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ABSTRACT 
 

In recent years there is a growing challenge in processing large amounts of data as the size of the data gets 
exponentially increasing. Mapreduce became an advanced tool to tackle these problems with processing of 
large arrays of data. As a result, many current Mapreduce frameworks such as Apache Hadoop, Apache 
Spark rely on Mapreduce as a backbone technology to solve their large-scale problems. Though, such 
approaches have their benefits, performance wise they cannot always guarantee a linear speed-up and hence 
a new parallel methods and frameworks needs a thorough study in order to understand scalability and 
performance benefits in these cases. In this work we present Kmeans parallel (||) clustering algorithm 
implemented in a partitioned address space Mapreduce system. This work includes a comparison and 
performance analysis of the presented implementation. In the paper we propose a novel approach that was 
not considered in literature before. In particular, it was found that our Mapreduce implementation of 
Kmeans parallel algorithm achieves a strongly linear speed-up that makes this approach an excellent 
candidate to solve high-dimensional and large-scale clustering problems.  
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1. INTRODUCTION  
 
In the recent years, we are witnessing a tremendous 
increase in the volume of the data, generated from 
various heterogeneous sources of information. In 
the current age, the field of data processing needs to 
tackle the problem of dealing with ever larger 
datasets. The issue lies in the very limited power of 
a single desktop machine to handle the vast amount 
of data due to limitation of disk space, memory 
capacity and CPU processing power. As a solution, 
a variety of approaches have been proposed to split 
the work into manageable pieces and hence make 
large tasks feasible to be solved. In that way, we 
can make each sub-task to be processed 
independently from another across a large number 
of processing units such as threads or even separate 
cluster machines. Among these approaches, we can 
put an emphasis on several most popular and 
efficient tools that have been widely used in 
different domains.  
Mapreduce is a popular parallel programming 
model for processing and generating large datasets 
[1]. It has been adopted for solving a variety of 
large-scale problems, such as genomic data 

processing [2-3], large-scale graph analysis [4], 
natural language processing [5], clustering [6]. The 
popularity of Mapreduce is explained by a simple 
computational model, that encapsulates details of 
the parallelization and offers fault-tolerance. Many 
frameworks that rely on the Mapreduce model have 
been introduced. The most prominent frameworks 
such as Apache Hadoop [7], Apache Spark [8] 
widely used today by many leading companies to 
store and process large volumes of information.                    
Clustering can be seen as a non-supervised learning 
approach to find similarity groups inside a dataset. 
There exist 4 different categories of algorithms for 
solving a clustering problem: connectivity, 
centroid, distribution and density based approaches. 
Centroid-based clustering works by smoothly 
moving cluster centers from some initial position to 
a position where closeness of points within a single 
cluster is minimized. Formally, the centroid-based 
clustering problem can be defined as minimization 
problem (see Eq. 1), where the goal lies in finding a 
particular assignment of points to cluster centers 
such that the given assignment minimizes within-
cluster squared differences among points.  
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         (1) 

Centroid-based clustering is particularly suitable for 
parallel implementation due to the inherently 
independent update procedure of cluster centers in 
each phase of the algorithm. Therefore, each cluster 
can be assigned a single process or a thread that 
will independently perform a commonly defined 
function of re-clustering of data points at each 
iteration step.  
In terms of the Mapreduce model, the problem can 
be decomposed into two or more stages [1].  In the 
first map stage data is divided into several chunks 
and distributed among participating threads. The 
result of the map phase is represented by a set of 
key-value pairs, where each key corresponds to 
some aggregate feature that can be extracted from 
the given input and the value denotes associated 
with that key property. For instance, in the word 
count problem the paragraph of the text can be 
decomposed into single word tokens, where each 
unique token is a key. In turn, each word token 
receives an assigned value of how many times that 
word occurred in that particular paragraph of text. 
Secondly, the reduce stage is used to perform a 
group or aggregate operation for each key 
separately. In order to obtain an assignment 
between distributed parallel threads and keys, it is 
necessary to perform an intermediate shuffle 
procedure. Operations of moving and copying the 
key-value pairs from a memory of one thread to the 
memory of another thread, comes with a set of 
problems for the runtime environment. For 
instance, in the shuffle phase, it is required to do a 
lot of movement operations, which incur a lot of 

network traffic or thread-to-thread memory 
operations. To overcome that some research work 
points to developing optimization routines that can 
efficiently distribute the workload among the 
threads and improve traffic issues. 
Mapreduce consists of three main stages: 
1. map stage.  
2. sort and shuffle. 
3. reduce stage.   
The problem of handling large datasets using 
distributed memory or shared memory approaches 
lies in limitations naturally inherent in message 
passing models and shared memory parallel 
programming models. 
Sending and receiving large messages results in 
huge network latency and underutilized CPU clock 
cycles. Essentially, these approaches are limited to 
either using a high-performance distributed file 
system or developing other workarounds that could 
potentially address the aforementioned scalability 
issues. Distributed file systems alone do not 
provide a local solution and tend to degrade 
performance when performing large-scale data 
processing tasks. 
The local processing property is a very important 
part of Mapreduce's performance compared to other 
parallel programming models in parallel and 
intensive applications. The shared memory model is 
even more robust against large-scale data 
processing tasks. The reason is that, by default, 
such a system is very expensive to build and 
maintain. In addition, the shared memory model has 
poor scalability due to the relatively low bandwidth 
of the shared bus interconnect relative to the 

 
 

Figure 1: The scheme of the PGAS Mapreduce architecture 
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number of memory cells. the shuffle phase, it is 
required to do a lot of movement operations, which 
incur a lot of network traffic or thread-to-thread 
memory operations. To overcome that some 
research work points to developing optimization 
routines that can efficiently distribute the workload 
among the threads and improve traffic issues. In our 
work we propose a solution to kmeans clustering 
problem based on Mapreduce parallel programming 
model. The implementation was specified for a 
clustering task on an open source dataset that 
consists of many-dimensional points. The results 
was evaluated based on scalability metrics, in 
which we run the proposed clustering approach for 
different number of threads and clustering points.   
 
A. Partitioned global address space model 
PGAS is one kind of parallel programming 
paradigm, in which the address space is divided 
into two types: shared and private. Compared to 
other parallel programming paradigms PGAS 
combines features of both distributed and shared 
memory models, i.e. every thread can access both 
objects located in local address space and remote 
data in a transparent way using the same functions, 
provided by the particular implementation of the 
model. In the partitioned global address space 
model as illustrated in Figure 2, the global memory 
section contains distributed objects. These objects 
can be accessed by all running threads either 
directly or using special bulk copy operations. 
Since the PGAS model has a clear view of 
memory-address space, it is always easy to verify 
which thread is owning a particular memory 
location. In that way, objects can be placed 

following a certain pattern, in which they are 
distributed across threads such that objects logically 
having the same thread assignment are processed  
together. This situation illustrates the main benefits 
of relying on PGAS-based approach, since 
approaches based on shared memory lack that 
affinity property and hence treat all objects as 
addressed in the same memory space without a 
clear pattern of how to distinguish the ownership of 
each object in the shared memory. 
UPC is a parallel programming language that 
operates in SPMD (single process, multiple data) 
mode. UPC follows the PGAS (Shared Global 
Address Space) programming model. The first 
version of the UPC was released in 1999. The 
specified number of threads operate independently, 
and each of them has private and shared memory 
areas [23]. A private area of memory is allocated 
for variables that are local to the executing thread. 
Shared memory (Figure 2) has an additional affinity 
property. The affinity is defined as a property of a 
shared memory location that resides in the local 
memory of the executing thread. Therefore, if a 
thread tries to access an area of memory outside of 
the thread's allocated shared memory, the access 
scheme will be different from the access scheme for 
local memory. This difference in access schemes 
allows you to control the placement of data in a 
distributed environment and improve data 
placement for the specific needs of the algorithm.  
Shared qualifier in UPC is used for specifying 
variable`s memory allocation scheme of shared. 
Shared variables can be manipulated in a similar 
fashion to ordinary variables. 
For number of threads THREADS pre-defined 

 
Figure 2: Memory model in PGAS 
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constant is used. The value of THREADS variable 
is the same among all threads. 
Unique thread index is contained in MYTHREAD 
pre-defined constant. 
Pointers to shared in UPC have the same purpose as 
usual pointers in C language. The difference is that 
pointers to shared are specifically designed to work 
on shared memory.  
 

B. Mapreduce system 
In this work we present a parallel centroid-based 
clustering algorithm using a Mapreduce system 
developed based on a partitioned global address 
space memory model. The given Mapreduce system 
[2] was designed to support arbitrary data types of 
keys and values. Hashmap  data structure was used 
to allow a number of operations that are essential in 
Mapreduce (see Figure 5). First, hashmaps supports 
fast lookup/read/write operations for the keys, i.e. 
operations on hashmap are performed in asymptotic 
complexity of O(1). In our approach, the 
intermediate key/value pairs are stored in an affine 
hashmap located in a shared portion of thread`s 
memory (see Fig. 6). Reduce threads are assigned 
key-value pairs after shuffle collectively gathers 
and groups keys across hashmap structures.   
The operations on a shared hashmap can be 
performed transparently by any thread, however, 
only a single, so called  affine thread, is assigned to 
store in its local memory underlying key-value 
pairs associated with the data partition assigned to 
that thread. The cost of local operation by orders of 
magnitude faster than remote accesses, therefore, it 
is important to consider optimal thread-to-data 
mappings. In PGAS – Mapreduce system we 
proposed a scheduling approach that assigns 
threads to data according to an optimality criterion 
that consists of workload and network latency. The 
given optimization problem is solved by means of a 
genetic algorithm that tries to iteratively improve 

the scheduling till the process converges to a 

particular solution.  
  

Figure 3: Sample code for the map function in PGAS 
Mapreduce system 

 

 
Figure 4: Sample code for the reduce function in PGAS 

Mapreduce system for Wordcount problem 
 
In the PGAS Mapreduce system map and reduce 
function should be priorly implemented and 
provided as a function pointers to the input of 
init_mapreduce function, that will launch the 
parallel processing routines, leading to the 
execution of the specified Mapreduce task. In 
Figures 3 and 4 we provide an example of a map 
and reduce functions that implement the wordcount 
Mapreduce task. This is a standard task that 
computes a frequency of each word in a document 
corpus. To handle the task using Mapreduce we  

hash[0] hash[1] hash[2] hash[3] 

THREAD 0 THREAD 1 THREAD 2 THREAD 3 
 

Figure 5: Shared array representation of hashmap 



Journal of Theoretical and Applied Information Technology 
30th November 2020. Vol.98. No 22 

  © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
3611 

 

propose to use map task that tokenizes and emits 
key/value pairs of ‘keyword/1’ that are grouped and 
sended for execution to reduce threads that finally 
computes frequency values by taking the 
‘keyword/1’ pairs corresponding to the same 
keyword and adding up all the entries received 
from the all map threads.         
In article [24] the authors describe the Mapreduce 
framework implemented in the UPC language. The 
approach described in this article uses collective 
functions to exchange data in an arbitrary phase. 
The mapping and pruning functions in this 
approach work with the local storage of each node, 
and for this reason, the authors were forced to 
change the implementation of the collective UPC 
functions to work with the local memory space of 
each thread. In our implementation for the 
exchange of keys and values, we used a different 
approach based on the common hashmap data 
structure. Hashmap instances are in a common 
address space, and each instance resembles a single 
thread. Accordingly, every thread has access to a 
hashmap instance of every other thread. 
In another paper [25], the authors presented a 
similar approach in which they used the X-10 
library implementation of the hashmap data library 
to store intermediate key / value pairs locally in 
each stream, and then concatenated all values into a 
single stream. The X-10-enabled Mapreduce merge 
does not scale well because all data is moved to one 
location, and therefore has inherent limitations in 
the processing and storage capabilities of a single 
node. 
In our approach, we store one instance of a shared 
hashmap per thread, so that each thread operates on 
the local part of its shared hashmap, and other 
threads can perform remote operations on that 
thread-local instance of the shared hashmap when 
needed. Therefore, the processing is not limited to 
the resources of a single node and requires efficient 
communication only after the completion of the 

map phase. In addition, in this way we can control 
the locality of operations for each hashmap instance 
and, as a result, later optimize the distribution of 
keys between threads to reduce the stage. Shared 
hashmap allows you to efficiently retrieve and write 
key / value pairs on average O (1) time complexity. 
Therefore, based on the features of the hashmap 
data structure, we tried to reduce the overhead 
associated with finding and extracting keys [25]. 
 
2. PROBLEM STATEMENT 
 
A. Kmeans in Mapreduce 

In standard Mapreduce-based clustering algorithms, 
the clustering process is divided into 2 parts: map 
and reduce. It is based on dividing the workload in 
which map processes are responsible for assigning 
data points to specific cluster centers [2]. The 
assignment is formed by making points that are 
closer to a corresponding cluster center. Data points 
that were assigned to the same cluster center are 
grouped together in a shuffle phase. Reduce phase 
is responsible for modifying cluster centers 
according to a mean sum of all data points in a 
cluster. The mean is computed according to 
Equation 2. 
 

             (2) 
 
There are many other variants of the K-means 
algorithm, implemented using the Mapreduce 
approach [13-21]. In these approaches there are 
attempts to improve running time and performance 
by additional procedures such as elimination of 
outliers,  better initialization of initial cluster 
centers.  
 

 
Figure 6: PGAS Mapreduce system: map processes, created in each thread write results to a shared hashmap   
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Figure 7: Map for Mapreduce centroid-based Kmeans 

clustering 
 

 
        

Figure 8: Reduce for Mapreduce centroid-based Kmeans 
clustering 

In Figures 7 and 8 algorithms for map and reduce 
functions in PGAS-based Mapreduce system.    
Some works present design and implementation of  
Mapreduce systems that adopt partitioned global 
address space model. In their works authors 
specified strengths and weaknesses of their 
proposed systems [3, 4]. In our work, however,  we 
present an implementation based on the Mapreduce 
system developed previously in one of our 
preceding works, that was mostly convenient for us 
to work with and more appropriate to follow based 
on previously obtained results [1, 5]. 
In our work we devised a Mapreduce solution to 
implement a kmeans-parallel algorithm on a PGAS-
based Mapreduce framework. 
Novel parallel algorithms and approaches need a 
thorough study in order to understand scalability 
and performance benefits in using these new 
parallel algorithms and frameworks. Apache 
Hadoop, for example, have limitations in terms of 
poor performance in solving iterative tasks and 
Apache Spark, although provides a framework for 
efficient in-memory iterative data processing, still 
do not resolve the problem of locality that PGAS 
Mapreduce approach naturally could address. 
PGAS Mapreduce framework relies on efficient 
tools to handle basic Mapreduce operations like 
map, shuffle and reduce. From a user standpoint, it 
is only required to implement map and reduce 
functions, the other workload is performed 
automatically by the system that handles all 
operations to perform parallel Mapreduce execution 
pipeline. 

The map and reduce functions mostly describe the 
algorithmic aspect of the work, the rest, including 
steps to perform complex operations of key 
exchange or creating optimized data distribution 
plans are handled by the Mapreduce system in the 
background. 
Map processes send key/value pairs for further 
processing using an Emit function that saves pairs 
into a local part of a shared hashmap structure. 
After map processes finish their execution a shuffle 
procedure collectively merges all the generated 
keys for distributing key/value pairs to their 
scheduled threads for the reduce task execution. 
Reduce processes fetch the data from a shared 
hashmap according to the collective exchange 
algorithm described above. 
 In the worst case k-means algorithm could lead to 
an exponential time complexity. Nevertheless, in 
practice the algorithm shows good results in terms 
of quality and speed. However, the main limitations 
of kmeans algorithms lie in slow convergence, local 
optimum problem, in which the algorithm tends to 
converge to a local minima, therefore, making the 
algorithm sometimes impractical to use due to long 
fine-tuning procedures of an appropriate 
randomized sample of initial points.   
Due to these issues, researchers tried to find a good 
initialization routine that could provide some 
guarantees to the estimated optimal clustering 
solution. In the kmeans-parallel algorithm [13] it 
was shown that efficient clustering algorithm k 
means-parallel avoids the inherently sequential 
nature of kmeans++ algorithm, described in [14].  
In their work authors derive a theoretical bounds on 
the cost of optimal solution compared to the 
solutions, obtained using kmeans-parallel 
algorithm. Their results prove a constant factor 
approximation to the optimal solution, and hence 
provides a decent solution to the problem of 
locality of the naive kmeans approach. On a series 
of experiments on the commonly used benchmarks, 
authors were able to demonstrate the practical 
benefits of the algorithm compared to the 
kmeans++ and naive kmeans.    
Their work reduces the number of passes required 
to get a nearly optimal clustering result from k to 
log (k), effectively making the algorithm an 
excellent candidate to handle high-dimensional 
feature space of clustering objects. Surprisingly, in 
practice authors showed that as many as five 
iterations of an algorithm is enough to converge to 
an optimal set of clusters. The general idea of the 
algorithm is to oversample at each step a number of 
clustering centers.  As shown in Figure 4, the 
algorithm starts by finding an initial cluster center 
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C. Following step involves computing an initial 
cost of clustering with only a single cluster center 
chosen. Obviously, the initial solution will make a 
huge error in clustering cost. The next phase of the 
algorithm samples l new clustering centers each 
step from the specific distribution that weights the 
points located nearby to some of the clusters lower 
compared to points located further from the 
clusters. The distance between a point and 
clustering center is taken as minimum of the norm 
over differences between the point x and a point 
taken from the set C of current clustering center 
choices. While the cost is taken as a squared sum of 
distances between a subset of points Y and current 
set of clusters C. In a parallel implementation of the 
k-means-parallel algorithm subsets can designate a 
portion of points taken from the dataset by means 
of some data decomposition routine.  Final step of 
the clustering involves a weighted reclustering 
routine that does one more kmeans run over the 
cluster centers obtained during the main loop of the 
algorithm. This step accounts for oversampling of 
cluster centers when the number of clusters exceeds 
the number of clusters that is required to obtain K. 
In that algorithm compared to kmeans++, there is 
an additional factor of l in the numerator of the 
probability computation in the sampling routine, 
due to necessity to account for oversampling during 
the sampling process.    
The next step of the algorithm involves an iterative 
procedure, in which we incrementally, at each 
iteration, obtain a new set of cluster centers, which 
consists of l new sampled points over the 
distribution that we employed. The distribution is 
computed according to the specified approach 
presented in Equations 3-4. Inside the iterative part 
we perform two different mapreduce task 
executions. The first task is designed to update the 
distribution function, the second to sample new 
points. The distribution function is designed to 
construct an array of weights with the size equal to 
the number of points that was assigned to the 
current map task. The index of the point that should 
be chosen according to that distribution is 
computed by taking the randomly generated 
number R from uniform distribution in range [0, 1], 
and searching through the array to find a place in 
which the normalized cumulative sum up to that 
index exceeds the randomly generated number R.    

In the first map stage, we need to fetch the points 
for each map thread and then update the locally 
cached table of probabilities. 
     
 

                    (3) 
 

                 (4) 
 

 

Figure 9: K-means++ algorithm. 

 

Figure 10: K-means parallel algorithm. 

 
3. RESULTS 
A. Kmeans in Mapreduce 

In the K-means parallel algorithm a set of k 
clustering points are chosen, where each point 
sampled according to a probability distribution , in 
which the cluster centers are sampled with the 
probability proportional to a distance between a 
point and an already chosen set of clusters C. 
In our study the algorithm was divided into several 
mapreduce jobs. In the first step of computing the 
initial cluster center, it is required to evaluate the 
cost function over the whole dataset, in which we 
choose one randomly chosen cluster point c. For the 
task of computing the cost value costX(C) the map 
task is formed, which runs over the local part of the 
dataset that belongs to executing map thread. The 
output of that function is fetched and distributed 
across reduce threads that sum the local values of 
the cost function, obtained over points belonging to 
each thread. Hence, we obtain the cost over the 
whole set of points (see Figure 11). 
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Figure 11: The scheme of Mapreduce algorithm

B. Experimental results 
Experimental hardware used in testing our 
proposed solution was a virtual machine, hosted on 
a DigitalOcean cloud infrastructure. The given 
machine consisted of 32 cores, 64GB memory and 
400GB SSD drive. As a software we used the 
Berkeley UPC runtime and compiler, version 
2020.4.0. All the included libraries that were used 
in our implementation were written using UPC 
Berkeley runtime and compiler.   

In order to test our proposed implementation, we 
used a synthetic dataset from [22], which consists 
of 105000 64-dimensional vector entries. Points 
from the dataset priorly represent 25 clusters and 
our task was to use our Kmeans parallel 
implementation to see the speed-up depending on 
the number of threads. 
Our approach was to test the algorithm with two 
different experiments: 
1) Fixed number of oversampling factor l 
2) Fixed number of iterations 

 

Figure 12: Scalability of the Kmeans Mapreduce algorithm with fixed value of oversampling factor l 
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Figure 13: Scalability of the K-means Mapreduce algorithm with fixed number of iterations

As can be seen in Figure 12 our approach allows us 
to achieve a linear speed-up in terms of running 
time in case of the fixed oversampling factor l 
experiment. The experiment with fixed 
oversampling factor implies that by fixing the total 
number of points  M that are required to be chosen 
as cluster centers, we derive the value of the fixed 
oversampling factor l to be equal to the total 
number of points M  divided by the product of 
number of threads T and oversampling factor l. 

                     (5) 

Similarly, when we state that the number of 
iterations is fixed, we have to change the formula 
for number of fixed iterations I to be equal to the 
ratio of number of points M over the product of 
number of threads T and the value of oversampling 
factor l.   

                      (6) 

In the linear case of a single thread, we used just a 
standard K-means++ approach, which linearly 
chooses each cluster center, giving no options to do 
parallel job assignments. Similarly, fixing the 
number of iterations provides a linear speed-up, 
which can be seen in Figure 13. As we can see our 
solution provides an almost theoretically best 
speed-up that is possible to achieve. 

Table 1: running time for the kmeans parallel with fixed value of 
l 

# threads value of l # iterations time (sec) 

1 3 64 394.50 

2 3 32 99.00 

4 3 16 25.08 

8 3 8 6.36 

16 3 4 1.58 

32 3 2 0.64 

 

Table 2:  running time for the kmeans parallel with fixed value 
of iterations 

# threads value of l # iterations time (sec) 

1 64 10 197.96 

2 32 10 197.03 

4 16 10 50.36 

8 8 10 25.25 

16 4 10 12.82 

32 2 10 10.39 
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4. CONCLUSION 

In our work we presented a partitioned global 
address space based Mapreduce implementation of 
Kmeans parallel algorithm. Performance wise many 
Mapreduce systems cannot guarantee a linear 
speed-up and hence a new parallel methods and 
frameworks needs a thorough study in order to 
understand scalability and performance benefits in 
using new parallel algorithms and frameworks. 
Apache Hadoop, for example, have limitations in 
terms of poor performance in solving iterative tasks 
and Apache Spark, although provides a framework 
for efficient in-memory iterative data processing, 
still do not resolve the problem of locality that 
PGAS Mapreduce approach naturally could 
address. It was shown that our parallel 
implementation provides a strongly linear speedup. 
Thus, by increasing number of threads the amount 
of input that algorithm could process roughly 
doubles in size, therefore making our solution 
suitable for solving clustering problems in high-
dimensional and large-scale datasets.  
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