha and Badal, Neelendra,
Understanding the Role of Parallel
Programming in Multi-core Processor Based
Systems (March 11, 2019). Proceedings of 2nd
International Conference on Advanced
Computing and Software Engineering
(ICACSE) 2019. Available at SSRN:
https://ssrn.com/abstract=3350311.

[45] S. Sarkar, S. Chatterjee and S. Misra,
"Assessment of the Suitability of Fog
Computing in the Context of Internet of
Things," in IEEE Transactions on Cloud
Computing, vol. 6, no. 1, pp. 46-59, Jan.-March
2018.

[46] Pratik Kanani and Mamta Padole,
“Implementing and Analyzing Health as a
Service in Fog and Cloud Computing”, The
International Journal of Intelligent Engineering
and Systems, Vol. 13, No. 6, 2020. DOI:
10.22266/ijies2020.1213.13

