
Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3607

PARTITIONED GLOBAL ADDRESS SPACE APPROACH FOR

THE MAPREDUCE IMPLEMENTATION OF THE PARALLEL

KMEANS ALGORITHM

1MANSUROVA MADINA, 2SHOMANOV ADAY
1Al-Farabi Kazakh National University, Department of Computer Science, Kazakhstan

2Nazarbayev University, Department of Computer Science, Kazakhtan

E-mail: 1madina.mansurova@gmail.com, 2adai.shomanov@nu.edu.kz

ABSTRACT

In recent years there is a growing challenge in processing large amounts of data as the size of the data gets
exponentially increasing. Mapreduce became an advanced tool to tackle these problems with processing of
large arrays of data. As a result, many current Mapreduce frameworks such as Apache Hadoop, Apache
Spark rely on Mapreduce as a backbone technology to solve their large-scale problems. Though, such
approaches have their benefits, performance wise they cannot always guarantee a linear speed-up and hence
a new parallel methods and frameworks needs a thorough study in order to understand scalability and
performance benefits in these cases. In this work we present Kmeans parallel (||) clustering algorithm
implemented in a partitioned address space Mapreduce system. This work includes a comparison and
performance analysis of the presented implementation. In the paper we propose a novel approach that was
not considered in literature before. In particular, it was found that our Mapreduce implementation of
Kmeans parallel algorithm achieves a strongly linear speed-up that makes this approach an excellent
candidate to solve high-dimensional and large-scale clustering problems.

Keywords: Mapreduce, PGAS, UPC, K-Means, Clustering

1. INTRODUCTION

In the recent years, we are witnessing a tremendous
increase in the volume of the data, generated from
various heterogeneous sources of information. In
the current age, the field of data processing needs to
tackle the problem of dealing with ever larger
datasets. The issue lies in the very limited power of
a single desktop machine to handle the vast amount
of data due to limitation of disk space, memory
capacity and CPU processing power. As a solution,
a variety of approaches have been proposed to split
the work into manageable pieces and hence make
large tasks feasible to be solved. In that way, we
can make each sub-task to be processed
independently from another across a large number
of processing units such as threads or even separate
cluster machines. Among these approaches, we can
put an emphasis on several most popular and
efficient tools that have been widely used in
different domains.
Mapreduce is a popular parallel programming
model for processing and generating large datasets
[1]. It has been adopted for solving a variety of
large-scale problems, such as genomic data

processing [2-3], large-scale graph analysis [4],
natural language processing [5], clustering [6]. The
popularity of Mapreduce is explained by a simple
computational model, that encapsulates details of
the parallelization and offers fault-tolerance. Many
frameworks that rely on the Mapreduce model have
been introduced. The most prominent frameworks
such as Apache Hadoop [7], Apache Spark [8]
widely used today by many leading companies to
store and process large volumes of information.
Clustering can be seen as a non-supervised learning
approach to find similarity groups inside a dataset.
There exist 4 different categories of algorithms for
solving a clustering problem: connectivity,
centroid, distribution and density based approaches.
Centroid-based clustering works by smoothly
moving cluster centers from some initial position to
a position where closeness of points within a single
cluster is minimized. Formally, the centroid-based
clustering problem can be defined as minimization
problem (see Eq. 1), where the goal lies in finding a
particular assignment of points to cluster centers
such that the given assignment minimizes within-
cluster squared differences among points.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3608

 (1)

Centroid-based clustering is particularly suitable for
parallel implementation due to the inherently
independent update procedure of cluster centers in
each phase of the algorithm. Therefore, each cluster
can be assigned a single process or a thread that
will independently perform a commonly defined
function of re-clustering of data points at each
iteration step.
In terms of the Mapreduce model, the problem can
be decomposed into two or more stages [1]. In the
first map stage data is divided into several chunks
and distributed among participating threads. The
result of the map phase is represented by a set of
key-value pairs, where each key corresponds to
some aggregate feature that can be extracted from
the given input and the value denotes associated
with that key property. For instance, in the word
count problem the paragraph of the text can be
decomposed into single word tokens, where each
unique token is a key. In turn, each word token
receives an assigned value of how many times that
word occurred in that particular paragraph of text.
Secondly, the reduce stage is used to perform a
group or aggregate operation for each key
separately. In order to obtain an assignment
between distributed parallel threads and keys, it is
necessary to perform an intermediate shuffle
procedure. Operations of moving and copying the
key-value pairs from a memory of one thread to the
memory of another thread, comes with a set of
problems for the runtime environment. For
instance, in the shuffle phase, it is required to do a
lot of movement operations, which incur a lot of

network traffic or thread-to-thread memory
operations. To overcome that some research work
points to developing optimization routines that can
efficiently distribute the workload among the
threads and improve traffic issues.
Mapreduce consists of three main stages:
1. map stage.
2. sort and shuffle.
3. reduce stage.
The problem of handling large datasets using
distributed memory or shared memory approaches
lies in limitations naturally inherent in message
passing models and shared memory parallel
programming models.
Sending and receiving large messages results in
huge network latency and underutilized CPU clock
cycles. Essentially, these approaches are limited to
either using a high-performance distributed file
system or developing other workarounds that could
potentially address the aforementioned scalability
issues. Distributed file systems alone do not
provide a local solution and tend to degrade
performance when performing large-scale data
processing tasks.
The local processing property is a very important
part of Mapreduce's performance compared to other
parallel programming models in parallel and
intensive applications. The shared memory model is
even more robust against large-scale data
processing tasks. The reason is that, by default,
such a system is very expensive to build and
maintain. In addition, the shared memory model has
poor scalability due to the relatively low bandwidth
of the shared bus interconnect relative to the

Figure 1: The scheme of the PGAS Mapreduce architecture

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3609

number of memory cells. the shuffle phase, it is
required to do a lot of movement operations, which
incur a lot of network traffic or thread-to-thread
memory operations. To overcome that some
research work points to developing optimization
routines that can efficiently distribute the workload
among the threads and improve traffic issues. In our
work we propose a solution to kmeans clustering
problem based on Mapreduce parallel programming
model. The implementation was specified for a
clustering task on an open source dataset that
consists of many-dimensional points. The results
was evaluated based on scalability metrics, in
which we run the proposed clustering approach for
different number of threads and clustering points.

A. Partitioned global address space model
PGAS is one kind of parallel programming
paradigm, in which the address space is divided
into two types: shared and private. Compared to
other parallel programming paradigms PGAS
combines features of both distributed and shared
memory models, i.e. every thread can access both
objects located in local address space and remote
data in a transparent way using the same functions,
provided by the particular implementation of the
model. In the partitioned global address space
model as illustrated in Figure 2, the global memory
section contains distributed objects. These objects
can be accessed by all running threads either
directly or using special bulk copy operations.
Since the PGAS model has a clear view of
memory-address space, it is always easy to verify
which thread is owning a particular memory
location. In that way, objects can be placed

following a certain pattern, in which they are
distributed across threads such that objects logically
having the same thread assignment are processed
together. This situation illustrates the main benefits
of relying on PGAS-based approach, since
approaches based on shared memory lack that
affinity property and hence treat all objects as
addressed in the same memory space without a
clear pattern of how to distinguish the ownership of
each object in the shared memory.
UPC is a parallel programming language that
operates in SPMD (single process, multiple data)
mode. UPC follows the PGAS (Shared Global
Address Space) programming model. The first
version of the UPC was released in 1999. The
specified number of threads operate independently,
and each of them has private and shared memory
areas [23]. A private area of memory is allocated
for variables that are local to the executing thread.
Shared memory (Figure 2) has an additional affinity
property. The affinity is defined as a property of a
shared memory location that resides in the local
memory of the executing thread. Therefore, if a
thread tries to access an area of memory outside of
the thread's allocated shared memory, the access
scheme will be different from the access scheme for
local memory. This difference in access schemes
allows you to control the placement of data in a
distributed environment and improve data
placement for the specific needs of the algorithm.
Shared qualifier in UPC is used for specifying
variable`s memory allocation scheme of shared.
Shared variables can be manipulated in a similar
fashion to ordinary variables.
For number of threads THREADS pre-defined

Figure 2: Memory model in PGAS

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3610

constant is used. The value of THREADS variable
is the same among all threads.
Unique thread index is contained in MYTHREAD
pre-defined constant.
Pointers to shared in UPC have the same purpose as
usual pointers in C language. The difference is that
pointers to shared are specifically designed to work
on shared memory.

B. Mapreduce system
In this work we present a parallel centroid-based
clustering algorithm using a Mapreduce system
developed based on a partitioned global address
space memory model. The given Mapreduce system
[2] was designed to support arbitrary data types of
keys and values. Hashmap data structure was used
to allow a number of operations that are essential in
Mapreduce (see Figure 5). First, hashmaps supports
fast lookup/read/write operations for the keys, i.e.
operations on hashmap are performed in asymptotic
complexity of O(1). In our approach, the
intermediate key/value pairs are stored in an affine
hashmap located in a shared portion of thread`s
memory (see Fig. 6). Reduce threads are assigned
key-value pairs after shuffle collectively gathers
and groups keys across hashmap structures.
The operations on a shared hashmap can be
performed transparently by any thread, however,
only a single, so called affine thread, is assigned to
store in its local memory underlying key-value
pairs associated with the data partition assigned to
that thread. The cost of local operation by orders of
magnitude faster than remote accesses, therefore, it
is important to consider optimal thread-to-data
mappings. In PGAS – Mapreduce system we
proposed a scheduling approach that assigns
threads to data according to an optimality criterion
that consists of workload and network latency. The
given optimization problem is solved by means of a
genetic algorithm that tries to iteratively improve

the scheduling till the process converges to a

particular solution.

Figure 3: Sample code for the map function in PGAS
Mapreduce system

Figure 4: Sample code for the reduce function in PGAS

Mapreduce system for Wordcount problem

In the PGAS Mapreduce system map and reduce
function should be priorly implemented and
provided as a function pointers to the input of
init_mapreduce function, that will launch the
parallel processing routines, leading to the
execution of the specified Mapreduce task. In
Figures 3 and 4 we provide an example of a map
and reduce functions that implement the wordcount
Mapreduce task. This is a standard task that
computes a frequency of each word in a document
corpus. To handle the task using Mapreduce we

hash[0] hash[1] hash[2] hash[3]

THREAD 0 THREAD 1 THREAD 2 THREAD 3

Figure 5: Shared array representation of hashmap

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3611

propose to use map task that tokenizes and emits
key/value pairs of ‘keyword/1’ that are grouped and
sended for execution to reduce threads that finally
computes frequency values by taking the
‘keyword/1’ pairs corresponding to the same
keyword and adding up all the entries received
from the all map threads.
In article [24] the authors describe the Mapreduce
framework implemented in the UPC language. The
approach described in this article uses collective
functions to exchange data in an arbitrary phase.
The mapping and pruning functions in this
approach work with the local storage of each node,
and for this reason, the authors were forced to
change the implementation of the collective UPC
functions to work with the local memory space of
each thread. In our implementation for the
exchange of keys and values, we used a different
approach based on the common hashmap data
structure. Hashmap instances are in a common
address space, and each instance resembles a single
thread. Accordingly, every thread has access to a
hashmap instance of every other thread.
In another paper [25], the authors presented a
similar approach in which they used the X-10
library implementation of the hashmap data library
to store intermediate key / value pairs locally in
each stream, and then concatenated all values into a
single stream. The X-10-enabled Mapreduce merge
does not scale well because all data is moved to one
location, and therefore has inherent limitations in
the processing and storage capabilities of a single
node.
In our approach, we store one instance of a shared
hashmap per thread, so that each thread operates on
the local part of its shared hashmap, and other
threads can perform remote operations on that
thread-local instance of the shared hashmap when
needed. Therefore, the processing is not limited to
the resources of a single node and requires efficient
communication only after the completion of the

map phase. In addition, in this way we can control
the locality of operations for each hashmap instance
and, as a result, later optimize the distribution of
keys between threads to reduce the stage. Shared
hashmap allows you to efficiently retrieve and write
key / value pairs on average O (1) time complexity.
Therefore, based on the features of the hashmap
data structure, we tried to reduce the overhead
associated with finding and extracting keys [25].

2. PROBLEM STATEMENT

A. Kmeans in Mapreduce

In standard Mapreduce-based clustering algorithms,
the clustering process is divided into 2 parts: map
and reduce. It is based on dividing the workload in
which map processes are responsible for assigning
data points to specific cluster centers [2]. The
assignment is formed by making points that are
closer to a corresponding cluster center. Data points
that were assigned to the same cluster center are
grouped together in a shuffle phase. Reduce phase
is responsible for modifying cluster centers
according to a mean sum of all data points in a
cluster. The mean is computed according to
Equation 2.

 (2)

There are many other variants of the K-means
algorithm, implemented using the Mapreduce
approach [13-21]. In these approaches there are
attempts to improve running time and performance
by additional procedures such as elimination of
outliers, better initialization of initial cluster
centers.

Figure 6: PGAS Mapreduce system: map processes, created in each thread write results to a shared hashmap

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3612

Figure 7: Map for Mapreduce centroid-based Kmeans

clustering

Figure 8: Reduce for Mapreduce centroid-based Kmeans
clustering

In Figures 7 and 8 algorithms for map and reduce
functions in PGAS-based Mapreduce system.
Some works present design and implementation of
Mapreduce systems that adopt partitioned global
address space model. In their works authors
specified strengths and weaknesses of their
proposed systems [3, 4]. In our work, however, we
present an implementation based on the Mapreduce
system developed previously in one of our
preceding works, that was mostly convenient for us
to work with and more appropriate to follow based
on previously obtained results [1, 5].
In our work we devised a Mapreduce solution to
implement a kmeans-parallel algorithm on a PGAS-
based Mapreduce framework.
Novel parallel algorithms and approaches need a
thorough study in order to understand scalability
and performance benefits in using these new
parallel algorithms and frameworks. Apache
Hadoop, for example, have limitations in terms of
poor performance in solving iterative tasks and
Apache Spark, although provides a framework for
efficient in-memory iterative data processing, still
do not resolve the problem of locality that PGAS
Mapreduce approach naturally could address.
PGAS Mapreduce framework relies on efficient
tools to handle basic Mapreduce operations like
map, shuffle and reduce. From a user standpoint, it
is only required to implement map and reduce
functions, the other workload is performed
automatically by the system that handles all
operations to perform parallel Mapreduce execution
pipeline.

The map and reduce functions mostly describe the
algorithmic aspect of the work, the rest, including
steps to perform complex operations of key
exchange or creating optimized data distribution
plans are handled by the Mapreduce system in the
background.
Map processes send key/value pairs for further
processing using an Emit function that saves pairs
into a local part of a shared hashmap structure.
After map processes finish their execution a shuffle
procedure collectively merges all the generated
keys for distributing key/value pairs to their
scheduled threads for the reduce task execution.
Reduce processes fetch the data from a shared
hashmap according to the collective exchange
algorithm described above.
 In the worst case k-means algorithm could lead to
an exponential time complexity. Nevertheless, in
practice the algorithm shows good results in terms
of quality and speed. However, the main limitations
of kmeans algorithms lie in slow convergence, local
optimum problem, in which the algorithm tends to
converge to a local minima, therefore, making the
algorithm sometimes impractical to use due to long
fine-tuning procedures of an appropriate
randomized sample of initial points.
Due to these issues, researchers tried to find a good
initialization routine that could provide some
guarantees to the estimated optimal clustering
solution. In the kmeans-parallel algorithm [13] it
was shown that efficient clustering algorithm k
means-parallel avoids the inherently sequential
nature of kmeans++ algorithm, described in [14].
In their work authors derive a theoretical bounds on
the cost of optimal solution compared to the
solutions, obtained using kmeans-parallel
algorithm. Their results prove a constant factor
approximation to the optimal solution, and hence
provides a decent solution to the problem of
locality of the naive kmeans approach. On a series
of experiments on the commonly used benchmarks,
authors were able to demonstrate the practical
benefits of the algorithm compared to the
kmeans++ and naive kmeans.
Their work reduces the number of passes required
to get a nearly optimal clustering result from k to
log (k), effectively making the algorithm an
excellent candidate to handle high-dimensional
feature space of clustering objects. Surprisingly, in
practice authors showed that as many as five
iterations of an algorithm is enough to converge to
an optimal set of clusters. The general idea of the
algorithm is to oversample at each step a number of
clustering centers. As shown in Figure 4, the
algorithm starts by finding an initial cluster center

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3613

C. Following step involves computing an initial
cost of clustering with only a single cluster center
chosen. Obviously, the initial solution will make a
huge error in clustering cost. The next phase of the
algorithm samples l new clustering centers each
step from the specific distribution that weights the
points located nearby to some of the clusters lower
compared to points located further from the
clusters. The distance between a point and
clustering center is taken as minimum of the norm
over differences between the point x and a point
taken from the set C of current clustering center
choices. While the cost is taken as a squared sum of
distances between a subset of points Y and current
set of clusters C. In a parallel implementation of the
k-means-parallel algorithm subsets can designate a
portion of points taken from the dataset by means
of some data decomposition routine. Final step of
the clustering involves a weighted reclustering
routine that does one more kmeans run over the
cluster centers obtained during the main loop of the
algorithm. This step accounts for oversampling of
cluster centers when the number of clusters exceeds
the number of clusters that is required to obtain K.
In that algorithm compared to kmeans++, there is
an additional factor of l in the numerator of the
probability computation in the sampling routine,
due to necessity to account for oversampling during
the sampling process.
The next step of the algorithm involves an iterative
procedure, in which we incrementally, at each
iteration, obtain a new set of cluster centers, which
consists of l new sampled points over the
distribution that we employed. The distribution is
computed according to the specified approach
presented in Equations 3-4. Inside the iterative part
we perform two different mapreduce task
executions. The first task is designed to update the
distribution function, the second to sample new
points. The distribution function is designed to
construct an array of weights with the size equal to
the number of points that was assigned to the
current map task. The index of the point that should
be chosen according to that distribution is
computed by taking the randomly generated
number R from uniform distribution in range [0, 1],
and searching through the array to find a place in
which the normalized cumulative sum up to that
index exceeds the randomly generated number R.

In the first map stage, we need to fetch the points
for each map thread and then update the locally
cached table of probabilities.

 (3)

 (4)

Figure 9: K-means++ algorithm.

Figure 10: K-means parallel algorithm.

3. RESULTS
A. Kmeans in Mapreduce

In the K-means parallel algorithm a set of k
clustering points are chosen, where each point
sampled according to a probability distribution , in
which the cluster centers are sampled with the
probability proportional to a distance between a
point and an already chosen set of clusters C.
In our study the algorithm was divided into several
mapreduce jobs. In the first step of computing the
initial cluster center, it is required to evaluate the
cost function over the whole dataset, in which we
choose one randomly chosen cluster point c. For the
task of computing the cost value costX(C) the map
task is formed, which runs over the local part of the
dataset that belongs to executing map thread. The
output of that function is fetched and distributed
across reduce threads that sum the local values of
the cost function, obtained over points belonging to
each thread. Hence, we obtain the cost over the
whole set of points (see Figure 11).

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3614

Figure 11: The scheme of Mapreduce algorithm

B. Experimental results
Experimental hardware used in testing our
proposed solution was a virtual machine, hosted on
a DigitalOcean cloud infrastructure. The given
machine consisted of 32 cores, 64GB memory and
400GB SSD drive. As a software we used the
Berkeley UPC runtime and compiler, version
2020.4.0. All the included libraries that were used
in our implementation were written using UPC
Berkeley runtime and compiler.

In order to test our proposed implementation, we
used a synthetic dataset from [22], which consists
of 105000 64-dimensional vector entries. Points
from the dataset priorly represent 25 clusters and
our task was to use our Kmeans parallel
implementation to see the speed-up depending on
the number of threads.
Our approach was to test the algorithm with two
different experiments:
1) Fixed number of oversampling factor l
2) Fixed number of iterations

Figure 12: Scalability of the Kmeans Mapreduce algorithm with fixed value of oversampling factor l

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3615

Figure 13: Scalability of the K-means Mapreduce algorithm with fixed number of iterations

As can be seen in Figure 12 our approach allows us
to achieve a linear speed-up in terms of running
time in case of the fixed oversampling factor l
experiment. The experiment with fixed
oversampling factor implies that by fixing the total
number of points M that are required to be chosen
as cluster centers, we derive the value of the fixed
oversampling factor l to be equal to the total
number of points M divided by the product of
number of threads T and oversampling factor l.

 (5)

Similarly, when we state that the number of
iterations is fixed, we have to change the formula
for number of fixed iterations I to be equal to the
ratio of number of points M over the product of
number of threads T and the value of oversampling
factor l.

 (6)

In the linear case of a single thread, we used just a
standard K-means++ approach, which linearly
chooses each cluster center, giving no options to do
parallel job assignments. Similarly, fixing the
number of iterations provides a linear speed-up,
which can be seen in Figure 13. As we can see our
solution provides an almost theoretically best
speed-up that is possible to achieve.

Table 1: running time for the kmeans parallel with fixed value of
l

threads value of l # iterations time (sec)

1 3 64 394.50

2 3 32 99.00

4 3 16 25.08

8 3 8 6.36

16 3 4 1.58

32 3 2 0.64

Table 2: running time for the kmeans parallel with fixed value
of iterations

threads value of l # iterations time (sec)

1 64 10 197.96

2 32 10 197.03

4 16 10 50.36

8 8 10 25.25

16 4 10 12.82

32 2 10 10.39

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3616

4. CONCLUSION

In our work we presented a partitioned global
address space based Mapreduce implementation of
Kmeans parallel algorithm. Performance wise many
Mapreduce systems cannot guarantee a linear
speed-up and hence a new parallel methods and
frameworks needs a thorough study in order to
understand scalability and performance benefits in
using new parallel algorithms and frameworks.
Apache Hadoop, for example, have limitations in
terms of poor performance in solving iterative tasks
and Apache Spark, although provides a framework
for efficient in-memory iterative data processing,
still do not resolve the problem of locality that
PGAS Mapreduce approach naturally could
address. It was shown that our parallel
implementation provides a strongly linear speedup.
Thus, by increasing number of threads the amount
of input that algorithm could process roughly
doubles in size, therefore making our solution
suitable for solving clustering problems in high-
dimensional and large-scale datasets.

ACKNOWLEDGEMENTS

This work was supported in part under grant of
Foundation of Ministry of Education and Science
of the Republic of Kazakhstan “Development of a
system for knowledge extraction from
heterogeneous data sources to improve the quality
of decision-making” under project ID no.
AP05132933.

REFERENCES:
[1] Jeffrey Dean and Sanjay Ghemawat. 2008.

MapReduce: simplified data processing on
large clusters. Commun. ACM 51, 1 (January
2008), 107–113.
DOI:https://doi.org/10.1145/1327452.1327492

[2] McKenna A., Hanna M., Banks E., Sivachenko
A., Cibulskis K., Kernytsky A., DePristo M. A.
The genome analysis toolkit: A MapReduce
framework for analyzing next-generation DNA
sequencing data //Genome Research.-2010.-
Vol. 20, № 9.-P.1297-1303.

[3] Nguyen T., Shi W., Ruden, D. CloudAligner: A
fast and full-featured MapReduce based tool
for sequence mapping //BMC Research Notes.-
2011.- Vol.4.

[4] Kang U., Tsourakakis C. E., Faloutsos C.
PEGASUS: A peta-scale graph mining system
- implementation and observations //
Proceedings - IEEE International Conference
on Data Mining, ICDM.-Miami, Florida, USA,
2009.-P.229-238.

[5] Pantel P., Crestan E., Borkovsky A., Popescu
A., Vyas, V. Web-scale distributional
similarity and entity set expansion//
Proceedings of the EMNLP 2009 -
Proceedings of the 2009 Conference on
Empirical Methods in Natural Language
Processing: A Meeting of SIGDAT, a Special
Interest Group of ACL, Held in Conjunction
with ACL-IJCNLP 2009.-Suntec, Singapore,
2009.-P.938-947.

[6] Zhao W., Ma H., He Q. Parallel K-means
clustering based on MapReduce // Proceedings
of IEEE International Conference on Cloud
Computing.-Beijing, China, 2009.-P.674-679.

[7] Chuck Lam. 2010. Hadoop in Action (1st. ed.).
Manning Publications Co., USA.

[8] Zaharia M., Chowdhury M., Franklin M.J.,
Shenker S., Stoica I. Spark: Cluster computing
with working sets //Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud
Computing, ACM.-Boston, MA, USA, 2010.-
P.10-10.

 [9] Aday S., Darkhan AZ., Madina M. (2017)
PGAS Approach to Implement Mapreduce
Framework Based on UPC Language. In:
Malyshkin V. (eds) Parallel Computing
Technologies. PaCT 2017. Lecture Notes in
Computer Science, vol 10421. Springer, Cham

[10] Teijeiro, C., Taboada, G.L., Tourino, J.,
Doallo, R.: Design and implementation of
Mapreduce using the PGAS programming
model with UPC. In: 17th International
Conference on Parallel and Distributed
Systems (ICPADS 2011), pp. 196–203. IEEE
Computer Society, Washington (2011).

[11] Dong, H., Zhou, S., Grove, D.: X10-enabled
MapReduce. In: 4th Conference on Partitioned
Global Address Space Programming Model
(PGAS 2010), pp. 1–6. ACM, New York
(2010). doi: 10.1145/2020373.2020382

[12] Shomanov, A. S., Mansurova, M. E., &
Nugumanova, A. B. (2018). Design of K-
means clustering algorithm in PGAS based
mapreduce framework. Paper presented at the
IEEE 12th International Conference on
Application of Information and
Communication Technologies, AICT 2018 -
Proceedings,
doi:10.1109/ICAICT.2018.8747118

[13] Bahman Bahmani, Benjamin Moseley, Andrea
Vattani, Ravi Kumar, and Sergei Vassilvitskii.
2012. Scalable k-means++. Proc. VLDB
Endow. 5, 7 (March 2012), 622–633.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3617

DOI:https://doi.org/10.14778/2180912.218091
5

[14] David Arthur and Sergei Vassilvitskii. 2007. K-
means++: the advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms
(SODA ’07). Society for Industrial and
Applied Mathematics, USA, 1027–1035.

[15] Ramdani, A & Firmansyah, H. (2019). Pillar K-
Means Clustering Algorithm Using
MapReduce Framework. IOP Conference
Series: Earth and Environmental Science. 258.
012031. 10.1088/1755-1315/258/1/012031.

[16] Sreedhar, C., Kasiviswanath, N. & Chenna
Reddy, P. Clustering large datasets using K-
means modified inter and intra clustering
(KM-I2C) in Hadoop. J Big Data 4, 27 (2017).
https://doi.org/10.1186/s40537-017-0087-2

[17] Wang, Hui & Zhou, Chengdong & Li, Leixiao.
(2019). Design and Application of a Text
Clustering Algorithm Based on Parallelized K-
Means Clustering. Revue d'Intelligence
Artificielle. 33. 453-460. 10.18280/ria.330608.

[18] Cui, X., Zhu, P., Yang, X. et al. Optimized big
data K-means clustering using MapReduce. J
Supercomput 70, 1249–1259 (2014).
https://doi.org/10.1007/s11227-014-1225-7

[19] A. Boukhdhir, O. Lachiheb and M. S. Gouider,
"An improved mapReduce design of kmeans
for clustering very large datasets," 2015
IEEE/ACS 12th International Conference of
Computer Systems and Applications
(AICCSA), Marrakech, 2015, pp. 1-6, doi:
10.1109/AICCSA.2015.7507226.

 [20] Van Hieu, Duong & Meesad, Phayung. (2014).
Fast K-Means Clustering for Very Large
Datasets Based onMapReduce Combined with
a New Cutting Method;
http://link.springer.com/chapter/10.1007%2F9
78-3-319-11680-8_23. Advances in Intelligent
Systems and Computing. 326. 10.1007/978-3-
319-11680-8_23.

[21] Ma, Li & Gu, Lei & Li, Bo & Ma, Yue &
Wang, Jin. (2015). An Improved K-means
Algorithm based on Mapreduce and Grid.
International Journal of Grid and Distributed
Computing. 8. 189-200.
10.14257/ijgdc.2015.8.1.18.

[22] S. Sieranoja and P. Fränti, "Fast and general
density peaks clustering", Pattern Recognition
Letters, 128, 551-558, December 2019.

[23] Carlson W.W., Draper J.M., Culler D.E., Yelick
K., Brooks E., Warren K. Introduction to UPC
and language specification //Technical Report
CCS-TR-99-157, IDA Center for Computing
Sciences.-1999.-p.17.

[24] Teijeiro C., Taboada G.L., Tourino J., Doallo
R. Design and Implementation of MapReduce
Using the PGAS Programming Model with
UPC //Proceedings of the 2011 IEEE 17th
International Conference on Parallel and
Distributed Systems (ICPADS '11).-Tainan,
Taiwan, 2011.-P.196-203.

[25] Dong H., Zhou S., Grove D. X10-enabled
MapReduce. //Proceedings of the Fourth
Conference on Partitioned Global Address
Space Programming Model (PGAS '10).
ACM.-New York, USA, 2010.-p.6.

