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ABSTRACT 
 

Most recent state-of-the-art detection approaches based on deep convolutional neural networks are manually 
designed. These approaches include two-stage frameworks and one-stage frameworks. While one-stage 
frameworks provide real-time performance in most recent systems, two-stage frameworks usually show better 
detection accuracy. Most recent two-stage object detection frameworks share a head for both classification 
and bounding box regression in detection stage. Inspired by recent improvement in double-head structures, 
this paper proposes a detection framework based on multi-head structure for localizing objects in driving 
environments. First, the extracted feature maps generated by feature extraction network are enhanced by the 
enhancement module, which effectively enlarges the receptive field and refines the representation ability of 
thin feature maps by leveraging both local and global context. The enhanced feature map is then fed to a 
detection network. Next, the detection network is designed based on double-head structure, where a fully 
connected head is adopted for classification and a convolution head is used for bounding box regression. In 
addition, this paper proposes to improve RoI pooling algorithm based on deformable RoI pooling. With the 
improved RoI pooling process, the harsh quantization of RoI pooling is removed, and the extracted features 
are properly aligning with the input, thus leading to large improvements. Experiments on public datasets 
show the effectiveness of the proposed method for localizing objects in driving environments. 

Keywords: Detection Approaches, Double-Head Structures, Multi-Head Structure, Deep Convolutional 
Neural Networks, Two-Stage Framework 

 
1. INTRODUCTION  
 

With the fast development of deep learning in 
recent years, a variety of detection approaches based 
on deep learning have been proposed. The deep 
convolution neural networks (CNNs) can learn the 
features of the objects to be detected with the dataset 
autonomously and improve the performance of its 
model gradually. CNNs mainly consist of three type 
of layers: convolutional layers, which uses a filter of 
weights to extract features from image; nonlinear 
layers, which apply an activation function on feature 
maps to enable the modeling of non-linear functions 
by the network; and pooling layers, which replace a 
small region of a feature map with some statistical 
information to reduce spatial resolution. Each unit in 
every layer receives weighted inputs from a small 
region of units in the previous layer. This small 
region is called receptive field. In CNNs, the higher-
level layers learn features from increasingly wider 
receptive fields. The main computational advantage 

of CNNs is that all the receptive fields in a layer 
share weights, resulting in a significantly smaller 
number of parameters than fully connected neural 
networks. Since the development of fully 
convolutional networks [12], the accuracy of 
detection approaches has been improved rapidly. 
These detection approaches include one-stage 
frameworks and two-stage frameworks. In one-stage 
frameworks, the detection head is applied directly on 
multi-scale feature maps generated by the base 
network, thus enhancing the detection speed. 
OverFeat [13] detects objects by sliding windows on 
feature maps. SSD [14] and YOLO [15] have been 
tuned for speed by predicting object classes and 
locations directly. RetinaNet [16] alleviates the 
extreme foreground-background class imbalance 
problem by introducing focal loss. Point-based 
methods [17] model an object as keypoints (corner, 
center), and are built on keypoints estimation 
networks. In two-stage framework, the detection 
head is applied after region proposals generation 
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stage, where a small network is applied to generate 
proposals. Two-stage frameworks usually provide 
better detection accuracy compared with that of one-
stage frameworks. RCNN [18] applies a deep neural 
network to extract features from proposals generated 
by selective search. SPPNet [19] speeds up RCNN 
significantly using spatial pyramid pooling. Fast 
RCNN [20] improves the speed and performance 
utilizing a differentiable RoI Pooling. Faster RCNN 
[21] introduces Region Proposal Network (RPN) to 
generate proposals. RFCN [22] employs position 
sensitive RoI pooling to address the translation-
variance problem. FPN [4] builds a top-down 
architecture with lateral connections to extract 
features across multiple layers. Both two-stage and 
one-stage frameworks require a state-of-the-art CNN 
architecture as the base network for the best 
performance. Recent deep CNN-based architectures 
require a large amount of computational cost. While 
these architectures achieved high performance on for 
resource constrained devices such as mobile devices 
and embedded computers. It is required that the deep 
CNN architecture should be lightweight and 
efficient while achieving comparable accuracy to 
implement on resource constrained devices. Thus, 
many enhanced networks for mobile devices have 
been introduced recently. Mobilenets [23] used 
depth-wise separable convolutions that factor a 
convolution into two steps to reduce computational 
complexity: depth-wise convolution that performs 
light-weight filtering by applying a single 
convolutional kernel per input channel and 
pointwise convolution that usually expands the 
feature map along channels by learning linear 
combinations of the input channels. Mobilenetsv2 
[24] proposed a lightweight network based on an 
inverted residual structure where the shortcut 
connections are between the thin bottleneck layers. 
The intermediate expansion layer uses lightweight 
depthwise convolutions to filter features as a source 
of non-linearity. In [25], a lightweight and efficient 
network based on depthwise dilated separable 
convolution was proposed. Shufflenet [26] and 
Shufflenetv2 [3] proposed new architecture that 
utilizes two new operations, pointwise group 
convolution and channel shuffle, to greatly reduce 
computation cost while maintaining accuracy. 

In the line of two-stage deep learning-based 
object detectors, R-CNN is a pioneer deep learning 

model, which increases object detection accuracy 
over traditional detectors by a large margin. In the 
first stage, R-CNN applies selective search method 
[28] to generate sufficient proposal candidates that 
contain all the objects. In the second stage, R-CNN 
forwards each proposal through convolutional 
networks, followed by classifying the proposals with 
SVMs [29] and predicting bounding boxes offsets 
with linear regression. However, this method is very 
time-consuming, as every proposal is processed by 
the entire network. Fast R-CNN extends R-CNN by 
using one single convolution network to perform 
shared computation in the second stage, which 
increases the speed significantly. The problem with 
Fast R-CNN is that the proposals are generated by a 
traditional time-consuming selective search 
algorithm. Faster R-CNN was proposed to further 
improve upon Fast R-CNN. Faster-RCNN proposed 
region proposal network (RPN) to replace selective 
search method in R-CNN and makes the whole 
network trainable in an end to end approach. 
Recently, several approaches have been proposed to 
increase the accuracy of Faster R-CNN. Instead of 
using VGG-16 architecture as a base network for 
Faster R-CNN, adoption of different backbone 
networks, such as ResNet and Inception ResNet, has 
been proposed. He et al. [9] proposed the use of a 
deep residual network, such as ResNet-101, for 
image recognition. The authors showed that ResNet-
101 has a lower complexity compared to VGG-16 
and achieves good accuracy. Huang et al. [30] used 
an Inception ResNet v2 in the backbone of the Faster 
R-CNN to achieve better accuracy than that obtained 
using ResNet 101 with a slightly lower running time 
per frame. Shrivastava et al. [31] proposed a top–
down modulation (TDM) network to incorporate 
fine details in the detection network for detecting 
small objects. They achieved higher accuracy 
compared to [30] with a slightly higher frame rate. 
Yauan et al. [32] proposed two refinement methods, 
iterative and LSTM refinement, for the Faster R-
CNN model and improved the accuracy. 
 
 
2. METHODOLOGY 
 

The overall structure of the proposed approach 
is shown in Figure 1. The feature extraction network 
first extracts features from input images. The 
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Figure 1: The Overall Structure of The Proposed Approach.

extracted feature maps are then enhanced by the 
enhancement module, which effectively enlarges the 
receptive field and refines the representation ability 
of the thin feature maps by leveraging both local and 
global context. The enhanced feature map is then fed 
to a detection network. The detection network is 
designed based on double-head structure, where a 
fully connected head is adopted for classification and 
a convolution head is used for bounding box 
regression. In addition, this paper proposes to 
improve RoI pooling algorithm based on deformable 
RoI pooling. With the improved RoI pooling 
process, the harsh quantization of RoI pooling is 
removed, and the extracted features are properly 
aligning with the input, thus leading to large 
improvements. Details of each module will be 
elaborated in the following subsections. 
 
2.1 Feature Extraction Network 

The feature extraction network extracts basic 
feature representations of input images and has big 
influence on both accuracy and efficiency of the 
whole framework. A lightweight network used for 
extraction will facilitate the inference speed and the 
computational cost. However, lightweight network 
may generate feature maps with less discriminative 
feature representations, thus reducing the detection 
performance of the framework. In addition, the 
receptive field size in each layer of the feature 
extraction network plays a crucial role in the 
network. Each layer can only capture information 
inside the receptive field. Thus, a large receptive 
field can leverage more context information and 
encode long-range relationship between pixels more 
effectively. This is an important problem for the 
localization subtask, especially for the localization 
of large objects. Previous works [1, 2] have also 
demonstrated the effectiveness of the large receptive 
field in semantic segmentation and object detection. 

With above analysis, this paper adopts 
ShuffleNetV2 architecture [3] to build the feature 
extraction network for extracting feature 
representations from input images. ShuffleNetv2 is a 
lightweight deep CNN network which achieves the 
best accuracy in very limited computational budgets. 
By shuffling the channels, ShuffleNetv2 
outperformed MobileNetV1, MobileNetv2, and 
ShuffleNetv1 in both accuracy and computational 
cost. Based on the ShuffleNetv2, this paper first 
replaces all 3×3 depthwise convolution layers in 
Shuffle Unit by 5×5 depthwise convolution layers to 
improve the detection performance. By using 5×5 
depthwise convolution layers, the receptive field is 
enlarged to capture more semantic information, 
while providing similar computational budget to 3×3 
convolution layers. The structure of the improved 
ShuffleNetv2 network is shown in Table 1. There are 
total 6 layers in the architecture of the improved 
ShuffleNetv2 network. The number of channels of 
the final layer is 1024. The last output feature maps 
of layer 4 and layer 5 are denoted as C4 and C5. 

Next, to enhance feature map before feeding to 
the detection network, many studies were inclined to 
fuse multi-scale feature map at different layers.  A 
common technique adopting this scheme is Feature 
Pyramid Network (FPN) [4]. However, prior FPN 
structures [4, 5, 6, 7] involve many extra 
convolutions and multiple detection branches, which 
increases the computational cost and induces 
enormous runtime latency. For this reason, this paper 
designs an efficient enhancement module to enhance 
feature map generated by the feature extraction 
network before feeding to the detection network. 
The key idea of the proposed enhancement module 
is to aggregate multi-scale local context information 
and global context information to generate more 
discriminative features. Figure 2 presents the overall 
structure of the enhancement module proposed in  
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Table 1: The Feature Extraction Network Architecture. 

Layer Type Kernel Size Stride Repeat Output Size Output 
Channel 

0 Conv1 3×3 2 1 112×112 24 

1 MaxPool 3×3 2 1 56×56 24 

2 Shuffle Unit 5×5 depthwise 
convolution layers 

2 
1 

1 
3 

28×28 176 

3 Shuffle Unit 5×5 depthwise 
convolution layers 

2 
1 

1 
7 

14×14 352 

4 Shuffle Unit 5×5 depthwise 
convolution layers 

2 
1 

1 
3 

7×7 704 

5 Conv5 1×1 1 1 7×7 1024 

 
Figure 2: The Overall Structure of The Enhancement Module.
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Figure 3: The Structure of The Double-Head Scheme Used in This Paper.

this paper. As shown, the enhancement module fuses 
the feature maps from three scales, including C4, C5 
and C6. C4 and C5 are the last output feature map of 
layer 4 and layer 5 of the improved ShuffleNetv2 
network, and C6 is the global context feature vector 
generated by applying a global average pooling on 
C5. A 1×1 convolution layer is then applied on each 
feature map to squeeze the number of channels to 
245. As a result, C5 is upsampled by 2× and C6 is 
broadcast so that the spatial dimensions of the three 
feature maps are equal. Finally, the three generated 
feature maps are aggregated. By leveraging both 
local and global context, the enhancement module 
effectively enlarges the receptive field and refines 
the representation ability of the thin feature map. 
Compared with prior FPN structures, the 
enhancement module involves only two 1×1 
convolution layers and a FC layer, which is more 
computation friendly. 
 
2.2 Detection Network 

Inspired by the double-head scheme [8], which 
adopts two separate branches to leverage the 
advantages of two head structures, this paper uses 
double-head structure to design the detection 
network. Double-head scheme uses the fully 
connected head for classification and the 
convolution head for bounding box regression. The 
structure of the double-head scheme is shown in 
Figure 3. The fully connected head has two fully 
connected layers. The number of channels of output 
feature is 1024. The convolution head used in this 
paper stacks 5 residual blocks [9]. The first block 
increases the number of channels from 256 to 1024 
(shown in Figure 4a), and four other blocks are 
bottleneck blocks (shown in Figure 4b). At the end, 
an average pooling layer is used to generate the 
feature vector with 1024 channels. 

For loss function, the detection network with 
double-head structure and the region proposal 

network (RPN) are jointly trained end to end. The 
total loss is defined as follows: 

 
𝐿 ൌ 𝜕𝐿ி஼ ൅ 𝜑𝐿஼௏ ൅ 𝐿ோ௉ே   (1) 

 
where 𝜕 and 𝜑 are weights for the fully connected 
head and the convolution head, respectively. 𝐿ி஼, 
𝐿஼௏, and 𝐿ோ௉ே are the losses for the fully connected 
head, the convolution head and the RPN, 
respectively. 
 
2.3 Improving RoI Pooling Algorithm 

Deformable RoI pooling is introduced in [10] 
to mitigate the misalignments between the RoI and 
the extracted features in RoI pooling process. In 
Deformable RoI pooling process, pooled feature 
map is first generated by adopting regular RoI 
pooling. From the pooled feature map, a fully 
connected layer is used to generate the normalized 
offsets, which are then added to the spatial binning 
positions. The offset normalization is necessary to 
make the offset learning invariant to RoI size. After 
generating offsets, the deformable RoI pooling 
employs RoI pooling to generate the output feature 
map based on input regions with augmented offsets. 
Inspired by deformable RoI pooling, this paper 
proposes to improve RoI pooling algorithm based on 
deformable RoI pooling as shown in Figure 5. First, 
this paper uses a lightweight offset prediction branch 
which contains fewer parameters than the 
deformable RoI pooling. More specific, the 
lightweight offset prediction branch adopts 
RoIAlign to obtains features from k/2×k/2 sub-
regions followed by a fully connected layer. With 
smaller input vector of features, the number of 
parameters in subsequence layer will decrease. Next, 
the standard deformable RoI pooling employs 
regular RoI pooling in the fixed size feature map 
generation branch to generate the output feature map 
based on input regions with augmented offsets. In 
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Figure 4: Residual Blocks.

 
Figure 5: Improving RoI Pooling Algorithm.
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Table 2: Detection Results on All Three Difficulty-Level Groups of The KITTI Test Set. 

Method AP (%) 

 Car Pedestrian 

 Easy Moderate Hard Easy Moderate Hard 

Faster R-CNN [5] 86.71  
 

81.84  
 

71.12  
 

76.21 62.14 60.33 

SSD [11] 77.71  
 

64.06  
 

56.17  
 

25.12 18.20 16.21 

YOLOv2 [12] 76.79  
 

61.31  
 

50.25  
 

22.16 16.16 15.82 

MS-CNN [13] 90.03  
 

89.02  
 

76.11  
 

84.12 74.98 63.48 

Proposed Method 90.21 89.50 75.22 88.11 75.62 65.78 

contrast, this paper adopts RoIAlign [11] in the fixed 
size feature map generation branch to generate the 
output feature map based on input regions with 
augmented offsets. As a result, the harsh 
quantization of RoI pooling is removed, and the 
extracted features are properly aligning with the 
input, thus leading to large improvements. 
 
3. EXPERIMENTS 
  
3.1 Dataset and Evaluation Metrics 

In order to evaluate the effectiveness of the 
proposed approach for localizing objects in driving 
environments, this paper conducts experiments on 
widely used public dataset: KITTI dataset [27]. 
KITTI dataset is a widely used dataset for evaluating 
object detection algorithms in driving environments. 
This dataset consists of 7481 images for training 
with available ground-truth and 7518 images for 
testing with no available ground-truth. Images in this 
dataset include various scales of vehicle and 
pedestrian in different scenes and conditions and 
were divided into three difficulty-level groups: easy, 
moderate, and hard. If the bounding boxes size was 
larger than 40 pixels, a completely unshielded 
vehicle/pedestrian was considered to be an easy 
object, if the bounding boxes size was larger than 25 
pixels but smaller than 40 pixels, a partially shielded 
vehicle/pedestrian was considered as a moderate 
object, and an vehicle/pedestrian with the bounding 
boxes size smaller than 25 pixels and an invisible 
vehicle/pedestrian that was difficult to see with the 
naked eye were considered as hard objects.  

For evaluation metrics, this paper uses the 
average precision (AP) and intersection over union 
(IoU) metrics [27] to evaluate the performance of the 
proposed method in all three difficulty level groups 
of the KITTI dataset. These criteria have been used 
to assess various object detection algorithms. As in 
[27], the IoU is set to 0.7 for vehicle and 0.5 for 
pedestrian in this paper, which means only the 
overlap between the detected bounding box and the 
ground truth bounding box greater than or equal to 
70% and 50% is considered as a correct detection. 
 
3.2 Experimental Results 

This section presents the detection results of 
the proposed method and recent methods on the 
KITTI dataset. First, this paper conducts 
experiments on the KITTI test set by using the 
proposed model and recent models to compare the 
detection performance. The reference models 
include SSD [13], Faster R-CNN [7], YOLOv2 [14], 
and MS-CNN [15]. All models are implemented on 
NVIDIA GTX 1080 GPU. Table 2 presents the 
detection results of the proposed model and 
reference models on all three difficulty-level groups 
of the KITTI test set. As shown in Table 2, the 
proposed model obtains 90.21%, 89.50%, and 
75.22% of the AP on easy, moderate, and hard 
group, respectively for car detection. For pedestrian 
detection, the proposed model obtains 88.11%, 
75.62%, and 65.78% of the AP on easy, moderate, 
and hard group, respectively.  It can be observed that 
the proposed model achieves superior results to 
state-of-the-art object detectors, including both one-
stage and two-stage detectors such as Faster R-CNN, 
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Figure 6: Visual of Detection Results on The KITTI Dataset. (Left) Faster R-CNN. (Right) The Proposed Method.
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SSD, and YOLOv2. Compared with MS-CNN, the 
proposed method achieves better detection results 
overall. These results demonstrate that the proposed 
method achieves a much better accuracy on the 
KITTI dataset. Figure 6 shows visual of detection 
results on the KITTI dataset of Faster R-CNN (left) 
and the proposed method (right). As shown, Faster 
R-CNN misses some cars and pedestrians, while the 
proposed method localizes exactly cars and 
pedestrians in images. 
 
4. CONCLUSIONS 
 

This paper proposes a detection framework 
based on multi-head structure for localizing objects 
in driving environments. In the proposed 
framework, the feature extraction network first 
extracts features from input images. The extracted 
feature maps are then enhanced by the enhancement 
module, which effectively enlarges the receptive 
field and refines the representation ability of the 
thin feature maps by leveraging both local and 
global context. The enhanced feature map is then 
fed to a detection network. The detection network 
is designed based on double-head structure, where 
a fully connected head is adopted for classification 
and a convolution head is used for bounding box 
regression. In addition, this paper proposes to 
improve RoI pooling algorithm based on 
deformable RoI pooling. With the improved RoI 
pooling process, the harsh quantization of RoI 
pooling is removed, and the extracted features are 
properly aligning with the input, thus leading to 
large improvements. Experiments on the KITTI 
datasets show the effectiveness of the proposed 
method for localizing objects in driving 
environments. 
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