
Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3591

ENERGY-LEAKS IN ANDROID APPLICATION
DEVELOPMENT: PERSPECTIVE AND CHALLENGES

MUHAMMAD UMAIR KHAN1 , SHANZA ABBAS2, SCOTT UK-JIN LEE3*, ASAD ABBAS4

1,2Departement of Computer Science and Engineering, Hanyang University, Republic of Korea
3Departement of Computer Science and Engineering, Major in Bio Artificial Intelligence, Hanyang

University,

 Republic of Korea
4Faculty of Information and Technology, University of Central Punjab, Lahore, Pakistan

mumairkhan@hanyang.ac.kr, shanza92@hanyang.ac.kr, scottlee@hanyang.ac.kr*,
asadabbas.grw@ucp.edu.pk

ABSTRACT

Number of mobile devices are increasing, and popularity of Android OS supported devices is more than
other, and Android apps dominated the mobile apps market. These devices have limited resources (CPU,
Memory, and Power, etc.). Energy consumption in mobile devices is an important factor to consider when
developing an app. There is no such official guide that help developer to build a less energy-hungry app or
discover energy leaks in the development phase. This paper will review different types of energy leaks in
Android apps, how these leaks effect the energy consumption of the device. We will discuss how these
energy leaks can be avoided at the development phase
Keywords- Energy Leaks, Code Smell, Android Apps, Energy Consumption, Mobile Apps, Program

Analysis

1. INTRODUCTION

In recent years mobile devices are used

abundantly. Peoples are mostly using mobile apps
for their basic computing. Mobile apps are new
emerging mainstream of software system which
presents numerous challenges for the researcher in
software engineering[1]. There are almost 2.7
million android apps and 2.2 million iOS apps
available online and the average use of mobile
phone per person is 2 hours and 51 minutes in a day
[2]. Android apps dominated the app market of
mobile, because of the popularity of open-source OS
and a variety of free apps available on Play Store
[3].

Mobile devices come with limited
resources such as computing, memory, and power.
They are continuously growing in size and
complexity. Mobile apps use resources which
include animation, more color depth in the screen,
accurate sensor data, memory, and CPU power.
Accessing these resources in an app will consume
energy. Mobile devices cannot have larger battery
because they use Lithium batteries which are

lightweight and portable but has limited battery
capacity. Energy consumed by mobile apps plays a
vital role as the use of the mobile phone is increased
so the user requires more battery life. Apps need to
reduce energy consumption as much as possible to
facilitate users [4], [5].

Android app developers only use best
practices (provided by Google’s best practices) to
create the application. New or inexperienced
developers try to archive only the functional
requirements. They ignore non-functional
requirements, especially energy consumed by the
app. Adequate energy measurements are also not
well supported at the time of development, as there
is not any official energy measuring tool. Google
published a set of best practices to optimize the
performance [5], [6], [7], but these practices does
not provide the guideline to reduce energy
consumption [9].

Mobile devices contain different sensors
(e.g. Wi-Fi, GPS, Proximity, etc.) that app uses to
achieve the functionality they provide to the user.
Mobile apps use the data from the sensor, which is
used by a mobile app to help user accordingly, for
example, GPS provides location update that can be

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3592

used in maps to find nearest attractions. Developer
should use these sensors carefully because extensive
use or not properly closed resources will result in
the drain of battery. To access these resources, we
need APIs. Table 1 shows some hardware resources
with their system call API, that mostly consume
energy in mobile devices.

API’s are used to assist developers, for fast
and easy access to resources in Android apps, so
they play a vital role in the development of the
Android application. Basic API’s are provided by
the Android OS but still, there are many third-party
APIs that are used in the development [10]. These
APIs provide different methods to access resources
with different properties. Lack of knowledge of
method working will lead to unexpected results and
may terminate the program on some circumstances.
For example, most of the apps use the internet to
communicate, they use HTTP calls API to
communicate. These calls usually contain a small
amount of data, but to communicate with the server,
they need to enable data connection or Wi-Fi (which
may be in sleep state). When they are finished
communicating, these sensors will go to idle or
sleep. The additional energy consumed after
communication and before sleep is called “tail
energy”. HTTP calls can be optimized by bundling a
small HTTP request [10]. Similarly, the free app
contains advertisements, which consume bandwidth
and screen active time causing battery consumption.

Table 1: Android System Call Apis That Influence
Energy Consumption

Resources System Call APIs Hardware

LocationManager requestLocationUpdates
/ removeUpdates

addProximityAlert/
removeProximityAlert

GPS

WifiManager setWifiEnabled
acquire/release

Wi-Fi

Camera open/close
startPreview/stopPrevie

w

Camera

Sensor registerListener/
unregisterListener

Gyro,
pedometer,
proximity
and so on.

LocationClient requestLocationUpdates
/ removeUpdates

addGeofences/removeG
eofances

GPS

MediaRecorder start/stop Audio/video

BluetoothAdapter enable/disable Bluetooth

CellularData enable/disable GSM

Different studies try to solve energy leaks
in Android applications, but these studies only
limited to detect and fix one problem or few
problems [9], [10], [11], [12], [13]. They leave
many unattended energy leaks. There is no proper
guide or tool to detect all the energy leaks or to fix
all the problems related to energy in apps. These
energy leaks can be small or big. If they are small,
they may go unnoticed by user and developer. But if
they leak a large amount of energy then the user of
the app reports this bug. As the developer only
knows about energy leaks from user feedback and
there is no official tool to assist them in detecting
these energy leaks. This motivates us to study and
find different energy leaks in mobile apps.

This paper provides a review of different
energy leaks presented by different studies and
discusses how a simple mistake can affect the
energy consumption of the Android apps. We then
discuss the solutions to avoid these energy leaks
when developing the apps.

The paper is organized in the following
manner: Section-2 will give some basic background,
Section-3 will review related works. Section-4 will
discuss different energy leaks. In Section-5 we see
how these leaks can be avoided and Section-6 will
conclude this work.

2. BACKGROUND

To find energy leaks in Android apps we

need to know how the applications are collected,
executed and analyzed. This section will give a short
overview of how we can gather Android
applications to have conclusive results. How
application runs during their life period i.e how they
are initiated, executed and destroyed. Then we will
see what the different options are to analyze these
applications. We will also see the effect of best
practices provided by Google on energy
consumption.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3593

2.1. Gathering Dataset

To analyze energy leaks in apps we need to
have a set of apps that need to be analyzed for
energy leaks. Gathering open-source Android app is
a time-consuming task and not all the apps have
source code available. For the apps that do not have
source code, they need to be analyzed statically by
converting their APK file into Dalvik code and then
making control flow graph for further processing.
We need to have a dataset which needs to be
analyzed to give more in-depth knowledge and
conclude the results. These datasets can be
downloaded from AndroZoo, Android Malware
Genome Project, Google Play, F-Droid, appannie,
appbrain, appszoom, AppChina, Anzhi,
AndroVault, and apkmirror [15]. To analyze apps
for energy consumption these stores are used in
different studies.

2.2. Android Application Lifecycle

Android apps are different from
conventional java applications. They do not have
any main method (which is executed at the start of
the program), they use event-driven model and
generally revolve around a GUI so we cannot
predict the flow of the program. Android
applications are composed of different types of
component:

 Activity is the entry point of application to
interact with the user, which can be

composed of a series of independent and
collaborative activities.

 Service perform long-running operations
that runs in the background.

 Broadcast receiver is used to communicate
with different system events as it responds
to system-wide broadcast messages. It
works as a gateway to other components.

 Content provider manages a shared set of
application data i.e. other components and
applications can query or modify the
data[16].

There are seven distinct stages of the
lifecycle of an activity when it is created as shown
in Figure 1, at the beginning of the activity execution
onCreate, onStart and onResume are invoked. All
tasks related to initialization and resource
acquisition are usually performed in these stages.
Similarly, when stopping the execution of the
activity onDestroy, onStop and onPause are
invoked. onRestart method is used to restart
previously stopped activity. To implement custom
functionality developers, need to override these
methods[11].

Android framework defines thousands of
callbacks for different interaction. These
interactions are activities, menus, and dialogs. There
are two main categories of a callback. Lifecycle
callbacks manage the lifecycle of the application.
onCreate and onDestroy are significant because

Figure 1: Android Activity Lifecycle

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3594

they manage the activity lifecycle which is essential
for developers. GUI event handler callbacks respond
to user actions on the GUI (e.g.clicking button).
They are called when the user interacts with GUI by
clicking, they control the flow of the program. As
Android devices are event-driven, events are the
input, which can be either from user interaction or
from the system[17].

2.3. Analyzing the Android App

To analyze the Android application, there
are two types of analysis techniques: static analysis
and dynamic analysis. The static analysis takes
source code and examines this code without
executing it, it gives an abstract model of the
program e.g. call graph, control flow graph[14],
[15], [16], [17], [18], [19], [20]. The main advantage
of static analysis is that all the code is analyzed.
Dynamic analysis monitors the execution of the app
by inspecting the runtime behavior of the app.
GreenDroid is a dynamic analysis tool to detect
energy defects in Android apps [25]. The main
advantage of dynamic analysis is that it performs
analysis at runtime, depending on the scenario it
provides the energy consumption of energy greedy
part of the app which is helpful to reduce energy at
that part of the program. Then there is a hybrid
analysis that uses both static and dynamic
analysis[21], [22], [23], [24], [25], [26]. These
techniques are mostly used for security analysis of
mobile applications[1]. As this paper is about the
energy consumption of Android apps so we will
discuss energy leaks in Android apps.

2.4. Effect of Best Practices

Android developer guide provides
Google’s best practice for Lint, which was analyzed
and then measures the energy according to the
priority in Lint [32], [33]. They found these
practices have little effect on energy improvement
although they are good for performance. They show
that most energy-efficient practices may not give the
best performance. They show that 21% of the
dataset contains ObsoleteLayoutParam (i.e. layout
no longer in use in UI), 16% contain Recycle
(missing recycle() calls TypedArray objects should
be efficiently used as they are a singleton). Result
also shows that 32% of apps contain at least one
energy inefficiency. We will discuss them in
Section-4 and how we can improve them so that
energy consumption is reduced.

3. RELATED WORK

There are different researches on detecting

energy leaks of the mobile phone. This section will
discuss some of the recent research.

Program analysis to detect energy Inefficiencies.
To detect energy inefficiencies, Android apps need
to be analyzed. Most of the research uses program
analysis to detect inconsistencies [14], [19], [19],
[27], [30], [32], [33]. Alireza et al.[35] classify and
characterize research efforts in this area. They have
provided the in-depth knowledge of program
analysis and showed, what are the choices, which
types of analysis, what is the relation, and where to
apply which analysis. They showed that program
analysis is mostly used to detect vulnerability and
malicious apps. This will help the new researcher to
help in exploring the current trends in Android apps
analysis. Most of the research uses static analysis to
detect energy defect [6], [11], [12], [22], [27], [34],
[35], [36], [37], [38], [39], [40]. Some uses dynamic
analysis[37], [45] and some uses combination of
both also called hybrid[20], [22], [23], [42].

Resource management. Resource management
in android app is an important task many of recent
research are going on optimizing resource to
improve the energy consumption of apps. Resource
safety policy checking is adopted by Relda to detect
resource leaks in the apps [34], [38], [43]. They
assume acquire and release points, so cannot
properly handle wake lock misuses in real-world
apps. Reyhaneh et al. use the energy-aware mutation
to find energy leaks [30]. They define the mutation
operator to check if they found any energy leak by
introducing mutant. Testing these mutants is a time-
consuming process and most of the parameter are
set by developers to get the work done in time so
changing them may affect the flow of the program.
Anway et al. consider the split-screen functionality
of mobile, which actively run simultaneous
applications and consume more energy [48]. They
archive energy-efficient configuration by adaptively
adjusting voltage and frequency of CPU and
memory bandwidth. Changing the hardware
parameter may change the behavior of other apps so
it is not recommended. Some other work also
suggests that resources used by the application need
to be closed properly otherwise they will drain the
battery [17], [29].

Energy-aware test generation. Generating an
energy-aware test in the mobile application is a
difficult task as Android official guide do not
provide any guideline. There is no official tool
available to measure energy consumption at
development time. Developer need to use adb
(Android Debugging Bridge) command to get the
information of executing programs and device
resource information. Test generation also requires
measuring the energy consumption of the test.
Researchers have proposed several techniques that
generate test cases to detect and optimize energy

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3595

leaks in mobile apps [10], [16], [25], [46], [47],
[48].

4. ENERGY LEAKS AND SOLUTIONS

This paper focuses on energy leaks in

Android apps. Energy inefficiencies can be
categories into energy bugs, which causes excessive
energy consumption even after the app has finished
execution and energy hotspots, which causes
excessive energy consumption while the app is
under execution. A literature review shows that
energy consumption is the fourth most concerns area
addressed by publication nowadays [1]. To improve
the energy efficiency of mobile devices a catalog of
22 design patterns was constructed [52]. They use
GitHub comments in the commit of Android app
project and search for energy-related words such as
energy, power or battery in comments. If they found
any of these words, they first read the full comment
and if it is energy improvement or bug identified
they include it in the study. Fixes are included in the
study by exploring their code changes. Then they
construct their own catalog of energy leaks. Another
study shows that four code smell types (internal
setter, leaking thread, member ignoring method and
slow loop) consume up to 87 times more energy
than methods affected by other code smells. This
study ignores other important code smells, that also
affect energy consumption [14]. Energy leaks can be
found by measuring the energy consumption of the
device when running the app. This section will first
give some overview of how we can measure energy
consumption. Then we will discuss energy leaks and
their solutions.

4.1. Measuring Power Consumption

After analyzing and detecting energy leaks
they need to measure how much energy can be
saved by removing the energy leaks. We can
measure energy based on hardware and software
approach. Hardware approach is more accurate but
require extra hardware setup cost. Whereas, the
software-based approach is less accurate but will
show the power consumption of the app quite easily
[10], [12], [13], [49]. Overview of some testing tool
is shown in [16]. Software-based, eLens, is a light-
weight tool to estimate the energy consumption of
app at the level of fine granularity (i.e.for whole
application, method, path, or source code line) [53].
Trepn[50], Petra[13] , eProf [54], and PowerTutor
[55] are some examples of software-based energy
measuring tools. To measure energy consumption
using hardware, require special hardware to be set
up. Although the measurements are accurate, it
requires special hardware setup which cost extra.

Some examples of hardware-based energy
measuring tool are power meter, project volta[13],
WattsOn [56], and Monsoon[13]. At the time of
development developer only need to locate energy
leaks, and how much energy is consumed by the
program, so the software-based approach is helpful.
It is also fast and requires fewer changes.

4.2. Energy Leaks

This section will describe the energy leaks
found in Android OS. These energy leaks are
detected by different studies. In this paper, we will
summarize these leaks to get the overview of energy
leaks. These energy smells play a big role in the
energy consumption of mobile apps. The developer
needs to minimize the leaks of energy in their apps.

4.2.1. Resource Leaks
Resource leaks are the main causes of

energy leaks in mobile apps. They occur when some
resources are acquired by the application during
execution. But developer forgot to release that
resource when exiting the application. These
acquired resources must be released before exiting
otherwise they will continue to be a high-power
state.

When a service component starts, some
system resources need to be acquired for later
computation. Error! Reference source not found.
gives an example of a library service [57]. The
LibraryService component of the E-book reading
app FBReader opens a database connection when it
is launched (Line 5). This acquires database instance
for interacting with the database (such as insert,
delete operations). Resources should be released
when the service is destroyed. Since acquiring and
releasing operations are in different callback

methods, developers can easily forget to release the
resources properly. We can release the database
connection using close (Line 9). Adding this will
now remove the resource leak from the program.
Similar can be the case of acquiring any Android
service and forgetting to release it will cause a
resource leak.

4.2.2. SensorLeak

Figure 2: Example of Resource Leak

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3596

The mobile device came with multiple
sensors such as camera, GPS, fingerprint sensor,
accelerometer and so on. These multiple categories
of sensors are represented by an integer constant.
For example, Sensor.TYPE_ACCELEROMETER,
which is a sensor object. If an application acquires a
sensor during their lifetime but does not release it
will cause the energy leak [58]. Hardware
components/power management utilities can only be
accessed by an app through a predefined set of
system call APIs [12].

Error! Reference source not found.
shows a simplified example [58] of sensor leak. To
obtain sensor data, sensor eventlistener is registered
by programmer SensorEventListener (Line 6).
Whenever new sensor data is available callback
onSensorChanged is invoked on this listener. As
(Line 12) shows how a listener is registered with a
sensor object. The sensor hardware will be enabled
when any listener registered to listen to the sensor’s
changes. The listener will be removed using
unregisterListener (Line 8) whenever the
programmer wants to turn-off the hardware. The
example shows the sensor leak when UnlockActivity
is opened, the user may toggle sc’s switch (state of
switch Line 10-13) in the UI. It will invoke

onCheckedChanged and as a result, will

 register shakeListener’s listener (Line 12)
object with accel’s sensor object, and

 will wait for a shake gesture to unlock vault
by the user.

Whenever the device is moved,
onSensorChanged (Line 7) is invoked with
information about the physical movement. If this
movement is above some threshold (checked at Line
8), it is considered to be “shake to unlock”. This will
release the listener via unregisterListener and
unlocks the vault. If the user quits this app and
makes the phone stationary, UnlockActivity will be

closed. At that time, lifecycle callback onDestroy
(Line 14) does not release the sensor. Thus, the
window that acquired the sensor does not release it
and keeps the sensor alive. This will drain the
battery. This example shows that the sensor will still
be alive after the user quits the app, as the
application process remains active upon quitting.
Table 1 shows a different sensor with system API
calls. These sensors should be carefully registered
(such as SensorEventListener) and whenever the
information from the sensor is not required, they
should be unregistered (such as unregisterListener).

4.2.3. Wake lock Misuses
Wake locks enable developers to explicitly

control the power state of an Android device.
Developers need to declare the
android.permission.WAKE_LOCK permission in
their app’s manifest file [59]. Creating a
PowerManager.WakeLock instance, and specify its
type (partial, screen dim, screen bright, full,
proximity screen off). Each type has a different
wake level and different effect on energy
consumption. For example, full wake lock will keep
device CPU running, and screen and keyboard
backlight on at full brightness. After creating
instances of wake lock, certain APIs can be involved
to acquire and release wake locks. Once wake lock
is acquired, it will have long-lasting effects until it is
released, or the timeout expires at a specified time.
As wake locks directly affect device hardware state,
and to avoid undesirable consequences developers
should carefully use them [12], [14]. We will give
an overview of 8 patterns of wake locks.

 Unnecessary wakeup: Developer acquired
wake lock too early or released it too late
which causing unnecessary wake-up time.

 Wake lock leakage: Once acquired wake
lock it should be released on all program
paths in android app.

 Premature lock releasing: It occurs when
the wake lock is released before being
acquired, which may cause the app to crash.

 Multiple lock acquisition: As wake lock is
referenced counted and each acquisition of
wake lock will increment the counter. All
the acquired locks should be released as
wake lock will only be released when the
counter reaches zero[59].

 Inappropriate lock type: Developer should
acquire the lock of the hardware that he
wants to use or prevent from sleep. For
instance, when using Wi-Fi for calls it
should lock Wi-Fi, not CPU as Wi-Fi will
go to sleep after some time and call will
disconnect.

Figure 3: Example of Sensor Leak

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3597

 Problematic timeout setting: when
acquiring a lock, developers can set a
timeout. After that timeout, the acquired
lock will automatically be released. Value
of timeout is critical because it should not
be too short or too long.

 Inappropriate flags: When acquiring wake
locks, developers can also set some
predefined flags. For example,
ON_AFTER_RELEASE flag will cause the
device screen to remain ON after wake lock
is released. So, they should be carefully
used to avoid undesirable consequences.

 Permission Error: App requires to declare
the android.permission.WAKE_LOCK
permission when acquiring wake lock.
Forgetting to declare will lead to security
violation and may crash the app. The
developer must declare permission if the
app will acquire the lock.

4.2.4. Context Leak

An object has a life cycle and context is the
bridge between components. It is used for
communication between components, instantiate
components and access components. When context
has reached the end of its life cycle but is still
reachable from running thread or from the static
field is known as context leak [38]. Examples of
Android context are activities, services, broadcast
receivers and fragments (the portion of the user
interface) which are not contexts but contain a
context. These context containers can generate
context leaks. For example, when an activity is
invoked it runs in foreground and previous activity
loses the focus and goes down in a stack. The user
interacts with the activity in the foreground only.
Another activity is kept in the stack until invoked
and come to the foreground. The lifecycle of
Android activity is shown in Error! Reference
source not found.. There are three types of context
leaks found in practice:Error! Reference source
not found.

 Thread: Threads are the long-running task
(such as network and database operations)
which run in the background to preserve the
responsiveness of the application [14]. They
should be stopped properly so that they can
be removed from memory [38]. Thread
related classes in Android are Thread,
Runnable, Handler, HandlerThread and
AsyncTask Thread running apps should
stop the thread when they are destroyed or
paused by the user. Unable to stop the
thread will cause unnecessary computation
energy.

 Static field: Programmers use static fields as
global access points for shared data. They
belong to a class, not to a specific
instance[38]. If a programmer store context
or context container in a static field
(possibly indirectly). It might get leaked
because it will be there till the program is
running. A solution would be to reset the
static fields to null which need to be
implemented in the onDestroy() method.

 System callback: Android has a set of
managers to interact with OS. They are
created through static fields using
Context.getSystemService() method. For
example, location manager allows one to
query the device location, the sensor
manager allows access to sensor data (such
as GPS). If callback object gets attached to
managers to listen to specific event they will
remain allocated until explicitly detached. A
solution to this problem is to unregister the
callback in onDestroy() method.

4.2.5. Long-wait State
If activity adds a listener callback and after

a while, the user presses HOME, Back or Power
button, the activity will send in the background and
might not come to the foreground. Thus the activity
is in a long-wait state if the listener is not removed
[11]. For instance, callback onLocationChanged is
called by an application to read location but after
some time user presses HOME or POWER button.
The application will go to the background, but
listening is still active. Which will drain the battery,
as the location is not required by the application. To
solve this problem developer should remove the
listener in onPause() or onDestroy() method

4.2.6. Data Transmission without compression
Almost all Android apps use the internet

for communication. This communication could be
through Wi-Fi or cellular this requires enabling the
hardware. The enabled hardware was in idle state
(low power state) but now it is in enabled state (high
power state) which consumes more energy. Most of
the time request are of small size and when these
requests are sent and received, they take less time,
but hardware will stay enabled for longer time
causes extra energy consumption. Similarly, Ads of
free apps consume network data. These request
could be bundled together or compressed to save the
transmitting power[14].

5. AVOIDING ENERGY LEAKS

We have discussed the energy leaks in

Android apps that will lead to energy inefficient
app. Developers should consider the energy

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3598

efficiency of the device and should avoid these
energy leaks. They will lead to undesirable energy
consumption.

These leaks are mainly due to resources
acquired by the developer are not released or
released at an inappropriate place which should be
avoided. Control flow graph, event flow graph, and
data flow graph can help the developer to get the
insight into the flow of the program. These graphs
are constructed using static analysis. If there is a
missing released resource developer should add
release. If there is a release but maybe at an
inappropriate position, then make sure that it is
released before the app closes. Developer should
monitor energy-hungry resources (such as GPS, Wi-
Fi, cellular network, and display). If it is consuming
unnecessary energy, then it should be minimized by
putting the resource in sleep when it is not active.

Android API provides a different
parameter for hardware resources. They can be used
by developers to minimize the usage of hardware
resource. The hardware should only be used when
its data is needed. For example, for GPS we can set
the priority PRIORITY_HIGH_ACCURACY or
PRIORITY_BALANCED_POWER_ACCURACY
depending on the requirements. Similarly, we can
setInterval() of updated values. If the interval is
small, then the value of the sensor will be updated
after a short time and consume battery. Developer
should adjust these parameters according to the
requirements of the app.

Context plays an important part when
using the sensor. For example, if a user is not
traveling fast (such as walking or at rest) he doesn’t
require the frequent update of position, but if he is
traveling fast (such as on a car) then he needs fast
and accurate updates. Developer should also decide
whether to stop the sensor update or not if the app is
send to background by user and user is not currently
using the app.

Thread and wake locks are also the cause
of energy leaks. Threads are working in the
background (to get data from network or sensor) and
need to be stopped when the work is complete or
when closing the program. We have discussed wake
locks so they should also be released when they are
not required, and the timeout value should be
carefully set by the developer.

Developer should also clear memory if
they use static fields so that it can no longer
consume memory by setting them to NULL. They
should also consider that user may press HOME,
BACK or POWER button to do some other task. As
the task is switched, the app should release the
resources to reduce energy consumption.

Loop is an important part of any program
and duration of loop decide the performance of the
program [14]. Android has two versions of loops
and standard version of for loop is slower than for-
each loop [20], [60]. Developers should always use
the enhanced version of loops and other
recommendations that improve the performance of
the app.

6. CONCLUSION AND FUTURE WORK

Android apps are dominating the mobile

apps market as they are mostly open-source, so most
of the mobile devices use Android OS to cover a
large group of users. Mobile devices have limited
battery capacity so the apps running on these
devices need to be less energy-hungry. This paper
provides a review of energy leaks in Android apps,
that causes unnecessary energy consumption in
mobile apps. These leaks are mostly resource leaks,
context leaks, sensor leaks, and wake lock misuse.
To avoid these energy leaks, we also discuss the
solutions that need to be considered when
developing apps. These energy leaks are caused by
inexperienced or new developers, also lack
guideline and tools to detect energy inefficiency. In
future work, we will work on a tool for detecting
these energy leaks and estimate the energy
consumption of the program. This tool will help
developers to write energy-efficient apps.

7. ACKNOWLEDGEMENT

“This research was supported by the MISP(Ministry
of Science, ICT), Korea, under the National
Program for Excellence in SW)(2018-0-00192)
supervised by the IITP(Institute of Information &
communications Technology Planning &
Evaluation)"(2018-0-00192).

REFERENCES

[1] Li, Li, et al. "Static analysis of android
apps: A systematic literature
review." Information and Software
Technology 88 (2017): 67-95.

[2] Simon Hill, “Android vs. iOS: In-Depth
Comparison of the Best Smartphone
Platforms | Digital Trends,” 2019. [Online].
Available:
https://www.digitaltrends.com/mobile/andr
oid-vs-ios/. [Accessed: 31-Jul-2019].

[3] “Mobile Operating System Market Share
Worldwide | StatCounter Global Stats.”
[Online]. Available:
https://gs.statcounter.com/os-market-
share/mobile/worldwide. [Accessed: 10-

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3599

Jun-2020].

[4] Liu, Kecheng, et al. "Security analysis of
mobile device-to-device network
applications." IEEE Internet of Things
Journal 6.2 (2018): 2922-2932.

[5] M. V. J. Heikkinen, J. K. Nurminen, T.
Smura, and H. Hämmäinen, “Energy
efficiency of mobile handsets: Measuring
user attitudes and behavior,” Telemat.
Informatics, vol. 29, no. 4, pp. 387–399,
2012.

[6] T. Das, M. Di Penta, and I. Malavolta, “A
quantitative and qualitative investigation of
performance-related commits in android
apps,” Proc. - 2016 IEEE Int. Conf. Softw.
Maint. Evol. ICSME 2016, pp. 443–447,
2017.

[7] L. Li, T. Riom, T. F. Bissyandé, H. Wang,
J. Klein, and L. T. Yves, “Revisiting the
impact of common libraries for android-
related investigations,” J. Syst. Softw., vol.
154, pp. 157–175, 2019.

[8] R. Spolaor, E. D. Santo, and M. Conti,
“DELTA: Data Extraction and Logging
Tool for Android,” IEEE Trans. Mob.
Comput., vol. 17, no. 6, pp. 1289–1302,
2018.

[9] C. Pang, A. Hindle, B. Adams, and A. E.
Hassan, “What Do Programmers Know
about Software Energy Consumption?,”
IEEE Softw., vol. 33, no. 3, pp. 83–89,
2016.

[10] M. Linares-Vásquez, G. Bavota, C. Bernal-
Cárdenas, R. Oliveto, M. Di Penta, and D.
Poshyvanyk, “Mining energy-greedy API
usage patterns in Android apps: an
empirical study,” pp. 2–11, 2014.

[11] Wu, Haowei, Shengqian Yang, and Atanas
Rountev. "Static detection of energy defect
patterns in Android
applications." Proceedings of the 25th
International Conference on Compiler
Construction. 2016.

[12] A. Banerjee, L. K. Chong, C. Ballabriga,
and A. Roychoudhury, “EnergyPatch:
Repairing Resource Leaks to Improve
Energy-Efficiency of Android Apps,” IEEE
Trans. Softw. Eng., vol. 44, no. 5, pp. 470–
490, 2018.

[13] D. Di Nucci, F. Palomba, A. Prota, A.
Panichella, A. Zaidman, and A. De Lucia,

“Software-based energy profiling of
Android apps: Simple, efficient and
reliable?,” SANER 2017 - 24th IEEE Int.
Conf. Softw. Anal. Evol. Reengineering, pp.
103–114, 2017.

[14] F. Palomba, D. Di Nucci, A. Panichella, A.
Zaidman, and A. De Lucia, “On the impact
of code smells on the energy consumption
of mobile applications,” Inf. Softw.
Technol., vol. 105, no. June 2018, pp. 43–
55, 2019.

[15] Geiger, Franz-Xaver, and Ivano Malavolta.
"Datasets of Android Applications: a
Literature Review." arXiv preprint
arXiv:1809.10069 (2018).

[16] S. R. Choudhary, A. Gorla, and A. Orso,
“Automated test input generation for
android: Are we there yet?,” Proc. - 2015
30th IEEE/ACM Int. Conf. Autom. Softw.
Eng. ASE 2015, pp. 429–440, 2016.

[17] S. Yang, D. Yan, H. Wu, Y. Wang, and A.
Rountev, “Static control-flow analysis of
user-driven callbacks in android
applications,” Proc. - Int. Conf. Softw.
Eng., vol. 1, pp. 89–99, 2015.

[18] H. Wu et al., “Static window transition
graphs for Android,” Autom. Softw. Eng.,
vol. 25, no. 4, pp. 833–873, 2018.

[19] D. Garbervetsky, E. Zoppi, and B. Livshits,
“Toward full elasticity in distributed static
analysis: The case of callgraph analysis,”
Proc. ACM SIGSOFT Symp. Found. Softw.
Eng., vol. Part F1301, pp. 442–453, 2017.

[20] F. Palomba, D. Di Nucci, A. Panichella, A.
Zaidman, and A. De Lucia, “Lightweight
detection of Android-specific code smells:
The aDoctor project,” SANER 2017 - 24th
IEEE Int. Conf. Softw. Anal. Evol.
Reengineering, pp. 487–491, 2017.

[21] Jabbarvand, Reyhaneh, et al. "Energy-
aware test-suite minimization for android
apps." Proceedings of the 25th
International Symposium on Software
Testing and Analysis. 2016.

[22] Wu, Haowei. Detection of Energy-
Inefficiency Patterns in Android
Applications. Diss. The Ohio State
University, 2018.

[23] Jenkins, John, and Haipeng Cai. "ICC-
Inspect: supporting runtime inspection of
Android inter-component

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3600

communications." Proceedings of the 5th
International Conference on Mobile
Software Engineering and Systems. 2018.

[24] Y. Zhao, M. S. Laser, Y. Lyu, and N.
Medvidovic, “Leveraging Program
Analysis to Reduce User-Perceived Latency
in Mobile Applications,” Softarch.Usc.Edu,
2018.

[25] Y. Liu, C. Xu, S. C. Cheung, and J. Lü,
“GreenDroid: Automated diagnosis of
energy inefficiency for Smartphone
applications,” IEEE Trans. Softw. Eng., vol.
40, no. 9, pp. 911–940, 2014.

[26] J. Shim, K. Lim, S. Cho, S. Han, and M.
Park, “Static and Dynamic Analysis of
Android Malware and Goodware Written
with Unity Framework,” Secur. Commun.
Networks, vol. 2018, pp. 1–12, 2018.

[27] C. H. P. Kim, D. Kroening, and M.
Kwiatkowska, “Static program analysis for
identifying energy bugs in graphics-
intensive mobile apps,” Proc. - 2016 IEEE
24th Int. Symp. Model. Anal. Simul.
Comput. Telecommun. Syst. MASCOTS
2016, pp. 115–124, 2016.

[28] R. Jabbarvand, A. Sadeghi, J. Garcia, S.
Malek, and P. Ammann, “EcoDroid: An
Approach for Energy-Based Ranking of
Android Apps,” Proc. - 4th Int. Work.
Green Sustain. Software, GREENS 2015,
pp. 8–14, 2015.

[29] Fan, Lingling, et al. "Efficiently
manifesting asynchronous programming
errors in android apps." Proceedings of the
33rd ACM/IEEE International Conference
on Automated Software Engineering. 2018.

[30] Jabbarvand, Reyhaneh, and Sam Malek.
"µDroid: an energy-aware mutation testing
framework for Android." Proceedings of
the 2017 11th Joint Meeting on
Foundations of Software Engineering.
2017.

[31] Kim, Jeongmin, et al. "Enabling automatic
protocol behavior analysis for android
applications." Proceedings of the 12th
International on Conference on emerging
Networking EXperiments and Technologies.
2016.

[32] L. Cruz and R. Abreu, “Performance-Based
Guidelines for Energy Efficient Mobile
Applications,” Proc. - 2017 IEEE/ACM 4th

Int. Conf. Mob. Softw. Eng. Syst.
MOBILESoft 2017, pp. 46–57, 2017.

[33] Cruz, Luis, and Rui Abreu. "Using
automatic refactoring to improve energy
efficiency of android apps." arXiv preprint
arXiv:1803.05889 (2018).

[34] L. Wei, Y. Liu, and S.-C. Cheung, “OASIS:
Prioritizing Static Analysis Warnings for
Android Apps Based on App User
Reviews,” ESEC/FSE ’17 (Joint Meet. Eur.
Softw. Eng. Conf. ACM SIGSOFT Symp.
Found. Softw. Eng., vol. 11, pp. 672–682,
2017.

[35] A. Sadeghi, H. Bagheri, J. Garcia, and S.
Malek, “A Taxonomy and Qualitative
Comparison of Program Analysis
Techniques for Security Assessment of
Android Software,” IEEE Trans. Softw.
Eng., vol. 43, no. 6, pp. 492–530, 2017.

[36] D. Octeau, D. Luchaup, S. Jha, and P.
McDaniel, “Composite Constant
Propagation and its Application to Android
Program Analysis,” IEEE Trans. Softw.
Eng., vol. 42, no. 11, pp. 999–1014, 2016.

[37] Y. Zheng, S. Kell, L. Bulej, H. Sun, and W.
Binder, “Comprehensive multiplatform
dynamic program analysis for Java and
android,” IEEE Softw., vol. 33, no. 4, pp.
55–63, 2016.

[38] F. Toffalini, J. Sun, and M. Ochoa,
“Practical static analysis of context leaks in
Android applications,” Softw. - Pract. Exp.,
vol. 49, no. 2, pp. 233–251, 2019.

[39] S. Yang et al., “Static window transition
graphs for Android,” Autom. Softw. Eng.,
vol. 25, no. 4, pp. 833–873, 2018.

[40] Wu, Tianyong, et al. "Relda2: an effective
static analysis tool for resource leak
detection in Android apps." 2016 31st
IEEE/ACM International Conference on
Automated Software Engineering (ASE).
IEEE, 2016.

[41] M. Hammad, H. Bagheri, and S. Malek,
“DELDROID: An automated approach for
determination and enforcement of least-
privilege architecture in android,” J. Syst.
Softw., vol. 149, pp. 83–100, 2019.

[42] Kuznetsov, Konstantin, et al. "Analyzing
the user interface of Android
apps." Proceedings of the 5th International
Conference on Mobile Software

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3601

Engineering and Systems. 2018.

[43] Torlak, Emina, and Satish Chandra.
"Effective interprocedural resource leak
detection." Proceedings of the 32nd
ACM/IEEE International Conference on
Software Engineering-Volume 1. 2010.

[44] H. Huang, L. Wei, Y. Liu, and S.-C.
Cheung, “Understanding and detecting
callback compatibility issues for Android
applications,” Proc. 33rd ACM/IEEE Int.
Conf. Autom. Softw. Eng. - ASE 2018, pp.
532–542, 2018.

[45] Borges, Nataniel P., Jenny Hotzkow, and
Andreas Zeller. "DroidMate-2: a platform
for Android test generation." 2018 33rd
IEEE/ACM International Conference on
Automated Software Engineering (ASE).
IEEE, 2018.

[46] Meng, Guozhu, et al. "Androvault:
Constructing knowledge graph from
millions of android apps for automated
computing." arXiv preprint arXiv:
1711.07451 (2017).

[47] M. Arnold, M. Vechev, and E. Yahav,
“Qvm,” ACM Trans. Softw. Eng.
Methodol., vol. 21, no. 1, pp. 1–35, 2011.

[48] A. Mukherjee and T. Chantem, “Energy
management of applications with varying
resource usage on smartphones,” IEEE
Trans. Comput. Des. Integr. Circuits Syst.,
vol. 37, no. 11, pp. 2416–2427, 2018.

[49] L. L. Zhang, C. J. M. Liang, Y. Liu, and E.
Chen, “Systematically testing background
services of mobile apps,” ASE 2017 - Proc.
32nd IEEE/ACM Int. Conf. Autom. Softw.
Eng., pp. 4–15, 2017.

[50] Jabbarvand, Reyhaneh, Jun-Wei Lin, and
Sam Malek. "Search-based energy testing
of Android." 2019 IEEE/ACM 41st
International Conference on Software
Engineering (ICSE). IEEE, 2019.

[51] A. Gupta, T. Zimmermann, C. Bird, N.
Nagappan, T. Bhat, and S. Emran, “Mining
energy traces to aid in software
development,” Proc. 8th ACM/IEEE Int.
Symp. Empir. Softw. Eng. Meas. - ESEM
’14, pp. 1–8, 2014.

[52] Cruz, Luis, and Rui Abreu. "Catalog of

energy patterns for mobile
applications." Empirical Software
Engineering 24.4 (2019): 2209-2235.

[53] S. Hao, D. Li, W. G. J. Halfond, and R.
Govindan, “Estimating mobile application
energy consumption using program
analysis,” Proc. - Int. Conf. Softw. Eng., pp.
92–101, 2013.

[54] A. Pathak, Y. C. Hu, and M. Zhang,
“Where is the energy spent inside my app?:
fine grained energy accounting on
smartphones with eprof,” Proc. 7th ACM
Eur. Conf. Comput. Syst., pp. 29–42, 2012.

[55] Zhang, Lide, et al. "Accurate online power
estimation and automatic battery behavior
based power model generation for
smartphones." Proceedings of the eighth
IEEE/ACM/IFIP international conference
on Hardware/software codesign and system
synthesis. 2010.

[56] Mittal, Radhika, Aman Kansal, and
Ranveer Chandra. "Empowering developers
to estimate app energy
consumption." Proceedings of the 18th
annual international conference on Mobile
computing and networking. 2012.

[57] Liu, Yepang, et al. "DroidLeaks: a
comprehensive database of resource leaks
in Android apps." Empirical Software
Engineering 24.6 (2019): 3435-3483.

[58] Wu, Haowei, Yan Wang, and Atanas
Rountev. "Sentinel: Generating GUI tests
for Android sensor leaks." 2018 IEEE/ACM
13th International Workshop on
Automation of Software Test (AST). IEEE,
2018.

[59] Liu, Yepang, et al. "Understanding and
detecting wake lock misuses for android
applications." Proceedings of the 2016 24th
ACM SIGSOFT International Symposium
on Foundations of Software Engineering.
2016.

[60] R. Morales, R. Saborido, F. Khomh, F.
Chicano, and G. Antoniol, “EARMO: An
energy-aware refactoring approach for
mobile apps,” IEEE Trans. Softw. Eng., vol.
44, no. 12, pp. 1176–1206, 2018.

