
Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3460

AN INTEGRATED APPROACH OF DYNAMIC TASK
SCHEDULING OF DAG WITH DUAL MODE

PROCESSORS-USING MACHINE LEARNING TO OBTAIN
OPTIMAL MAKE SPAN

PRASANT SINGH YADAV1, P.K YADAV2, SUNIL BHARTI3

1Ph.D Computer Science Scholar at Dr. A P J Abdul Kalam Technical University Lucknow, India,
2Principal Technical Officer at CBRI- Roorkee, Planning & Business Development, India

3Associate Professor, GCET, Greater Noida, Department of Information Technology, India
E-mail: 1pdesire82@gmail.com, 2pkyadav@cbri.res.in, 3sirbharti@gmail.com

ABSTRACT

 With increasing computing demand the need for tuned intelligence-based solutions is most required. Most of
the focus has been given by the researcher to the scheduling of parallel tasks dynamically to more than one
processor and in the current scenario, it is more demandable. Although many DAG scheduling algorithms are
available but less focused on dynamic scheduling. Through our projected paper we want to introduce the
approach Dynamic task scheduling algorithm DTSA for scheduling task at run time using DAG with an
additional factor regarding processor self-Reconfiguration Capacity, which is an important parameter of
distributed computing System. Through DTSA we want to sketch out an adaptive task arrangement
algorithm that gives the hybrid result of run-time scheduling of DAG and adaptation of tenant configuration
by the processor according to computing needs. Finally, A DAG-based dynamic task arrangement with
dependency consideration between the tasks and with the use of machine learning (ML) for
self-reconfiguration of a processor is proposed for obtaining the optimal task allocations with the optimal
Makespan.

Keywords: DAG, DTSA, LTA, TPC-W, CPU Self-Reconfiguration, Machine Learning.

1. INTRODUCTION

The dynamic assignment of tasks in a
multiprocessor organization is the most noticing era
these days. Getting high performance in multiple
systems is an important part of planning similar
tasks. The purpose of scheduling tasks at run time is
to make connections of each task to the respective
processor with their respective performance to
achieve the optimal makespan is provided below the
job tracking requirements conditions. Various task
arrangement techniques are used in the same
surroundings as a computer. Most of these programs
look for initial delays between activities [1]. To date,
Direct Acyclic Graph (DAG) is the more fruitful
method adopted as a precautionary measure between
intermediate tasks. The goal of this paper is to create
a dynamic scheduling pattern with DAG considering
task dependencies between processors. In this
model, the master scheduler is accountable for
handling the run time task arrangement. Through
our projected model of run-time task scheduling, we
will demonstrate an approach of dynamic task

scheduling algorithm DTSA. We tested this
projected algorithm by experimenting with some
simulators, resulting in that the proposed DTSA
algorithm is accepting all dynamic scheduling
conditions for task arrangement and showing
improved recital.
Adaptability and performance in burning demand in
Distributed computing in the context of variable user
needs like change in system configuration,
protocols, data format principles, and claim for
synchronization to the various user function. Many
rising practical uses in communiqué and computing
stipulate that their functionality must be flexible in
the manufactured system. Furthermore, these days
research looking for complex heterogeneous and
reconfigurable Systems. CPU Self-Reconfiguration
computational systems [2] having the
self-adaptation capacity to where hardware
components, applications, and the operating system
associated with each other are ready to adapt itself
within available forms to realize the most effective
performance.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3461

We can use a Machine learning framework that uses
standard programming tools to measure the best
implementation and the results of its multilevel
implementation [26].The learning framework
functions as an automated computer system that can
prepare, heal, operate, and shield itself without the
necessity of individual involvement. To achieve
such a scenario, self-adaptive computing systems
must monitor their behavior for self-updating, in one
or several combinations, for their components (in
hardware architectures, operating systems, and
running applications), Improves the performance of
the system if it can adapt its configuration when the
workload is changed to overcome potential failure to
complete its tasks. Through this paper, we will
demonstrate better performance for task processing
systems using the learned model of dynamically
reorganizing systems in terms of hardware and
software. Here, we trained a machine learning model
of performance beyond the recital of various
software and hardware configurations, at this point
we used this model to direct the runtime
reorganization of processors by (learning trigger
agent) LTA. We have clearly shown that this trigger
agent can improve a significant count when tested
with different workloads, compared to static
configuration.

2. RELATED WORK

Run-time scheduling algorithms are supposed to
support are projected in various literature. A
real-time system is a condition for system
accountability which allows the operator to operate
a computer quickly enough to process. The
accuracy of the real-time system follows the strict
time condition on the logical outcome of the
calculation concerning the result generation. There
are two types of scheduling algorithm one is static
(or offline) scheduling represented by [1, 2, 3 and 4]
and the second is dynamic (or run time) scheduling
projected by [5, 6]. Mostly scheduling of task
arrangement claims to be independent of real-time
functions. Some authors considered the DAG model
presenting the correlation between tasks are only
compatible with real-time systems. In recent times,
real-time DAG has been considered for the
observation of timeliness of tasks based on
equivalent employment [3, 4]. As proposed by [3,
4], the scheduling algorithm does not ignore the
priority relationship between functions. Although
all are the static scheduling algorithms So,
DAG-based task arrangement algorithms which
adapted different environments for run-time task
arrangement with strict time limits as in real-time

system are rare in literature. Hereby our paper we
projected hybrid run task time scheduling
DTSA-Dynamic Task Scheduling for real-time
systems applicable for a variety of environments to
handle many equivalent tasks prepared by DAG.
Further, it takes into account the most of the
capacity of the processor, as the processors used
here have the ability to automate processing as
needed with varying load.

Only a few papers directly describe the combination
of hardware and software for adaptive tuning
performance. Most work related to this sector is
approached only by keeping a service level
agreement (SLA). Although the many works are
similar in literature we are working on necessarily
diverse issues, where no authorized service level
agreement -SLA to settle on acquiescence. Through
this section of the paper, we review the relevant
work reported. Mostly processors follow the limits
of the configuration as source constraints, are
mostly handled by the user only for configuration
and strictly follow the initially decided set of rules
and regulations. On the other hand, our projected
approach learns and trained an appropriate model to
actual advancement. [16] Author discussed the
self-modification of runtime parameters (allowing
threads and connections) by adopting a
learning-based model approach. Here authors
suggested that a parallel method can be extended for
software and hardware amendment. This detailed
mathematical model is created for the system as
inputs to the current workload; here we considered
our work model as a black box or as an unproven
volume of workload. [1 Reconstruction]
Self-reconstruction is a technology that can quickly
modify logic configured to suit application needs at
runtime. Although performance improvements have
been demonstrated using auto-reassembly, the
technique has only been described informally. The
exact definition of self-rebuilding based on abstract
reconstructive device design is presented in this
paper [15]. To use this model as a self-tuning
regulator, a system was proposed to evaluate the
performance model, using the repeat list-square
estimation method as a black box for the system.
Which may be an integral part of this loom is
proposed to support the service level agreement
SLA to obtained the aim (considering delay as a
parameter), keeping in the view that to considering
most of the service level agreement-SLA
prerequisite besides increasing recital [20].

 The author uses the queuing model to manage
multi-range Internet applications. This approach

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3462

aims to maintain several different servers in each
array and is believed to be available for later unused
machines for provisioning. Our approach is that one
server at each level should have total processing
power [11]. It is proposed to use self-recycling
processor architecture to provide better processing
performance with a changing workload. The
processor can be re-configured to interchange with
other attached high configuration processors.
Effective-auto-optimization can be accessed by
combining a fast-based redesign strategy to
schedule reusable co-processors and
minimal-square optimization algorithms. In [26],
the author proposed an efficient scheduling
algorithm, which we would like to demonstrate a
custom scheduling algorithm that is a combination
of efficient work assignments by considering DAG
with auto-configuration of respective allotted
processors. Self-rebuilding processors can be tuned
for software and hardware to meet computing
needs.

3. PROPOSED MODEL AND ALGORITHM

A heterogeneous system is assumed to have the
arrival of tasks dynamically and all parallel tasks
presented by direct acyclic graph DAG. Constant
DAG [7] is indicated by G = (V, E) where V is the
set of v nodes and the set of edges directed by E. The
task is presented by a node in the DAG, which is the
group of instructions that are to be consecutively
executed without permission on the identical
processor. The calculation cost of the node is
presented by the weight of a node and is indicated by

w (vi). The edges of the DAG represented by every
one of these (vi, vj), respectively to communiqué
messages and the interruptions between the nodes.
The communication cost of the edge is known as the
weight of the edge and is denoted by c (vi, vj). The
starting node of the edge is termed as a parent node
and the underneath node is termed as the child node.
A parentless node termed as the entry node, on the
other hand, a child without a node is known as an
exit node. A heterogeneous computing system
contained a group of processors, P = {P1, P2,
P3…Pm}, where the above set represents processors
having confined memory. Taken processors are
closely connected [8] however; the communiqué
costs connecting processors are universal.
Figure 1 illustrates a new real-time arrangement
model in a heterogeneous setting. When every one
of the equivalent tasks reached to a specific
processor called the master scheduler which is
responsible for put task in PTQ, it enters a queue
which is termed as Base Task Queue (BTQ) to linger
until it is listed; Further, with handling to the BTQ,
the Master scheduler also deal with two other
queues, which are called Sent out Task Queue
(STQ) and Finished Task Queue (FTQ)
respectively. Introduced encrypted scheduling
algorithms in Master Scheduler for working through
BTQ. Here Master Scheduler is fully accountable
for arrangement each task completed in sent out task
queue STQ. Once the scheduling algorithm is
introduced, each task among the task queue is
configured concerning its reliant on other tasks.

Figure 1: Dynamic Task Scheduling Model With Processor Self-Reconfiguration Decision

As shown in Figure 1 the Dynamic Task Scheduling
Model containing processor self-reconfiguration
capacity, it decides for self-reconfiguration once the

scheduling of tasks is completed. Now the master
scheduler put scheduled tasks to the respective
processor task queue (PTQ). According to

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3463

respective PTQ Self-rebuilding processors
completed assigned tasks by inspection together
employing the outcome of their work based on FTQ.
If FTQ does not take advantage of its dependent
function result, PTQi will then refer to PTQi + 1,
PTQi + 2,… PTQn, PTQ1… PTQi-1 to solve the
appropriate task and PTQi will refer to that function.
The scheduling algorithm will stop working until the
PTQ becomes empty. Then Processor Position
Window (PPW) put on show the current position of
every one processor that when the processors are in
an operation state or is it needs Self-Reconfiguration
or not and in idle state. When the task is migrating
from one processor to another processor we also
make a check here for processor business and
decision to think about whether go for
self-reconfiguration to make speedup computing for
the migrated task or release the dependency as soon
as possible or left the working of the processor as in
normal mode.
We take here a thresh hold value of dependency task
so above this value we go for Self-Reconfiguration
decision and vice-versa. Additionally, one more
parameter temperature variation with changing load
by some scientific benchmark Linpack which is one
of the most consistent CPU benchmarks, through
these two parameters we can know that the
processor is overload or not. Temperature is used as
a major parameter to show the CPU overloading
conditions with the use of a training model in
machine learning we take prediction for CPU
self-reconfiguration by Learned Trigger Agent
(LTA) it takes dynamic decision by machine
learning with. If the output value of the LTA is one,
then it will decide to self -reconfigure CPU or on the
other hand, if the output value of the training agent is
0 then it will not go for self-Reconfiguration. For
Self-Reconfiguration it adapts the required
hardware and software from the available resource
pool as AWS (Amazon Work stations), Soucelab
and TPC-W benchmark, etc. The time taken from a
static configuration to advance reconfiguration is
compensated speedup gained by the processor. Here
we adopt two-step policies: firstly, we assigned the
task to each processor dynamic task scheduling
algorithm which is the optimal method to assign the
task to the best available processor at run time.

Assumptions:

 All processors are heterogeneous in the
configuration.
 The execution time of each task is already

known.

 All cooling conditions related to CPU
temperature are taken ideal.

 Time taken in deciding for self-reconfiguration
is compensated by the achieved speedup by
scheduling.

 We have taken CPU temperature as a major
parameter with assumed processor task
dependency threshold value for showing CPU
overloading.

 CPU utilization is also taken as an overloading
factor concerning temperature.

 Another factor for showing CPU overloading is
taken as ideal.

 After Self–Reconfiguration Processor
dependent task execution time is assumed.

Here we put forward an innovative dynamic task
scheduling algorithm DTSA based on the master
scheduler model which is responsible for putting
task in PTQ with consideration of task dependency .
This strategy completes the entire parallel work as
soon as possible. This parallel work has a very short
response time. Accordance by the DTSA, tasks in
the ITQ is determined by its dependence. In the
initial task queue ITQ, the front task is always
predetermined and allotted to the respective
processor by the projected algorithm. As it is well
known that all static scheduling algorithms maintain
the task priority queue by calculation resulting in
fixed priority rank of each task, for the reason that
task data of the DAG is predetermined for each task
[9]. But, in our projected dynamic task scheduling
algorithm DTSA differs from all static scheduling
algorithms by changing the task for the period of
runtime. Our algorithm focuses on the DTSA
processor selection strategy. Although the tasks are
predetermined, the tasks depend primarily on
selecting the mapped processor. Here two
time-indexes are considered first is the earliest
completion time ECT of the processor Pi and second
is the earliest start time EST of the task vi on the
processor Pi. While choosing a processor to process
exacting task from the PTQi with the decision of the
self-Reconfiguration requirement in terms of
hardware and software for this machine learning is
used by our data set taken from some scientific
benchmark lencpark and TPC-w to learning trained
agent (LTA) to KNN algorithm to find out the
optimal decision for CPU Self-Reconfiguration.
Given a current task requested to the respected
processor of each three processors the respective
probabilities.
We take here a thresh hold value of dependency task
15 unit and above it so above this value we go for
Self-Reconfiguration decision and CPU utilization

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3464

and the temperature is calculated by task manager by
threshold temperature and CPU utilization values
are taken respectively which are 95 degrees Celsius
and 85 percent, obtained by Some Scientific
Benchmarks. Here temperature and task dependency
threshold values are taken into consideration that
when processors need configuration or not which is
decided by learning trained agent (LTA) machine
learning model of CPU or processor which is
summarized in table 1. With the use of the KNN
algorithm (k-nearest neighbors algorithm-, a method
for categorizing objects) the obtained correlation
between temperature, processor utilization
(overloading), and dependent task size is shown in
Figures 2, 3, and 4. The relationship between
temperature and percentage CPU utilization is taken
from Linpack which is one of the most consistent
CPU benchmarks, further between task size and
percentage CPU utilization relation hypothesis is
taken from task manager in computer and
correlation between task size and temperature
relation taken from Assyad et al 2004 [24].

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3465

Table 1: Show Data Set Of Temperature And Task Dependency With Overloading

S.N. Temperature Task Dependency Processor Condition
Self-Reconfiguration

Decision

1 100 15 Overload 1

2 94 15 Overload 0

3 98.8 18 Overload 1

4 97.6 19 Overload 1

5 95 14 Overload 0

6 95.6 15 Overload 1

7 98.1 16 Overload 1

8 94.6 14 Not Overload 0

9 95.4 17 Overload 1

10 92.5 15 Not Overload 0

11 90.4 4 Not Overload 0

12 94.8 9 Not Overload 0

13 88.3 8 Not Overload 0

14 95.2 21 Overload 1

15 86.5 13 Not Overload 0

16 87.3 11 Not Overload 0

17 96.8 17 Overload 1

18 86.2 18 Not Overload 0

19 89.2 13 Not Overload 0

20 85.1 15 Not Overload 0

21 95.8 16 Overload 1

22 85.4 9 Not Overload 0

23 97.2 7 Overload 0

24 85.6 16 Not Overload 0

25 97.7 15 Overload 1

26 86.4 13 Not Overload 0

27 97.4 16 Overload 1

28 88.8 12 Not Overload 0

29 89.4 14 Not Overload 0

30 96.9 20 Overload 1

31 90.7 11 Not Overload 0

32 96.6 17 Overload 1

33 95.9 18 Overload 1

34 94.7 12 Not Overload 0

35 96.3 19 Overload 1

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3466

Figure 2: Correlation Between Temperature and Processor
Utilization

Figure 3: Correlation Between Dependent task size and

Processor Utilization

 Figure 4: Correlation Between Temperature and Dependent task size

Figure 2 shows the correlation between percentage
CPU utilization with respect to temperature taken
from Linpack which is one of the most consistent
CPU benchmarks, figure 3 shows the correlation
between task size and percentage CPU utilization
this relation hypothesis is taken from task manager
in computer and figure 4 shows the correlation
between task size and temperature relation taken
from Assyad et al 2004 [24], obtained by KNN
algorithm is used to train machine learning trained
agent (LTA). In our projected model the parallel
task and ready task are assigned to base task queue
BTQ and processor task queue respectively PTQ.
BTQ and STQ positioned at the master scheduler

and tasks are mapped and executed at the separate
point from the master scheduler at PTQ for all
processors. It is noticeable here that task Scheduling
and the execution practice goes on simultaneously,
Thus the task scheduler and operational processors
must be tuned to each other.
Algorithm:

Step1. Procedure DTSA
Step2. Sort the Sent Out Task Queue as
STQ [] = SORT [Ti, Tj]
 i = 0;
While (STQ [] is not unfilled) do

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3467

 for i = 1 to n
. ptqi = stq [i]
 i= i + 1
 End for;
 End while;
Step3 For every one processor Pk in set of processor
do
 While (Pk is at running position)
 Bounce and chose next ptqk+1
 End while
Step4. Pk = ptqk[j]
 If (dependent task of ptqk[j] is in ftq)
 TP (ptqk[],Pk , j, ftq, cpk, CTj)
 Else
 do
 Advanced the pointer to the subsequent ptq
 If (reliant task of ptqk[j] is in ftq)
 Task Processing TP (ptqk[],Pk , j, ftq, cpk, CTj)
 Exit do
 End if
Step 5. While (check each ptq’s)
 End if
End for
End DTSA
Step 6. Method for Task Processing (TP)
Method TP (ptqk[],Pk,j,ftq,cpk,CTj)
 do Tj with Pk
Check CPU overloading
 If CPU temperature> 950 C && Thresh
hold Value of task dependency (15 Unit) CPU
Overload

 Then Go to Self-Reconfiguration (use KNN
Algorithm)
 {
 If H/w < H/w capacity required
 Then go for Hardware configuration
{
Go to Hardware pool
}
 Else if
 S/WCPU<S/W ReqVersion

Then go for S/w reconfiguration
{
Go to Software pool
}
 Else if
H/WCPU< H/W Capacity Required && S/WCPU<S/W

ReqVersion
 Then go for H/w and S/w reconfiguration
{
Go to Hardware and software pool
}
 }
 Else
Process the assigned task in a Normal way
Steps 7 remove Tj from ptqk
 Insert Tj in ftq
. cpk = cpk + Ctj
 End Task processing (TP).

4. RESULT AND DISCUSSION

According to the model shown in figure 1 DTSA,
the worst-case time complexity for DTSA (m3),
where m is the total number of tasks. Step 2
distributes all the functions in STQ to PTQi. Step 3
shows how to bring the journey to the processor in
each ptq. Step 4 examines the availability of TJs in
FTQs. If Tj is on hand then carry on with the
identical processors, otherwise select the
subsequently PTQ before working to obtain the
appropriate function. After assigning the task or
assigning it to the respective processor, post it to
PSW and remove it from PTQi. This progression
repeats every single one PTQi field. If any PTQ
completes its task set as soon as possible, change the
appropriate task from the available PTQs.

If, however, any task is not appropriate to bring that
cycle, the processor will have to wait until one of the
tasks based on FTQ becomes available. The waiting
time is called the processor inactive status. The time
intricacy of DTSA is O (m3), where m is the number
of tasks, intimately associated to the span of the STQ
and the totality figure of processors, which is
interrelated to the previous liaison between the
functions in the DAG.

Demonstrating the scheduling model and DTSA, a
succession of simulation experimentation was
intended. The DAG of the parallel task for
simulation is generated randomly. We have taken a
total number of the task are 12 and the number of
processors is 3. Table 2 represents the input data,
randomly by the DAGEN tool which generates the
direct acyclic graph with respect to weights edge and
nodes.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3468

PTQ has evenly distributed tasks with dependency
consideration. The initial or base stage status of
PTQi is illustrated in Table 3. The dynamic
scheduling is put into operation with the task
immigration for the duration of due to dependency at
the run time. Table 4 demonstrates the task
movement and the runtime irregularity of parallel
tasks. The scheduling span for a sole processor for

the taken example is 140-time units. The Time in use
to finish tasks by the initial processor (P1) is 54-time
units, for P2 are 67-time units and P3 is 48-time
units. We have taken as a supposition, the total
numeral of processors in the in our projected model
is assumed are of three in numbers.

 _______________Computation Cost__________________________

Figure 5: Computation Cost Of Scheduled Task By DSTA

Table 2: Input Task List With Dependency Tasks And
Processing Cost Generated By DGEN Tool

Task id
Parent Task

id
CP (Cost of Processing)

T0 - 11

T1 T0 3

T2 T0 11

T3 T0 18

T4 T3 5

T5 T1 17

T6 T0 4

T7 T0 16

T8 T4 17

T9 T2 15

T10 T8 2

T11 T4 19

Table 3: Processor Task Queue (Ptqi) At Base Stage

PTQ1 T0 T3 T5 T6

PTQ2 T2 T9 T11 T4

PTQ3 T7 T1 T8 T10

Table 4: Task Migration Between Processors

PTQ1 T0 T3 T5

Migrate
to P3 at
run time

T6
Migrate
to P1 at
run time

PTQ2 T2 T9 T11 T4
Migrate
to P1 at
run time

PTQ3 T7
Migrate
to P1 at
run time

T1
Migrate
to P1 at
run time

T8 T10

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3469

The minimum schedule Length (SL) can be obtained

from

rearchitectuin processer ofNumber

processer singlein length Schedule
 L S Minimum 

 Figure 5 illustrated the minimum schedule span of

the above example which is 46.

length Schedule

length Schedule Minimum
 speedup theHence, 

%6710066667.

66667.

69

46







We got a speed up the percentage of this model is 67
% in normal mode processor. For the
self-Reconfiguration capacity of processor, in
continuation of the above phenomena, the current
task assigned to the respected processor of each
three processors the respective probabilities and run
time dependency anomalies and at the same time
CPU loading is calculated by the task manager by
threshold temperature value which is 95 degrees
Celsius obtained by Some Scientific Benchmarks.
Hare temperature threshold values are taken into
major consideration with an additional parameter
task dependency thresh hold time 15 units when
processors need configuration or not which is
decided by the learned trigger agent (LTA) machine
learning model of CPU or processor. We obtained
tables 5 and 6 by Machine learning Agent (LTA)
according to sum (thresh hold) assumed standard
values.

Table 5: After Self Reconfiguration Decision The Updated Table

S.N. Processor
Task

id
Parent Task

id
CP (Cost of Processing) Decision for Self-Reconfiguration

1 P1 T0 - 11 0

2 P1 T3 T0 3 0

3 P1 T5 T0 11 0

4 P1 T6 T0 14 0

5 P2 T2 T3 5 0

6 P2 T9 T1 14 0

7 P2 T11 T0 4 0

8 P2 T4 T0 13 0

9 P3 T7 T4 14 0

10 P3 T11 T2 12 0

11 P3 T8 T8 2 0

12 P3 T9 T4 12 0

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3470

Table 6: Input Task List With Updated CP

Task id Parent Task id Updated CP (Cost of Processing)

T0 - 11

T1 T0 3

T2 T0 11

T3 T0 14

T4 T3 5

T5 T1 14

T6 T0 4

T7 T0 13

T8 T4 14

T9 T2 12

T10 T8 2

T11 T4 12

Now the values of the table no. 5 and 6 are applied
through our DTSA algorithm to our initial or base
task assignment table no. 4 and run-time anomalies
concerning task migration table no. 4 we find the

following computations cost of scheduled task by
DSTA with self-reconfiguration event with the
processor as per computing need of workload.

Figure: 6 Computation Cost Of Scheduled Task By DSTA In Self-Reconfiguration Mode

The minimum schedule length (SL) can be obtained
from

rearchitectuin processer ofNumber

processer singlein length Schedule
 SL Minimum 

 Figure 6 illustrated the minimum schedule length of
the above example which is 42.

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3471

length Schedule

length Schedule Minimum
 speedup theHence, 

%7510075.0

75.0

56

42







We got to speed up the percentage of this model is
75 % in the Self-reconfiguration mode processor So
it is clear that when we use the processor in normal
mode with the DSTA algorithm we obtained a speed
up 67% which is very good in comparison to various
static load scheduling algorithm and further when
we use DSTA with the self-reconfiguration mode of
the processor with the computing need to be decided
my machine learning Agent LTA be obtained speed
up value 75% which is greater than DTSA used with
the normal processor. But simultaneously with the
proper scheduling, with the help of our research
work, it is observed that the speed of the parallel
system in a distributed computing environment also

depends on the number of processors and its types in
the structural design with the numeral of tasks
arranged. For every case, the number of tasks and
the number of processors are straightforwardly
relative to each other. However, the structural
design used in our mold is not to entertain
communiqué costs, it is very low.
And additionally also compared DTSA with former
list scheduling algorithms; the Dynamic level
scheduling algorithm (DLS) and Levelized Min
Time (LMT) which are projected in the literature
concerning heterogeneous distributed computing
systems. The intricacy of DLS, LMT, algorithms is
O (m3n2), O (m2n2) respectively. Here we selected
some recently projected algorithms for upgrading
even numerous performance measures such as the
total run time are recommended in the literature
[16]. The comparison with above mentioned
previously published algorithm to our projected
DTSA (dynamic task scheduling algorithm) is
shown in table 7(a) and 7(b).

Table 7 (A) Comparison Of The Previous Algorithm To DTSA Algorithm

Algorithm Complexity Processor Number of Task Run Time
LMT O(m2n2) 3 10 95

DLS O(m3n) 3 10 91
DTSA(Proposed

Algorithm)
O(m3) 3 12 67

* When Processors Are Used In Normal Mode

Table 7(B) Comparison Of The Previous Algorithm To DTSA Algorithm

Algorithm Complexity Processor Number of Task Run Time
LMT O(m2n2) 3 10 95
DLS O(m3n) 3 10 91

DTSA(Proposed
Algorithm)

O(m3) 3 12 56

* DTSA Algorithm Is Used With Self-Reconfiguration Processor Mode

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3472

Figure 7: Run-Time Complexity Comparisons

From the comparison detail from both part of table 7
and form figure 7 it is clear that our projected
algorithm DTSA performs better than previously
published static scheduling algorithms. The result of
the projected dynamic scheduling mold and
scheduling algorithm provides DTSA based DAG
equivalent functions, Good schedule with high
speed up a percentage in both cases: normal mode
and self-reconfiguration Mode.

5. CONCLUSION AND FUTURE WORK

Here we developed a runtime task configuration
model with a dynamic task scheduling algorithm
DTSA using machine learning with optimal
complexity. Through DSTA we evaluate runtime
task alignment algorithms using DAG, which
includes auto-reassembly of processors capable of
implementing time optimization of tenant
configurations to suit computing needs with
dependency consideration and involuntary online
self-reconfiguration of a system’s hardware and
software as per changing workload. We found
improved results in comparison of other previously
published algorithm as DLS and LMT published by
other authors. So in both case: Normal mode
processor and with the use of self-Reconfiguration
mode processor our projected algorithm DTSA
confirms noteworthy enhancement in comparison to
fixed allotment of resources as used by DLS and
LMT methods. Even though our agent (LTA) is just
trained for one precise sphere, the method is
common and it may be used many potential
combinations of operating systems hardware

software, and workloads. of our algorithm we
obtained better results the previously published
algorithm by other authors. In future research, we
may have aim to trained learning agents to some
other specific domain for reliability and fault
tolerance for better outcomes by considering some
other parameter fault tolerance and reliability, as
well as investigation on different workloads.

REFERENCE:

[1] T. F. Abdelzaher and K. G. Shin., "Combined
task and message scheduling in distributed
real-time systems" IEEE Transaction on
Parallel and Distributed
Systems,Vol.10,No.11,Nov.1999,p.1179-1191.

[2] J.C.Palenci et al., "Schedulability analysis for
tasks with static and dynamic offsets", In
Proceeding of the 19th IEEE Real-Time
Systems Symposium, 1998, pp.26-37.

[3] Xiao Qin et al., "Reliability is driven scheduling
for real-time tasks with precedence constraints
in heterogeneous distributed systems" In
Proceeding of 12th International Conference
Parallel and Distributed Computing and
Systems, 2000, pp.1456-1466.

[4] Xiao Qin et al.," Real-time fault-tolerant
scheduling in heterogeneous distributed
systems," in proceeding of the 2000
International Conference on Parallel and
Distributed Processing Techniques and
Applications, V I, 2000, pp. 421-427.

[5] V.Kalogeraki et al., "Dynamic scheduling for
soft real-time distributed object systems," In
proceeding of Third IEEE International

Journal of Theoretical and Applied Information Technology
30th November 2020. Vol.98. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3473

Symposium on Object-Oriented Real-Time
Distributed Computing, 2000, pp. 114-121.

[6] G.Manimaran et al., "An efficient dynamic
scheduling algorithm for multiprocessor
real-time systems," IEEE Transaction on
Parallel and Distributed system, Vol.9, No.3,
1998, pp. 312-319.

[7] Dan Ma et al., "Dynamic Scheduling Algorithm
for Parallel Real-time Jobs in Heterogeneous
System" Proceedings of the Fourth
International Conference on Computer and
Information Technology (CIT‟04) IEEE,2004,
pp.462-466.

[8] Kai Hwang, “Computer Architecture and Parallel
Processing”, Mc Graw Hill Publication 1984.

[9] G.J. Joyce Mary et al., “Dynamic Task
Scheduling in Multiprocessor and the Swift
Embryonic World of Parallel Computing – A
Survey", Published in the International Journal
of Algorithm, Computing, and Mathematics –
Vol. III – No. 4,2010 pp.53-60.

[10] D.I. George et al., “A new DAG based Dynamic
Task Scheduling Algorithm (DYTAS) for
Multiprocessor Systems”, International Journal
of Computer Applications Volume 19-No.8,
April 2011, pp.24-28.

[11] Michael Kirchhoff et al., “A Real-Time
Capable Dynamic Partial Reconfiguration
System for an Application-Specific Soft-Core
processor”, in International Journal of
Reconfiguration Computing. Volume 19, June
2019, pp.1-14.

[12] Ira Cohen et al., “Capturing, indexing,
clustering, and retrieving system history”. In
Proceedings of the 20th ACM Symposium on
Operating Systems Principles, October 2005,
pp105–118.
[13] Ira Cohen et al., “Fast effective rule

induction. In Proceedings of the 12th
International Conference on Machine
Learning (ICML-95), 1995, pp 115–123.

[14] Daniel F Garcia et al, “TPC-W e-commerce
benchmark evaluation Computer”, IEEE
Computer 36(2) Feb 2003 pp.42–48.

[15] M.Karlsson et al., “Dynamic black-box
performance model estimation for self-tuning
regulators”, In Proceedings of the 2nd
International Conference on Autonomic
Computing, June 2005 pp.172–182.

[16] Anna M Haywood et al, "The relationship
among CPU utilization, temperature, and
thermal power for waste heat utilization" in the
journal of Energy Conversion and

Management, Volume 95, May 2015
pp.297-303.

[17] J. Norris et al., "On-Call: Defeating spikes
with a free-market application cluster". In
Proceedings of the 1st International Conference
on Autonomic Computing, May 2004
pp.198–205.

[18] M.Oslake et al., “Capacity model for Internet
transactions. Technical Report MSR-
TR-99-18, Microsoft Corporation, April
1999,pp 1-13.

[19] Dino Quintero et al., “Introduction to P-Series
partitioning”, International Business Machines
Corporation, November 2004 pp.1-293.

[20] B. Urgaonkar et al., "Dynamic provisioning of
multi-tier internet applications". In Proceedings
of the 2nd International Conference on
Autonomic Computing, June 2005 pp.
217–228.

[21] J. Wildstrom et al., “Towards
self-configuring hardware for distributed
computer systems" In Proceedings of the 2nd
International Conference on Autonomic
Computing, June 2005 pp.241–249.

[22] J. Wildstrom et al., “Adapting to workload
changes through on-the-fly reconfiguration”,
Technical Report UT-AI-TR-06-330, May
2006 pp.1-15.

[23] Witten and Franke et al. “Data Mining: Practical
machine learning tools with Java
implementations”, Morgan Kaufmann, San
Francisco, pp.1-558, 2000.

[24] Assayad, A. Girault and H. Kalla, "A bi-criteria
scheduling heuristic for distributed embedded
systems under reliability and real-time
constraints," International Conference on
Dependable Systems and Networks, Florence,
Italy, 2004, pp. 347-356.

[25] Becker, M et al., "Dynamic and partial FPGA
exploitation" Proceedings of the IEEE, 95(2),
Feb 2007 pp. 438 –452.

[26] Christopher Claus et al., “Using partial-run-time
reconfigurable hardware to accelerate video
processing in driver assistance system”, In
Proceedings of the conference on Design,
automation and test in Europe, Nice, France,
May 2007, pp.498-503.

[27] Prasant Singh Yadav et al., “Scheduling of Task
Graph Using DAG with Dual Mode Processors
in Heterogeneous Distributed Computing
System”, In International Journal of Advanced
Science and Technology 29(05),May 2020
pp.9806-9817.

