
Journal of Theoretical and Applied Information Technology
15th November 2020. Vol.98. No 21
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3405

REAL-TIME VEHICLE AND PEDESTRIAN DETECTION ON
EMBEDDED PLATFORMS

HOANH NGUYEN

Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh

City, Vietnam

E-mail: nguyenhoanh@iuh.edu.vn

ABSTRACT

Real-time pedestrian and vehicle detection on embedded devices play crucial role in many intelligent
transport systems because of the limited hardware in autonomous driving devices. This paper presents a
lightweight two-stage detector for real-time pedestrian and vehicle detection. The proposed detector includes
a lightweight backbone at first stage and a lightweight detection network at second stage. The proposed
lightweight backbone is designed based on the ShuffleNetv2 network, which achieves the best accuracy in
very limited computational budgets. The proposed lightweight detection network consists of an improved R-
CNN to improve the computational cost and a separable convolution module to increase the receptive field.
In addition, a lightweight region proposal network is used to improve both accuracy and inference speed of
proposals generation stage. The lightweight region proposal network includes pointwise convolution to
reduce the number of channels of input features and dilated convolution to enlarge the receptive field. The
KITTI dataset is adopted to evaluate the effectiveness of the proposed detector. Experimental results on recent
embedded devices, including Raspberry Pi 4 and NVIDIA Jetson TX2, and GPU-based computer show that
the proposed method achieves a much better trade-off between accuracy and efficiency compared with recent
methods and meets the requirement for real-time object detection on embedded platforms.

Keywords: Vehicle Detection, Pedestrian Detection, Convolutional Neural Network, Embedded Platforms,
Real-time Detection, Lightweight Network

1. INTRODUCTION

Real-time object detection on embedded
devices is a crucial but challenging task in computer
vision. Compared with GPU-based computer,
embedded devices are computation-constrained and
raise more strict restrictions on the computational
cost of detectors. However, recent deep CNN-based
object detection frameworks are resource-hungry
and require massive computation to achieve good
detection accuracy, which hinders them from real-
time inference in embedded platforms. A deep CNN-
based object detection framework usually includes
two parts: a backbone network and a detection
network. The backbone network first extracts feature
from input image, and the detection network locates
every object in image. Recent state-of-the-art
backbone networks such as ResNet, VGG,
Inception, Inception-ResNets usually consist of
many convolution layers and adopt large input
images, which requires massive computational cost.
Recently, researchers have developed lightweight

backbone network such as MobileNetv1,
MobileNetv2, ShuffleNetv1, ShuffleNetv2 to
facilitate real-time object detection. In the detection
part, recent state-of-the-art detection frameworks
can be divided into two groups: one-stage
framework and two-stage framework. Two-stage
frameworks usually include a region proposal
network (RPN) at first stage for generating object
proposals and a detection network at second stage
for localizing and classifying objects. Recent state-
of-the-art two-stage frameworks such as Faster R-
CNN adopted a heavy detection part for better
accuracy, but it is too expensive for embedded
devices. On the other hand, one-stage frameworks
directly predict bounding boxes and class
probabilities without generating object proposals.
The detection network of one-stage frameworks is
usually based on additional layers to generate
predictions, which usually requires a small
computational cost. For this reason, one-stage
frameworks are usually faster than two-stage
frameworks. However, as one-stage frameworks do

Journal of Theoretical and Applied Information Technology
15th November 2020. Vol.98. No 21
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3406

not conduct RoI-wise feature extraction and
recognition, their results are coarser than two-stage
detectors.

With above research ideals, this paper presents
a real-time framework for pedestrian and vehicle
detection on embedded devices. The proposed
framework is based on two-stage architecture. In the
proposed framework, a lightweight backbone
network based on ShuffleNetv2 is designed to
increase the speed of feature extraction stage. A
lightweight region proposal network and a
lightweight detection network are designed to
improve both detection accuracy and inference
speed. Experimental results on Raspberry Pi 4 and
NVIDIA Jetson TX2 show that the proposed
framework meets the requirement for real-time
object detection on embedded platforms.

The remaining of this paper is organized as
follows. Section 2 introduces the related work.
Section 3 details the proposed framework. Section 4
provides the experimental results and comparison
between the proposed method and other methods on
public datasets. Finally, the conclusions and future
works is drawn in Section 5.

2. RELATED WORK

2.1 Light Weight Deep CNN Architecture

Recently, researchers have developed
lightweight backbone network to facilitate real-time
processing systems. Most state-of-the-art efficient
backbone networks [2, 3, 5] use depth-wise
separable convolutions [2]. Depth-wise separable
convolutions factor a convolution into two stages to
reduce computational complexity: depth-wise
convolution and pointwise convolution. Depth-wise
convolution performs light-weight filtering by
applying a single convolutional kernel per input
channel, and pointwise convolution usually expands
the feature map along channels by learning linear
combinations of the input channels. Another group
of lightweight backbone networks [16, 17] adopts
group convolution [18], where input channels and
convolutional kernels are factored into groups and
each group is convolved independently. In addition
to convolutional factorization, a network’s
efficiency and accuracy can be further improved
using methods such as channel shuffle and channel
split [5]. Another approach to improve inference of
a pre-trained network is low-bit representation of
network weights using quantization [19, 20]. These
approaches use fewer bits to represent weights of a
pre-trained network instead of 32-bit high-precision
floating points. For lightweight detection network, it
is common that one-stage detectors are regarded as

the key to real-time detection. For instance,
YOLO/YOLOv2 [14] and SSD [13] run in real time
on GPU. When coupled with small backbone
networks, lightweight one-stage detectors, such as
MobileNet-SSD [2], MobileNetV2-SSDLite [3],
Pelee [21] and Tiny-DSOD [22], achieve inference
on mobile devices at low frame rates. For two-stage
detectors, Light-Head R-CNN [6] utilizes a light
detection head and runs at over 100 fps on GPU.
Light-Head R-CNN proposed a light-head design to
build an efficient yet accurate two-stage detector.
Specifically, a large-kernel separable convolution
was applied to produce “thin” feature maps with
small channel number. This design greatly reduces
the computation of following RoI-wise subnetwork
and makes the detection system memory-friendly. A
cheap single fully connected layer is attached to the
pooling layer, which well exploits the feature
representation for classification and regression.

2.2 Pedestrian and Vehicle Detection

The huge success of deep learning and CNN
technologies significantly boost research and
development of autonomous driving. The popular
models are applied and enhanced for object detection
in driving environments, including pedestrian and
vehicle. However, the popular models including
Faster-RCNN, SSD, YOLO, YOLOv2 did not
produce good detection accuracy results over the
KITTI test dataset. But with certain modifications
and adaptations, the variants of Faster-RCNN and
SSD models are taking the top entries in the KITTI
object detection leader board. For example, [23]
improved the region proposal quality with resource
to subcategory information. [24] presented an
improved framework for vehicle detection based on
deconvolutional modules and multi-layer region
proposal network. As it is hard for Faster-RCNN to
handle the large object size variation, which is
designed to detect all the objects on a single layer,
MS-CNN [15] extends the detection over multiple
scales of feature layers, which produces good
detection performance improvement. Scale
dependent pooling and cascaded rejection classifiers
are used in [25]. In [26], authors propose a recurrent
rolling convolution architecture on top of SSD
model, which produces top detection performance
for pedestrian detection. However, the RRC model
is very complex and significantly increases
computation time.

Journal of Theoretical and Applied Information Technology
15th November 2020. Vol.98. No 21
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3407

3. PROPOSED FRAMEWORK

Table 1: The Architecture of The Original ShuffleNetv2 [5].

Layer Type Kernel Size Stride Repeat Output Size Output
Channel

0 Conv1 3×3 2 1 112×112 24

1 MaxPool 3×3 2 1 56×56 24

2 Shuffle Unit 3×3 depthwise
convolution layers

2
1

1
3

28×28 176

3 Shuffle Unit 3×3 depthwise
convolution layers

2
1

1
7

14×14 352

4 Shuffle Unit 3×3 depthwise
convolution layers

2
1

1
3

7×7 704

5 Conv5 1×1 1 1 7×7 1024

6 GlobalPool 7×7 1×1

7 FC 1000

Table 2: The Final Backbone Network Architecture Used in This Paper.

Layer Type Kernel Size Stride Repeat Output Size Output
Channel

0 Conv1 3×3 2 1 112×112 24

1 MaxPool 3×3 2 1 56×56 24

2 Shuffle Unit 5×5 depthwise
convolution layers

2
1

1
3

28×28 60

3 Shuffle Unit 5×5 depthwise
convolution layers

2
1

1
7

14×14 120

4 Shuffle Unit 5×5 depthwise
convolution layers

2
1

1
3

7×7 240

5 Conv5 1×1 1 1 7×7 512

3.1 Backbone Network

The backbone network in deep CNN
frameworks extracts features from the input image,
thus having a great influence on both accuracy and
efficiency of the whole framework. Specifically, a
lightweight deep CNN backbone will improve the
inference speed of the whole framework. Recent
deep CNN-based object detectors adopt pre-trained
classification network on ImageNet [1] as the
backbone network. However, as classification and
object detection conduct different tasks on the
backbone network, simply using pre-trained
classification backbone for object detection task
does not achieve good results. In the backbone
network, low-level feature maps at shallow layers
have higher resolution. However, high-level feature
maps at deep layers contain more discriminative
information. The high-resolution feature maps
facilitate the localization subtask, and the high-level
feature maps enhance the classification subtask. For

the localization subtask, the receptive field in deep
CNN layers plays a crucial role. Each layer of a deep
CNN backbone can capture only information inside
receptive field. Thus, a large receptive field can
leverage more context information, which enhances
the performance of the localization subtask,
especially for large objects. Recent lightweight deep
CNN backbones such as MobileNetv1 [2],
MobileNetv2 [3], ShuffleNetv1 [4], and
ShuffleNetv2 [5] contain a fixed receptive field in
each layer, thus decreasing the performance of
localization subtask in object detection framework.
With above insights, this paper designs a lightweight
deep CNN backbone network based on
ShuffleNetv2 [5] for real-time vehicle and
pedestrian detection on mobile and embedded
devices. The architecture of the original
ShuffleNetv2 is shown in Table 1. ShuffleNetv2 is a
lightweight deep CNN network which achieves the
best accuracy in very limited computational budgets.
By shuffling the channels, ShuffleNetv2

Journal of Theoretical and Applied Information Technology
15th November 2020. Vol.98. No 21
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3408

outperformed MobileNetV1, MobileNetv2, and
ShuffleNetv1. Based on the ShuffleNetv2, this paper

first replaces all 3×3 depthwise convolution layers in
ShuffleNetv2 by 5×5 depthwise convolution layers.

Figure 1: The Structure of Lightweight RPN for Generating Object Proposals Used in This Paper.

By using 5×5 depthwise convolution layers, the
receptive field is enlarged to capture more semantic
information, while providing similar computational
budget to 3×3 convolution layers. Next, to balance
information between low-level feature maps and
high-level feature maps, this paper uses a 1×1
convolution layer to compress the number of
channels of Conv5 layer in ShuffleNetv2 to 512
channels and increases the number of channels in
shallow layers at the same time. This method can
effectively balance the feature information between
low-level and high-level feature, thus improving
both classification subtask and localization subtask.
In addition, by modifying the number of channels
between convolution layers, there is no additional
computational cost adding in new network. The final
backbone network architecture used in this paper is
presented in Table 2.

3.2 Lightweight Region Proposal Network

Regular two-stage object detectors usually
adopt region proposal network (RPN) at first stage
for generating object proposals. At second stage, a
heavy detection head including full connected layers
is used to further classify and regress object
proposals. Light-Head R-CNN [6] adopted a
lightweight detection head to improve the
computational cost of the network. However, the
proposed detection network in Light-Head R-CNN
is still too complicated when coupled with
lightweight backbone networks. In addition, Light-
Head R-CNN adopted imbalance features between
the backbone and the detection part. This imbalance
not only leads to redundant computation but
increases the risk of overfitting. To address this
issue, this paper designs a lightweight RPN for
generating object proposals. Figure 1 illustrates the
structure of the proposed lightweight RPN. First, a
1×1 convolution layer is used after input feature

maps to reduce the number of channels of input
feature maps. Reducing the number of channels of
input features can further reduce the number of
parameters in the subsequent convolutional layers,
thus improving the inference speed. Then, 3×3
dilated convolution with dilation rate at 2 is adopted
to replace standard 3×3 convolution in the original
RPN. Dilated convolution is used to enlarge the
receptive field, thus including more information
from other areas to help recognize the boundaries of
objects. By using dilated convolution, the number of
parameters does not increase while including more
context information. For scales and aspect ratios, this
paper sets three aspect ratios [1:2, 1:1, 2:1] and five
scales [32×32; 64×64; 128×128; 256×256;
512×512] to cover vehicle and pedestrian of
different shapes. Since there are many proposals
heavily overlapping with each other, non-maximum
suppression (NMS) is used to reduce the number of
proposals. This paper sets the intersection over-
union (IoU) threshold of 0.7 and 0.5 for vehicle and
pedestrian respectively. Training labels of anchor
boxes are designed based on their IoU ratios with
ground-truth bounding boxes. If the anchor has IoU
over 0.7/0.5 with any ground-truth box, it will be set
a positive label. Anchors which have highest IoU for
ground-truth box will also be assigned a positive
label. Meanwhile, if extra anchors have IoU less than
0.3 with all ground-truth box, their labels will be
negative.

3.3 Light Detection Network

Faster R-CNN [7] adopts R-CNN [8], which
utilized two large fully connected layers, as a second
stage classifier which is beneficial to the detection
performance. The R-CNN adopted at second stage
enhances the detection performance of Faster R-
CNN and its extensions. However, the
computational cost of the R-CNN is intensive,

Journal of Theoretical and Applied Information Technology
15th November 2020. Vol.98. No 21
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3409

especially when the number of object proposals
generated by the RPN is large. Follow Light-Head

R-CNN [6], this paper adopts the Light-Head R-
CNN as shown in Figure 2 to improve the

Figure 2: The Detection Network Used in This Paper.

Figure 3: The Structure of Large Separable Convolution Module Used in This Paper.

computational cost. As shown, a large separable
convolution module [9] whose structure is shown in
Figure 3 is used after the final layer of the backbone
network to generate a thin feature map with α×β×β
channels before RoI pooling layer, where β = 7 is the
pooling size, and α is a reduced factor. In this paper,
α is set to 5 instead of 10 in Light-Head R-CNN to
eliminate redundant computation. The separable
convolution module significantly increases the
receptive field. For the R-CNN subnet, a single fully
connected layer with 1024 channels is used in R-
CNN subnet to further reduce the computational cost
of R-CNN subnet without sacrificing accuracy,
followed by two sibling fully connected layers to
predict RoI classification and regression.

4. EXPERIMENTAL RESULTS

4.1 Embedded Platforms for Real Time
Pedestrian and Vehicle Detection

This paper uses recent embedded devices for
evaluating the performance of the proposed method
on real-time pedestrian and vehicle detection,
including Raspberry Pi 4 [10] and Jetson TX2 [11].
In addition, this paper conducts experiments on
NVIDIA GTX 1080 GPU to compare the detection
performance of the proposed method with recent
methods on pedestrian and vehicle detection.

Raspberry Pi 4

Raspberry Pi 4 (Figure 4) is the latest, cheapest,
and most flexible tiny product in the popular
Raspberry Pi range of computers. Raspberry Pi 4

Journal of Theoretical and Applied Information Technology
15th November 2020. Vol.98. No 21
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3410

provides a great improvement in processor speed,
multimedia performance, memory, and connectivity

compared with recent Raspberry Pi 3 Model B+. The
key features of the Raspberry Pi 4 module include a

Figure 4: Raspberry Pi 4 [10].

Figure 5: Jetson TX2 [11].

high-performance Broadcom BCM2711, a quad-
core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz,
a pair of micro-HDMI ports which are used to
connect dual displays with 4k resolution, H.265 and
H.264 hardware video decoding (maximally
supporting up to 4Kp60), 8GB RAM, dual-band
2.4/5.0 GHz IEEE 802.11ac wireless (wireless
LAN), OpenGL ES, 3.0 graphics, Bluetooth 5.0,
Bluetooth Low Energy (BLE), standard 40-pin
GPIO, Gigabit Ethernet (2 × USB 2.0 ports and 3.0
ports), a micro SD card slot for loading OS and data
storage, operating temperature 00C˗500C, and power
over Ethernet (PoE) enabled (requires separate PoE
HAT).

NVIDIA Jetson TX2

NVIDIA Jetson TX2 (Figure 5) is one of the
fastest and most power efficient embedded devices.

Jetson TX2 provides an easy environment to deploy
hardware and software for real-time object detection.
Jetson TX2 supports NVIDIA Jetpack on a software
development kit (SDK) which includes a board
support package (BSP), deep learning libraries,
computer vision applications, GPU computational
power, and image and video processing. Jetson TX2
features include dual-core NVIDIA Denver2 + quad-
core ARM Cortex-A57, an integrated 256-core
NVIDIA Pascal GPU, 8GB with 128-bit interface
DDR4 internal memory, 32 GB external memory
card, 4kp60 H.264/ H.265 encoder, and a decoder.
Jetson TX2 supports 10/100/1000 BASE-T Ethernet,
HDMI 2.0, M.2 Key E, SD, GPIOs, I2C, I2S, SPI,
and Dual CAN bus, and provides on-chip TTL
UART. Jetson TX2 provides USB 3.0, USB 2.0, and
micro USB. Jetson TX2 is useful for developing
applications in the field of computer vision and deep

Journal of Theoretical and Applied Information Technology
15th November 2020. Vol.98. No 21
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3411

learning, since it runs with open-source Linux OS
and performs calculations over one teraflop.

Figure 6: Images in The KITTI Dataset [12].

4.2 Dataset and Evaluation Metrics
In order to evaluate the effectiveness of the

proposed approach on real-time pedestrian and
vehicle detection on embedded devices, this paper
conducts experiments on widely used public dataset:
KITTI dataset [12]. KITTI dataset is a widely used
dataset for evaluating vehicle and pedestrian
detection algorithms. This dataset consists of 7481
images for training with available ground-truth and
7518 images for testing with no available ground-
truth. Images in this dataset include various scales of
vehicle and pedestrian in different scenes and
conditions and were divided into three difficulty-
level groups: easy, moderate, and hard as shown in
Figure 6. If the bounding boxes size was larger than
40 pixels, a completely unshielded
vehicle/pedestrian was considered to be an easy
object, if the bounding boxes size was larger than 25
pixels but smaller than 40 pixels, a partially shielded
vehicle/pedestrian was considered as a moderate
object, and an vehicle/pedestrian with the bounding
boxes size smaller than 25 pixels and an invisible
vehicle/pedestrian that was difficult to see with the
naked eye were considered as hard objects.

For evaluation metrics, this paper uses the
average precision (AP) and intersection over union
(IoU) metrics [12] to evaluate the performance of the
proposed method in all three difficulty level groups
of the KITTI dataset. These criteria have been used
to assess various object detection algorithms. As in
[12], the IoU is set to 0.7 for vehicle and 0.5 for
pedestrian in this paper, which means only the

overlap between the detected bounding box and the
ground truth bounding box greater than or equal to
70% and 50% is considered as a correct detection.

4.3 Experimental Results
 This section presents the detection results of
the proposed method and recent methods on the
KITTI dataset. First, this paper conducts
experiments on the KITTI test set by using the
proposed model and recent models to compare the
detection performance. The reference models
include SSD [13], Faster R-CNN [7], YOLOv2 [14],
and MS-CNN [15]. All models are implemented on
NVIDIA GTX 1080 GPU. Table 3 presents the
detection results of the proposed model and
reference models on all three difficulty-level groups
of the KITTI test set. As shown in Table 3, the
proposed model obtains 88.46%, 84.31%, and
73.12% of the AP on easy, moderate, and hard group
respectively for vehicle detection. For pedestrian
detection, the proposed model obtains 84.12%,
74.98%, and 63.48% of the AP on easy, moderate,
and hard group respectively. It can be observed that
the proposed model achieves superior results to
state-of-the-art object detectors, including both one-
stage and two-stage detectors such as Faster R-CNN,
SSD, and YOLOv2. Compared with MS-CNN, the
proposed method achieves competitive results.
However, MS-CNN adopted multi-scale features at
different layers for object detection, thus increasing
the computational cost. Specially, the proposed
method outperforms all reference methods on the

Journal of Theoretical and Applied Information Technology
15th November 2020. Vol.98. No 21
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3412

inference speed. More specific, the proposed method
takes 0.04-0.06 second for processing an image. This
result demonstrates that the proposed method

Table 3: Detection Results on All Three Difficulty-Level Groups of The KITTI Test Set.

Method AP (%) Time (s)

 Vehicle Pedestrian

 Easy Moderate Hard Easy Moderate Hard

Faster R-CNN [5] 86.71

81.84

71.12

76.21 62.14 60.33 2.5˗3.6

SSD [11] 77.71

64.06

56.17

25.12 18.20 16.21 0.12˗0.33

YOLOv2 [12] 76.79

61.31

50.25

22.16 16.16 15.82 0.08˗0.16

MS-CNN [13] 90.03

89.02

76.11

84.12 74.98 63.48 0.6˗0.8

Proposed Model 88.46 84.31 73.12 80.63 72.18 64.02 0.04-0.06

Table 4: The Performance Results in Terms of Model Complexity, Computational Complexity, and Inference Speed.

Method Backbone Model Size (MB) GFLOPs FPS

 Raspberry Pi 4 Jetson TX2

SSD MobileNetv1 35 1.2 3˗5 7˗9

Faster R-CNN VGG-16 520 150 0.1 0.8

Proposed Model ShuffleNetv2 30 1.12 4˗6 10˗12

achieves a much better trade-off between accuracy
and efficiency.

Next, to evaluate the effectiveness of the
proposed method on real-time detection based on
embedded devices, this paper conducts experiments
on Raspberry Pi 4 and NVIDIA Jetson TX2. For the
model complexity, this paper analyzes from the total
learnable parameter that each model had. The model
complexity itself has two values, which comes from
the total number of parameter and the model size in
terms of MB. For the computational complexity,
total floating-point operations (GFLOPs) are used as
the computational complexity value. In addition, the
FPS of each model is calculated on both Raspberry
Pi 4 and NVIDIA Jetson TX2 to compare the
inference speed. Table 4 shows the performance
results of the proposed model and reference models
in terms of model complexity, computational
complexity, and inference speed. As shown, the
proposed model for vehicle and pedestrian detection
running on NVIDIA Jetson TX2 and Raspberry Pi 4
achieves inference speed of 10˗12 fps and 4˗6 fps
respectively. This result shows that the proposed
method meets the requirement for real-time object
detection on embedded platforms. It can be observed
that the proposed model surpasses both SSD and
Faster R-CNN framework in terms of model

complexity, computational complexity, and
inference speed. Figure 7 visualizes several
examples of detection results of the proposed
method on the KITTI test set.

5. CONCLUSIONS

This paper presents a real-time framework for
pedestrian and vehicle detection on embedded
devices. The proposed framework is based on two-
stage architecture. In the proposed framework, a
lightweight backbone network based on
ShuffleNetv2 is designed to increase the speed of
feature extraction stage. A lightweight region
proposal network including pointwise convolution
and dilated convolution is designed to enlarge the
receptive field. Furthermore, a lightweight detection
network including an improved R-CNN to improve
the computational cost and a separable convolution
module to increase the receptive field is presented to
improve both detection accuracy and inference
speed. Experimental results on Raspberry Pi 4,
NVIDIA Jetson TX2, and GPU-based computer
show that the proposed framework meets the
requirement for real-time object detection on
embedded platforms and achieves a much better

Journal of Theoretical and Applied Information Technology
15th November 2020. Vol.98. No 21
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3413

trade-off between accuracy and efficiency compared
with recent methods.

Figure 7: Examples of Detection Results of The Proposed Method on The KITTI Test Set.

REFERENCES:

[1] Russakovsky, Olga, Jia Deng, Hao Su,

Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang et al. "Imagenet large
scale visual recognition
challenge." International journal of

computer vision 115, no. 3 (2015): 211-
252.

[2] Howard, Andrew G., Menglong Zhu, Bo
Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. "Mobilenets: Efficient
convolutional neural networks for mobile
vision applications." arXiv preprint
arXiv:1704.04861 (2017).

Journal of Theoretical and Applied Information Technology
15th November 2020. Vol.98. No 21
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3414

[3] Sandler, Mark, Andrew Howard, Menglong
Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. "Mobilenetv2: Inverted residuals and
linear bottlenecks." In Proceedings of the
IEEE conference on computer vision and
pattern recognition, pp. 4510-4520. 2018.

[4] Zhang, Xiangyu, Xinyu Zhou, Mengxiao
Lin, and Jian Sun. "Shufflenet: An
extremely efficient convolutional neural
network for mobile devices."
In Proceedings of the IEEE conference on
computer vision and pattern recognition,
pp. 6848-6856. 2018.

[5] Ma, Ningning, Xiangyu Zhang, Hai-Tao
Zheng, and Jian Sun. "Shufflenet v2:
Practical guidelines for efficient cnn
architecture design." In Proceedings of the
European conference on computer vision
(ECCV), pp. 116-131. 2018.

[6] Li, Zeming, Chao Peng, Gang Yu, Xiangyu
Zhang, Yangdong Deng, and Jian Sun.
"Light-head r-cnn: In defense of two-stage
object detector." arXiv preprint
arXiv:1711.07264 (2017).

[7] Ren, Shaoqing, Kaiming He, Ross
Girshick, and Jian Sun. "Faster r-cnn:
Towards real-time object detection with
region proposal networks." In Advances in
neural information processing systems, pp.
91-99. 2015.

[8] Girshick, Ross, Jeff Donahue, Trevor
Darrell, and Jitendra Malik. "Rich feature
hierarchies for accurate object detection
and semantic segmentation."
In Proceedings of the IEEE conference on
computer vision and pattern recognition,
pp. 580-587. 2014.

[9] Peng, Chao, Xiangyu Zhang, Gang Yu,
Guiming Luo, and Jian Sun. "Large kernel
matters--improve semantic segmentation
by global convolutional network."
In Proceedings of the IEEE conference on
computer vision and pattern recognition,
pp. 4353-4361. 2017.

[10] RaspberryPI. Available online:
https://www.raspberrypi.org/ (accessed on
31 December 2019).

[11] JetsonTX2. Available online:
https://elinux.org/Jetson_TX2 (accessed on
31 December 2019).

[12] Geiger, Andreas, Philip Lenz, and Raquel
Urtasun. "Are we ready for autonomous
driving? the kitti vision benchmark suite."
In 2012 IEEE Conference on Computer

Vision and Pattern Recognition, pp. 3354-
3361. IEEE, 2012.

[13] Liu, Wei, Dragomir Anguelov, Dumitru
Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg.
"Ssd: Single shot multibox detector."
In European conference on computer
vision, pp. 21-37. Springer, Cham, 2016.

[14] Redmon, Joseph, and Ali Farhadi.
"YOLO9000: better, faster, stronger."
In Proceedings of the IEEE conference on
computer vision and pattern recognition,
pp. 7263-7271. 2017.

[15] Cai, Zhaowei, Quanfu Fan, Rogerio S.
Feris, and Nuno Vasconcelos. "A unified
multi-scale deep convolutional neural
network for fast object detection."
In European conference on computer
vision, pp. 354-370. Springer, Cham, 2016.

[16] Huang, Gao, Shichen Liu, Laurens Van der
Maaten, and Kilian Q. Weinberger.
"Condensenet: An efficient densenet using
learned group convolutions."
In Proceedings of the IEEE conference on
computer vision and pattern recognition,
pp. 2752-2761. 2018.

[17] Zhao, Hengshuang, Xiaojuan Qi, Xiaoyong
Shen, Jianping Shi, and Jiaya Jia. "Icnet for
real-time semantic segmentation on high-
resolution images." In Proceedings of the
European Conference on Computer Vision
(ECCV), pp. 405-420. 2018.

[18] Krizhevsky, Alex, Ilya Sutskever, and
Geoffrey E. Hinton. "Imagenet
classification with deep convolutional
neural networks." In Advances in neural
information processing systems, pp. 1097-
1105. 2012.

[19] Andri, Renzo, Lukas Cavigelli, Davide
Rossi, and Luca Benini. "YodaNN: An
architecture for ultralow power binary-
weight CNN acceleration." IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37, no. 1
(2017): 48-60.

[20] Courbariaux, Matthieu, Itay Hubara, Daniel
Soudry, Ran El-Yaniv, and Yoshua Bengio.
"Binarized neural networks: Training deep
neural networks with weights and
activations constrained to+ 1 or-1." arXiv
preprint arXiv:1602.02830 (2016).

[21] Wang, Robert J., Xiang Li, and Charles X.
Ling. "Pelee: A real-time object detection
system on mobile devices." In Advances in

Journal of Theoretical and Applied Information Technology
15th November 2020. Vol.98. No 21
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3415

Neural Information Processing Systems,
pp. 1963-1972. 2018.

[22] Li, Yuxi, Jiuwei Li, Weiyao Lin, and
Jianguo Li. "Tiny-DSOD: Lightweight
object detection for resource-restricted
usages." arXiv preprint
arXiv:1807.11013 (2018).

[23] Xiang, Yu, Wongun Choi, Yuanqing Lin,
and Silvio Savarese. "Subcategory-aware
convolutional neural networks for object
proposals and detection." In 2017 IEEE
winter conference on applications of
computer vision (WACV), pp. 924-933.
IEEE, 2017.

[24] NGUYEN, HOANH. "ENHANCED
VEHICLE DETECTION APPROACH
USING DEEP CONVOLUTIONAL
NEURAL NETWORKS." Journal of
Theoretical and Applied Information
Technology 97, no. 23 (2019).

[25] Yang, Fan, Wongun Choi, and Yuanqing
Lin. "Exploit all the layers: Fast and
accurate cnn object detector with scale
dependent pooling and cascaded rejection
classifiers." In Proceedings of the IEEE
conference on computer vision and pattern
recognition, pp. 2129-2137. 2016.

[26] Ren, Jimmy, Xiaohao Chen, Jianbo Liu,
Wenxiu Sun, Jiahao Pang, Qiong Yan, Yu-
Wing Tai, and Li Xu. "Accurate single
stage detector using recurrent rolling
convolution." In Proceedings of the IEEE
conference on computer vision and pattern
recognition, pp. 5420-5428. 2017.

