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ABSTRACT 
 

Real-time pedestrian and vehicle detection on embedded devices play crucial role in many intelligent 
transport systems because of the limited hardware in autonomous driving devices. This paper presents a 
lightweight two-stage detector for real-time pedestrian and vehicle detection. The proposed detector includes 
a lightweight backbone at first stage and a lightweight detection network at second stage. The proposed 
lightweight backbone is designed based on the ShuffleNetv2 network, which achieves the best accuracy in 
very limited computational budgets. The proposed lightweight detection network consists of an improved R-
CNN to improve the computational cost and a separable convolution module to increase the receptive field. 
In addition, a lightweight region proposal network is used to improve both accuracy and inference speed of 
proposals generation stage. The lightweight region proposal network includes pointwise convolution to 
reduce the number of channels of input features and dilated convolution to enlarge the receptive field. The 
KITTI dataset is adopted to evaluate the effectiveness of the proposed detector. Experimental results on recent 
embedded devices, including Raspberry Pi 4 and NVIDIA Jetson TX2, and GPU-based computer show that 
the proposed method achieves a much better trade-off between accuracy and efficiency compared with recent 
methods and meets the requirement for real-time object detection on embedded platforms. 

Keywords: Vehicle Detection, Pedestrian Detection, Convolutional Neural Network, Embedded Platforms, 
Real-time Detection, Lightweight Network 

 
 
 
1. INTRODUCTION  
 

Real-time object detection on embedded 
devices is a crucial but challenging task in computer 
vision. Compared with GPU-based computer, 
embedded devices are computation-constrained and 
raise more strict restrictions on the computational 
cost of detectors. However, recent deep CNN-based 
object detection frameworks are resource-hungry 
and require massive computation to achieve good 
detection accuracy, which hinders them from real-
time inference in embedded platforms. A deep CNN-
based object detection framework usually includes 
two parts: a backbone network and a detection 
network. The backbone network first extracts feature 
from input image, and the detection network locates 
every object in image. Recent state-of-the-art 
backbone networks such as ResNet, VGG, 
Inception, Inception-ResNets usually consist of 
many convolution layers and adopt large input 
images, which requires massive computational cost. 
Recently, researchers have developed lightweight 

backbone network such as MobileNetv1, 
MobileNetv2, ShuffleNetv1, ShuffleNetv2 to 
facilitate real-time object detection. In the detection 
part, recent state-of-the-art detection frameworks 
can be divided into two groups: one-stage 
framework and two-stage framework. Two-stage 
frameworks usually include a region proposal 
network (RPN) at first stage for generating object 
proposals and a detection network at second stage 
for localizing and classifying objects. Recent state-
of-the-art two-stage frameworks such as Faster R-
CNN adopted a heavy detection part for better 
accuracy, but it is too expensive for embedded 
devices. On the other hand, one-stage frameworks 
directly predict bounding boxes and class 
probabilities without generating object proposals. 
The detection network of one-stage frameworks is 
usually based on additional layers to generate 
predictions, which usually requires a small 
computational cost. For this reason, one-stage 
frameworks are usually faster than two-stage 
frameworks. However, as one-stage frameworks do 
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not conduct RoI-wise feature extraction and 
recognition, their results are coarser than two-stage 
detectors.  

With above research ideals, this paper presents 
a real-time framework for pedestrian and vehicle 
detection on embedded devices. The proposed 
framework is based on two-stage architecture. In the 
proposed framework, a lightweight backbone 
network based on ShuffleNetv2 is designed to 
increase the speed of feature extraction stage. A 
lightweight region proposal network and a 
lightweight detection network are designed to 
improve both detection accuracy and inference 
speed. Experimental results on Raspberry Pi 4 and 
NVIDIA Jetson TX2 show that the proposed 
framework meets the requirement for real-time 
object detection on embedded platforms. 

The remaining of this paper is organized as 
follows. Section 2 introduces the related work. 
Section 3 details the proposed framework. Section 4 
provides the experimental results and comparison 
between the proposed method and other methods on 
public datasets. Finally, the conclusions and future 
works is drawn in Section 5. 
 
2. RELATED WORK 
 
2.1 Light Weight Deep CNN Architecture 

Recently, researchers have developed 
lightweight backbone network to facilitate real-time 
processing systems. Most state-of-the-art efficient 
backbone networks [2, 3, 5] use depth-wise 
separable convolutions [2]. Depth-wise separable 
convolutions factor a convolution into two stages to 
reduce computational complexity: depth-wise 
convolution and pointwise convolution. Depth-wise 
convolution performs light-weight filtering by 
applying a single convolutional kernel per input 
channel, and pointwise convolution usually expands 
the feature map along channels by learning linear 
combinations of the input channels. Another group 
of lightweight backbone networks [16, 17] adopts 
group convolution [18], where input channels and 
convolutional kernels are factored into groups and 
each group is convolved independently. In addition 
to convolutional factorization, a network’s 
efficiency and accuracy can be further improved 
using methods such as channel shuffle and channel 
split [5]. Another approach to improve inference of 
a pre-trained network is low-bit representation of 
network weights using quantization [19, 20]. These 
approaches use fewer bits to represent weights of a 
pre-trained network instead of 32-bit high-precision 
floating points. For lightweight detection network, it 
is common that one-stage detectors are regarded as 

the key to real-time detection. For instance, 
YOLO/YOLOv2 [14] and SSD [13] run in real time 
on GPU. When coupled with small backbone 
networks, lightweight one-stage detectors, such as 
MobileNet-SSD [2], MobileNetV2-SSDLite [3], 
Pelee [21] and Tiny-DSOD [22], achieve inference 
on mobile devices at low frame rates. For two-stage 
detectors, Light-Head R-CNN [6] utilizes a light 
detection head and runs at over 100 fps on GPU. 
Light-Head R-CNN proposed a light-head design to 
build an efficient yet accurate two-stage detector. 
Specifically, a large-kernel separable convolution 
was applied to produce “thin” feature maps with 
small channel number. This design greatly reduces 
the computation of following RoI-wise subnetwork 
and makes the detection system memory-friendly. A 
cheap single fully connected layer is attached to the 
pooling layer, which well exploits the feature 
representation for classification and regression. 
 
2.2 Pedestrian and Vehicle Detection 

The huge success of deep learning and CNN 
technologies significantly boost research and 
development of autonomous driving. The popular 
models are applied and enhanced for object detection 
in driving environments, including pedestrian and 
vehicle. However, the popular models including 
Faster-RCNN, SSD, YOLO, YOLOv2 did not 
produce good detection accuracy results over the 
KITTI test dataset. But with certain modifications 
and adaptations, the variants of Faster-RCNN and 
SSD models are taking the top entries in the KITTI 
object detection leader board. For example, [23] 
improved the region proposal quality with resource 
to subcategory information. [24] presented an 
improved framework for vehicle detection based on 
deconvolutional modules and multi-layer region 
proposal network. As it is hard for Faster-RCNN to 
handle the large object size variation, which is 
designed to detect all the objects on a single layer, 
MS-CNN [15] extends the detection over multiple 
scales of feature layers, which produces good 
detection performance improvement. Scale 
dependent pooling and cascaded rejection classifiers 
are used in [25]. In [26], authors propose a recurrent 
rolling convolution architecture on top of SSD 
model, which produces top detection performance 
for pedestrian detection. However, the RRC model 
is very complex and significantly increases 
computation time. 
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3. PROPOSED FRAMEWORK 
 

 

Table 1: The Architecture of The Original ShuffleNetv2 [5]. 

Layer Type Kernel Size Stride Repeat Output Size Output 
Channel 

0 Conv1 3×3 2 1 112×112 24 

1 MaxPool 3×3 2 1 56×56 24 

2 Shuffle Unit 3×3 depthwise 
convolution layers 

2 
1 

1 
3 

28×28 176 

3 Shuffle Unit 3×3 depthwise 
convolution layers 

2 
1 

1 
7 

14×14 352 

4 Shuffle Unit 3×3 depthwise 
convolution layers 

2 
1 

1 
3 

7×7 704 

5 Conv5 1×1 1 1 7×7 1024 

6 GlobalPool 7×7   1×1  

7 FC     1000 

Table 2: The Final Backbone Network Architecture Used in This Paper. 

Layer Type Kernel Size Stride Repeat Output Size Output 
Channel 

0 Conv1 3×3 2 1 112×112 24 

1 MaxPool 3×3 2 1 56×56 24 

2 Shuffle Unit 5×5 depthwise 
convolution layers 

2 
1 

1 
3 

28×28 60 

3 Shuffle Unit 5×5 depthwise 
convolution layers 

2 
1 

1 
7 

14×14 120 

4 Shuffle Unit 5×5 depthwise 
convolution layers 

2 
1 

1 
3 

7×7 240 

5 Conv5 1×1 1 1 7×7 512 

 
3.1 Backbone Network 

The backbone network in deep CNN 
frameworks extracts features from the input image, 
thus having a great influence on both accuracy and 
efficiency of the whole framework. Specifically, a 
lightweight deep CNN backbone will improve the 
inference speed of the whole framework. Recent 
deep CNN-based object detectors adopt pre-trained 
classification network on ImageNet [1] as the 
backbone network. However, as classification and 
object detection conduct different tasks on the 
backbone network, simply using pre-trained 
classification backbone for object detection task 
does not achieve good results. In the backbone 
network, low-level feature maps at shallow layers 
have higher resolution. However, high-level feature 
maps at deep layers contain more discriminative 
information. The high-resolution feature maps 
facilitate the localization subtask, and the high-level 
feature maps enhance the classification subtask. For 

the localization subtask, the receptive field in deep 
CNN layers plays a crucial role. Each layer of a deep 
CNN backbone can capture only information inside 
receptive field. Thus, a large receptive field can 
leverage more context information, which enhances 
the performance of the localization subtask, 
especially for large objects. Recent lightweight deep 
CNN backbones such as MobileNetv1 [2], 
MobileNetv2 [3], ShuffleNetv1 [4], and 
ShuffleNetv2 [5] contain a fixed receptive field in 
each layer, thus decreasing the performance of 
localization subtask in object detection framework. 
With above insights, this paper designs a lightweight 
deep CNN backbone network based on 
ShuffleNetv2 [5] for real-time vehicle and 
pedestrian detection on mobile and embedded 
devices. The architecture of the original 
ShuffleNetv2 is shown in Table 1. ShuffleNetv2 is a 
lightweight deep CNN network which achieves the 
best accuracy in very limited computational budgets. 
By shuffling the channels, ShuffleNetv2 
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outperformed MobileNetV1, MobileNetv2, and 
ShuffleNetv1. Based on the ShuffleNetv2, this paper 

first replaces all 3×3 depthwise convolution layers in 
ShuffleNetv2 by 5×5 depthwise convolution layers. 

 
Figure 1: The Structure of Lightweight RPN for Generating Object Proposals Used in This Paper.

By using 5×5 depthwise convolution layers, the 
receptive field is enlarged to capture more semantic 
information, while providing similar computational 
budget to 3×3 convolution layers. Next, to balance 
information between low-level feature maps and 
high-level feature maps, this paper uses a 1×1 
convolution layer to compress the number of 
channels of Conv5 layer in ShuffleNetv2 to 512 
channels and increases the number of channels in 
shallow layers at the same time. This method can 
effectively balance the feature information between 
low-level and high-level feature, thus improving 
both classification subtask and localization subtask. 
In addition, by modifying the number of channels 
between convolution layers, there is no additional 
computational cost adding in new network. The final 
backbone network architecture used in this paper is 
presented in Table 2. 
 
3.2 Lightweight Region Proposal Network 

Regular two-stage object detectors usually 
adopt region proposal network (RPN) at first stage 
for generating object proposals. At second stage, a 
heavy detection head including full connected layers 
is used to further classify and regress object 
proposals. Light-Head R-CNN [6] adopted a 
lightweight detection head to improve the 
computational cost of the network. However, the 
proposed detection network in Light-Head R-CNN 
is still too complicated when coupled with 
lightweight backbone networks. In addition, Light-
Head R-CNN adopted imbalance features between 
the backbone and the detection part. This imbalance 
not only leads to redundant computation but 
increases the risk of overfitting. To address this 
issue, this paper designs a lightweight RPN for 
generating object proposals. Figure 1 illustrates the 
structure of the proposed lightweight RPN.  First, a 
1×1 convolution layer is used after input feature 

maps to reduce the number of channels of input 
feature maps. Reducing the number of channels of 
input features can further reduce the number of 
parameters in the subsequent convolutional layers, 
thus improving the inference speed. Then, 3×3 
dilated convolution with dilation rate at 2 is adopted 
to replace standard 3×3 convolution in the original 
RPN. Dilated convolution is used to enlarge the 
receptive field, thus including more information 
from other areas to help recognize the boundaries of 
objects. By using dilated convolution, the number of 
parameters does not increase while including more 
context information. For scales and aspect ratios, this 
paper sets three aspect ratios [1:2, 1:1, 2:1] and five 
scales [32×32; 64×64; 128×128; 256×256; 
512×512] to cover vehicle and pedestrian of 
different shapes. Since there are many proposals 
heavily overlapping with each other, non-maximum 
suppression (NMS) is used to reduce the number of 
proposals. This paper sets the intersection over-
union (IoU) threshold of 0.7 and 0.5 for vehicle and 
pedestrian respectively. Training labels of anchor 
boxes are designed based on their IoU ratios with 
ground-truth bounding boxes. If the anchor has IoU 
over 0.7/0.5 with any ground-truth box, it will be set 
a positive label. Anchors which have highest IoU for 
ground-truth box will also be assigned a positive 
label. Meanwhile, if extra anchors have IoU less than 
0.3 with all ground-truth box, their labels will be 
negative. 
 
3.3 Light Detection Network 

Faster R-CNN [7] adopts R-CNN [8], which 
utilized two large fully connected layers, as a second 
stage classifier which is beneficial to the detection 
performance. The R-CNN adopted at second stage 
enhances the detection performance of Faster R-
CNN and its extensions. However, the 
computational cost of the R-CNN is intensive, 
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especially when the number of object proposals 
generated by the RPN is large. Follow Light-Head 

R-CNN [6], this paper adopts the Light-Head R-
CNN as shown in Figure 2 to improve the 

 
Figure 2: The Detection Network Used in This Paper.

 
Figure 3: The Structure of Large Separable Convolution Module Used in This Paper.

computational cost. As shown, a large separable 
convolution module [9] whose structure is shown in 
Figure 3 is used after the final layer of the backbone 
network to generate a thin feature map with α×β×β 
channels before RoI pooling layer, where β = 7 is the 
pooling size, and α is a reduced factor. In this paper, 
α is set to 5 instead of 10 in Light-Head R-CNN to 
eliminate redundant computation. The separable 
convolution module significantly increases the 
receptive field. For the R-CNN subnet, a single fully 
connected layer with 1024 channels is used in R-
CNN subnet to further reduce the computational cost 
of R-CNN subnet without sacrificing accuracy, 
followed by two sibling fully connected layers to 
predict RoI classification and regression. 
 
 

4. EXPERIMENTAL RESULTS 
 
4.1 Embedded Platforms for Real Time 
Pedestrian and Vehicle Detection 

This paper uses recent embedded devices for 
evaluating the performance of the proposed method 
on real-time pedestrian and vehicle detection, 
including Raspberry Pi 4 [10] and Jetson TX2 [11]. 
In addition, this paper conducts experiments on 
NVIDIA GTX 1080 GPU to compare the detection 
performance of the proposed method with recent 
methods on pedestrian and vehicle detection. 

 
Raspberry Pi 4 

Raspberry Pi 4 (Figure 4) is the latest, cheapest, 
and most flexible tiny product in the popular 
Raspberry Pi range of computers. Raspberry Pi 4 
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provides a great improvement in processor speed, 
multimedia performance, memory, and connectivity 

compared with recent Raspberry Pi 3 Model B+. The 
key features of the Raspberry Pi 4 module include a 

 
Figure 4: Raspberry Pi 4 [10].

 
Figure 5: Jetson TX2 [11].

high-performance Broadcom BCM2711, a quad-
core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz, 
a pair of micro-HDMI ports which are used to 
connect dual displays with 4k resolution, H.265 and 
H.264 hardware video decoding (maximally 
supporting up to 4Kp60 ), 8GB RAM, dual-band 
2.4/5.0 GHz IEEE 802.11ac wireless (wireless 
LAN), OpenGL ES, 3.0 graphics, Bluetooth 5.0, 
Bluetooth Low Energy (BLE), standard 40-pin 
GPIO, Gigabit Ethernet (2 × USB 2.0 ports and 3.0 
ports), a micro SD card slot for loading OS and data 
storage, operating temperature 00C˗500C, and power 
over Ethernet (PoE) enabled (requires separate PoE 
HAT). 

 
NVIDIA Jetson TX2 

NVIDIA Jetson TX2 (Figure 5) is one of the 
fastest and most power efficient embedded devices. 

Jetson TX2 provides an easy environment to deploy 
hardware and software for real-time object detection. 
Jetson TX2 supports NVIDIA Jetpack on a software 
development kit (SDK) which includes a board 
support package (BSP), deep learning libraries, 
computer vision applications, GPU computational 
power, and image and video processing. Jetson TX2 
features include dual-core NVIDIA Denver2 + quad-
core ARM Cortex-A57, an integrated 256-core 
NVIDIA Pascal GPU, 8GB with 128-bit interface 
DDR4 internal memory, 32 GB external memory 
card, 4kp60 H.264/ H.265 encoder, and a decoder. 
Jetson TX2 supports 10/100/1000 BASE-T Ethernet, 
HDMI 2.0, M.2 Key E, SD, GPIOs, I2C, I2S, SPI, 
and Dual CAN bus, and provides on-chip TTL 
UART. Jetson TX2 provides USB 3.0, USB 2.0, and 
micro USB. Jetson TX2 is useful for developing 
applications in the field of computer vision and deep 
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learning, since it runs with open-source Linux OS 
and performs calculations over one teraflop. 

 
 

 
Figure 6: Images in The KITTI Dataset [12].

4.2 Dataset and Evaluation Metrics 
In order to evaluate the effectiveness of the 

proposed approach on real-time pedestrian and 
vehicle detection on embedded devices, this paper 
conducts experiments on widely used public dataset: 
KITTI dataset [12]. KITTI dataset is a widely used 
dataset for evaluating vehicle and pedestrian 
detection algorithms. This dataset consists of 7481 
images for training with available ground-truth and 
7518 images for testing with no available ground-
truth. Images in this dataset include various scales of 
vehicle and pedestrian in different scenes and 
conditions and were divided into three difficulty-
level groups: easy, moderate, and hard as shown in 
Figure 6. If the bounding boxes size was larger than 
40 pixels, a completely unshielded 
vehicle/pedestrian was considered to be an easy 
object, if the bounding boxes size was larger than 25 
pixels but smaller than 40 pixels, a partially shielded 
vehicle/pedestrian was considered as a moderate 
object, and an vehicle/pedestrian with the bounding 
boxes size smaller than 25 pixels and an invisible 
vehicle/pedestrian that was difficult to see with the 
naked eye were considered as hard objects.  

For evaluation metrics, this paper uses the 
average precision (AP) and intersection over union 
(IoU) metrics [12] to evaluate the performance of the 
proposed method in all three difficulty level groups 
of the KITTI dataset. These criteria have been used 
to assess various object detection algorithms. As in 
[12], the IoU is set to 0.7 for vehicle and 0.5 for 
pedestrian in this paper, which means only the 

overlap between the detected bounding box and the 
ground truth bounding box greater than or equal to 
70% and 50% is considered as a correct detection. 
 
4.3 Experimental Results 
 This section presents the detection results of 
the proposed method and recent methods on the 
KITTI dataset. First, this paper conducts 
experiments on the KITTI test set by using the 
proposed model and recent models to compare the 
detection performance. The reference models 
include SSD [13], Faster R-CNN [7], YOLOv2 [14], 
and MS-CNN [15]. All models are implemented on 
NVIDIA GTX 1080 GPU. Table 3 presents the 
detection results of the proposed model and 
reference models on all three difficulty-level groups 
of the KITTI test set. As shown in Table 3, the 
proposed model obtains 88.46%, 84.31%, and 
73.12% of the AP on easy, moderate, and hard group 
respectively for vehicle detection. For pedestrian 
detection, the proposed model obtains 84.12%, 
74.98%, and 63.48% of the AP on easy, moderate, 
and hard group respectively.  It can be observed that 
the proposed model achieves superior results to 
state-of-the-art object detectors, including both one-
stage and two-stage detectors such as Faster R-CNN, 
SSD, and YOLOv2. Compared with MS-CNN, the 
proposed method achieves competitive results. 
However, MS-CNN adopted multi-scale features at 
different layers for object detection, thus increasing 
the computational cost. Specially, the proposed 
method outperforms all reference methods on the 
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inference speed. More specific, the proposed method 
takes 0.04-0.06 second for processing an image. This 
result demonstrates that the proposed method  

Table 3: Detection Results on All Three Difficulty-Level Groups of The KITTI Test Set. 

Method AP (%) Time (s) 

 Vehicle Pedestrian  

 Easy Moderate Hard Easy Moderate Hard  

Faster R-CNN [5] 86.71  
 

81.84  
 

71.12  
 

76.21 62.14 60.33 2.5˗3.6 

SSD [11] 77.71  
 

64.06  
 

56.17  
 

25.12 18.20 16.21 0.12˗0.33 

YOLOv2 [12] 76.79  
 

61.31  
 

50.25  
 

22.16 16.16 15.82 0.08˗0.16 

MS-CNN [13] 90.03  
 

89.02  
 

76.11  
 

84.12 74.98 63.48 0.6˗0.8 

Proposed Model 88.46 84.31 73.12 80.63 72.18 64.02 0.04-0.06 

Table 4: The Performance Results in Terms of Model Complexity, Computational Complexity, and Inference Speed. 

Method Backbone Model Size (MB) GFLOPs FPS 

    Raspberry Pi 4 Jetson TX2 

SSD MobileNetv1 35 1.2 3˗5 7˗9 

Faster R-CNN VGG-16 520 150 0.1 0.8 

Proposed Model ShuffleNetv2 30 1.12 4˗6 10˗12 

achieves a much better trade-off between accuracy 
and efficiency. 

Next, to evaluate the effectiveness of the 
proposed method on real-time detection based on 
embedded devices, this paper conducts experiments 
on Raspberry Pi 4 and NVIDIA Jetson TX2. For the 
model complexity, this paper analyzes from the total 
learnable parameter that each model had. The model 
complexity itself has two values, which comes from 
the total number of parameter and the model size in 
terms of MB. For the computational complexity, 
total floating-point operations (GFLOPs) are used as 
the computational complexity value. In addition, the 
FPS of each model is calculated on both Raspberry 
Pi 4 and NVIDIA Jetson TX2 to compare the 
inference speed. Table 4 shows the performance 
results of the proposed model and reference models 
in terms of model complexity, computational 
complexity, and inference speed. As shown, the 
proposed model for vehicle and pedestrian detection 
running on NVIDIA Jetson TX2 and Raspberry Pi 4 
achieves inference speed of 10˗12 fps and 4˗6 fps 
respectively. This result shows that the proposed 
method meets the requirement for real-time object 
detection on embedded platforms. It can be observed 
that the proposed model surpasses both SSD and 
Faster R-CNN framework in terms of model 

complexity, computational complexity, and 
inference speed. Figure 7 visualizes several 
examples of detection results of the proposed 
method on the KITTI test set. 
 
5. CONCLUSIONS 
 

This paper presents a real-time framework for 
pedestrian and vehicle detection on embedded 
devices. The proposed framework is based on two-
stage architecture. In the proposed framework, a 
lightweight backbone network based on 
ShuffleNetv2 is designed to increase the speed of 
feature extraction stage. A lightweight region 
proposal network including pointwise convolution 
and dilated convolution is designed to enlarge the 
receptive field. Furthermore, a lightweight detection 
network including an improved R-CNN to improve 
the computational cost and a separable convolution 
module to increase the receptive field is presented to 
improve both detection accuracy and inference 
speed. Experimental results on Raspberry Pi 4, 
NVIDIA Jetson TX2, and GPU-based computer 
show that the proposed framework meets the 
requirement for real-time object detection on 
embedded platforms and achieves a much better 
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trade-off between accuracy and efficiency compared 
with recent methods. 
 

 
 
 

 
Figure 7: Examples of Detection Results of The Proposed Method on The KITTI Test Set.
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