
Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3198

AUTHORSHIP VERIFICATION OF TWEETS CROSS TOPICS
USING WEIGHTED WORD VECTORS SIMILARITY

1SHAIMAA AYMAN, 2MOHAMED EISA,2FIFI FAROUK
1Department of Computer Science, Faculty of Computers and Information, Zagazig University, Sharqiyah,

Egypt.
2Department of Technology and Information System, Port Said University, Egypt.

E-mail: 1shayman@zu.edu.eg, 2mmmeisa@yahoo.com, 2bondoka7000@himc.psu.edu.eg

ABSTRACT

Authorship Verification (AV) is one of the interesting topics that had developed rapidly and distinctly since
the middle of the 19th century. With the social media era, there is always a problem in determining whether
a given tweet, post, or comment was written by a certain user or not. We are proposing a new approach to
verify if a tweet belongs to a claimed user. Our proposed method utilizes the benefits of one-shot learning.
It is based on vectors similarity which depends on Term Frequency–Inverse Document Frequency (TF-IDF)
and word embedding for better verification accuracy. After comparisons, our proposed approach
outperforms existing methods in the case of cross topics.

Keywords: Authorship Verification, Vectors Similarity, TF-IDF, Word Embedding, Cross Topics.

1. INTRODUCTION

Digital information networks and social media
platforms are developing and spreading, leads to a
growing necessity for reliable applications for
plagiarism detection [1] and author verification [2].
Authorship verification is the application of
linguistic learning in the context of traditional
stylometry, also known as forensic text comparison,
two or more text documents are compared with
stylometric of ascertaining authors to determine if
the documents were written by the same author or
not. The analysis of these documents depends on
traditional linguistic categories. Which include
spelling/grammar, dialects, and stylistic behaviors.
These linguistic features have become highly
instrumental in authorship verification and analysis
[3]. The problem we face can be considered a one-
classification problem [4]; this means that a text is
classified by its belonging or the given class
(related to the alleged author) or (related to a fake
author). For example, the Federal Criminal Police
of Germany (Bundeskriminalamt) deals with ways
of comparing the text to implicitly identify suspects
and confirm or deny charges against the defendant
in a criminal case [5]. Authorship verification not
only gathers tangible evidence in criminal
investigations but also discovers deceitful intentions
and fake news in social media.

Computer scientists and engineers have begun to
reduce the threat to identity theft and verify the
authors' information. The objective of authorship
verification is to discover whether two different
documents were written by the same author or not
[6]. Automated text categorization plays an
important part in this process where topic,
sentiment, and style of documents can be used as
discriminating factors.

Authorship analysis methods have depended on
the extraction of stylometric features [7].
Stylometry is the behavioral feature of the author,
which displays during his writing style, then it can
be extracted and used to check the identity of the
author of the online text. Represent and extract
these features are the main problems in the text
classification, many studies have been conducted in
this field in recent years [8], [9]. But the
disadvantage of these features is that their reliability
is reduced in short text and cross topics. Therefore,
social media texts remain challenging, and writing
is not obliged to write grammar and spelling. So,
we use short text for Term Frequency–Inverse
Document Frequency (TF-IDF) vectorizer function
from the scikit-learn library and word embeddings
to extract features, which show outperform the
stylometric features in social media texts.

There are some limitations we have encountered,
first we deal with short Twitter texts with a

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3199

maximum block size of 140 characters per tweet.
The second limitation in the type of data used, when
the content of the text or message expresses the
topic that a person is trying to talk about. The
vocabulary used in the text determines the
displayed topic. Thus, when the vocabulary
changes, the topic also changes. Therefore, we are
working on developing authorship verification
which focuses on placing a weighted word vectors
similarity in cross topics. These challenges were
mainly affecting the performance of the system.

So, our objective is explicitly to solve the
verification problem in cross topics which find the
relation between the tweet’s vectors and the user
vector, based on the weight of each word depending
on TF-IDF and Word2vec which based on Word
Embeddings strategy to learn the best word
representation and extract the text close to the
original text in small dimensions. The proposed
implementation aims at enhancing performance by
combining the advantages of TF-IDF and Word
embedding to distinguish between distinctive words
and to distinguish between subjects by a weight
vector.

The TF-IDF vectorizer [10] is used to convert a
collection of raw documents into a matrix of TF-
IDF features. TF-IDF is a numerical statistic that is
intended to reflect on how important a word in a
document. Word Embedding [11, 12] is a class of
approaches to representing words and text using a
dense vector representation and solve the problem
of shortage data, which can retain the important
syntax and semantics in the text and extract the
meaning of this text which depends on a Word2Vec
pre-trained word vector. That model must be
mindful of the contextual similarity of words. In
another sense, we use it to construct a low-
dimensional vector representation from the text
corpus and to enhance the contextual similarity of
words.

This paper is organized as a background of recent
works for authorship verification, shown in section
2. Section 3 displays our proposed approach.
Section 4 shows the experiments that have been
applied to our approach and the results of the final
work. Finally, section 5 displays a conclusion and
future work of this study.

2. RELATED WORK

Authorship verification is an emerging
issue in authorship analysis, and it has been studied
by many researchers who use different algorithms

for machine learning and deal with a wide range of
features, methods, and corpora. It has been
implemented in several ways to the features and
methods suggested before Koppel [13], which
evaluate authorship verification by a method called
"unmasking" using a collection of 21 English books
in19th century written by 10 different authors with
a variety of genres. The corpus is constructed 189
distinct different author pairs and 13 distinct same
author pairs. they tried to determine the discrepancy
between the suspect's sample document and that of
other users (imposters). This approach can provide
reliable results only for documents that are at least
500 words long, which is not realistic in the case of
online verification. Chen and Hao [14] used 150
stylometric features for applying authorship
similarity detection from e-mail messages which
using 40 authors of the Enron dataset. The number
and length of emails have impacted the final
performance for several cases. The best result
achieved when used SVM and decision tree as
basic methods with the increasing length of e-mails,
and the performance of PCA and K-means
clustering outweighed in this research for all cases.
There are some limitations in the length of e-mails
as they erased messages that are less than 30 words
length because they lack information capable of
distinguishing the author. Brocardo [15] studied the
effect of the possibility of using stylometry for
authorship verification for short online messages.
Based on the combination of supervised learning
and n-gram analysis. They used the Enron emails
dataset including 500 characters of block size for
87 authors. They used stylometric techniques
through linguistic analysis and writing styles. They
evaluated the performance of their approach
through a 10-fold validation test. There are some
limitations in their model used one type of features
and not good also to handle short message content
10 to 50 characters like Twitter. In an attempt by
Ammar Adil Abdulrazzaq [16] to assess the
accuracy of the impact by applying the text of John
Burroughs-Delta the Arabic way of revealing
stylistic authorship to predict the appropriate author
through his writing style depending on the
frequency word as the best attribute. Their model
focused on the Arabic literature and worked on the
analysis based on word redundancy as a feature in
Arabic books as a frequent, pair and trio-of-words
and test the results obtained using a stylometric
authorship attribution. This method does not deal
with short messages their datasets that used 10
books which 6 books for the author which 5 of
them for making learning map and 1 for testing,
and 4 books for the other authors to test and

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3200

compare. A dedicated shared task series at PAN
2015 CLEF datasets by (Maitra [17], NE.
Benzebouchi, N.Azizi [18],). Maitra [17] used the
Random Forest classifier for automatic software
authorship verification to select important features
from 17 kinds of features such as punctuation,
vocabulary, length of sentence, N-gram, and POS.
The best result has appeared in the Dutch language.
Their performance of English and Spanish language
declined due to the variable number and size of the
known documents, and also appear cross-genre and
cross-topic texts which reduce the performance.
While that Benzebouchi, N. Azizi’s [18] authorship
verification system depending on the merger of
many classifiers, which include Convolutional
Neural Network (CNN), (Recurrent-CNN) and
Support Vector Machines (SVM), and using
word2vec for word embedding. Their model can
learn meaningful texts without craftsmanship. The
good performance appeared in the Skip-Gram
technique than the CBOW technique. This
experiment deals with 100 authors; containing 100
known documents and 100 unknown documents
written in English only.

After many experiments and after various
studies for the previous works we reached our
proposed approach which verifies short text
(tweets) in a cross topic, which used the vector of
TF-IDF with the vector of word embedding to
achieve the best performance using our own Twitter
dataset.

We got inspired by our approach by the
one-shot learning strategy using the word

embedding technique [19], which explained the
Long Short-Term Memory (LSTM) and its ability
to deal with the pretrained word-embeddings and
worked in modeling complex semantics. They took
a pre-trained word-vectors as the LSTM inputs.
Another research had learned an embedding into a
Euclidean space for face verification. It didn't
require more complex processing to handle their
model [20].

3. PROPOSED APPROACH

The main idea of our approach is to have the ability
to identify if a new user is similar to any user that
we have. In our case of authorship verification, we
use a somehow similar idea to predict if the tweet
belongs to the same user or not; based on a trained
model to predict (based on vectors similarity) if the
tweet indeed belongs to this user or not. We
proposed an approach Authorship Verification
applying TF-IDF with word2vec (AV with TF-IDF
& Word2vec). AV with TF-IDF & Word2vec
approach consists of four main phases; to build that,
as shown in figure 1. The first phase is called a
dataset, it consists of three steps: prepare the
Twitter corpus, data normalization, and cleaned
tweets. The second phase is a vectorization which
consisting of two steps: TF-IDF vectorization and
amplified TF-IDF matrix. The third phase is a
representation in which we apply Word2Vec
representation on our data. The fourth phase is
called multiplication in which; we apply a machine
learning classifier.

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3201

Figure 1 AV with TF-IDF & Word2vec Approach.

3.1. Phase One: Dataset
This phase is consisting of three steps:
 Collecting the Twitter corpus: This step uses to

collect tweets manually from the Twitter
dataset to apply as input to the proposed
approach.

 Data normalization: we remove (all accent
marks, extra white spaces, and all stop words)
and replaces (emojis, emails, punctuation,
symbols, and URL).

 Cleaned tweets: the data is ready that can be
used to obtain our input.

3.2. Phase Two: TF-IDF Vectorization

TF-IDF[21] is a popular numerical statistic for
information retrieval that measures the number of
times a word occurs in a document, and through the
whole corpus. We use a TF-IDF vector
representation for 1500 words after preprocessing.
Only the train set is used to compute the inverse
document frequency values. To produce a TF-IDF

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3202

vectorizer use Scikit-learn which converts a
collection of raw documents to a matrix of TF-IDF
features [10], [22]. Equivalent to CountVectorizer
followed by TfidfTransformer. By using
CountVectorizer which convert a collection of text
documents to a matrix of token counts and TF-IDF
Transformer that converts a number matrix to a
normal TF or TF-IDF representation, which
calculate TF that is referred to the Term Document
Frequency or some times that words appear in the
document, and the IDF which refer to the Inverse
Frequency of each word and place it with a weight
depending on its importance in the context of
speech. Calculate (number of occurrences of i
in j) in Eq. (1)

 (1)
The IDF of a word is the measurement of

how important that term is in the whole corpus
shown in Eq. (2), where dfi (number of documents
containing i) and N (total number of documents).
Eq (3) we can obtain the weight of each word, Wi,j,
as shown in Eq(3) TF-IDF.

 (2)

 (3)
So, Tf-Idf contains information on the

more important word and less important one by its
weight.
Amplified TF-IDF

We got Matrix from TF-IDF Xn*m. which
found the range values of TF-IDF are very small by
default, we see all most of the weight of words has
a small value. So, made the mathematical operation
to make important words shine with boosted the
TF-IDF matrix by a factor and multiply it by 100.
Now we see that some very important words have
emerged, and there are still some words that have a
small value.

3.3. Phase Three: Word Embedding

(Word2Vec) Representation
We use word2vec in word embedding strategy

to give words high value to be able to distinguish
between the words of each author. Create a set of
vectors containing the count of word occurrence.

We can explain a word embedding as a
technique of language modeling used to map words
to real-number vectors. In vector space, it
represents words or phrases of several dimensions.
It can be created with different methods, such as
probabilistic models, neural networks, matrix co-
occurrence, etc. There are some applications of

Word Embedding like sentiment analysis,
information retrieval, speech recognition, and
answering questions. The main idea of word
embedding is that words occur in similar contexts,
in vector space tend to be closer to each other.
Word2Vec consists of the models for word
embedding generation. These models are two-
layers neural networks with one layer of input, one
hidden layer, and one layer of output. Modules
required for generating word vectors in Python are
Natural Language Toolkit (Nltk) and genism
libraries, which access to Word2Vec and other
word embedding algorithms for training, and it
allows pre-trained word embeddings that you can
download from the internet to be loaded. Another
library is designed to have fast performance, and
with word embedding models built-in, it’s perfect
for an easy and quick start is called Spacy. It is a
great way to represent a word and its meanings, we
can observe the context of each tweet by simply get
the vector of each word and get the tweet overall
vector, for each word we need a vector of 300-word
shape. We need to multiple each word by its vector
to get the Word2Vec, the Spacy model is used for
sentence boundary detection and tokenization
which can be found here [11], [23].
Word2Vec makes use of two architectures:
 Skip Gram: It predicts the surrounding context

words given the current word in a given
framework[24].

 CBOW (continuous bag of words)[25]: This
model predicts the current word of context
words in a given framework.
The input layer consists of context words. The

hidden layer consists of the number of dimensions
in which we want the current word in the output
layer to be represented. The output layer consists of
the current word.

3.4. Phase Four: Multiply Amplified TF-IDF

with Word2Vec
We can see that the whole word values are

still relatively small. So, we are multiplying each
word by its corresponding amplified TF-IDF, in
this way we observe a greater weight vector for
more important words. large matrix will be gotten

with , where n refers to the number of
observations, m refers to the number of words in
corpus and v refers to the vector length for pre-
trained word2vec. So, should be reduced the
number of floats from 64 bits to 16 bits. Take the
mean of this matrix to reduce the tweet to 2-
dimensions matrix instead of 3-dimensions which
transform each word into a vector. We used
function to reduce the text matrix into one matrix

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3203

with a vector for each word, where we combine all
the vectors from every tweet in the approach
chosen in the approach parameter.

The final matrix will be got . Applying
this way will be ending up having a vector for each
word.
4. EXPERIMENTAL STUDY

We are ready now to show the experimental
study for our proposed approach, we will be used
two different data sets; the first one is our social
Twitter dataset convert with the second one is the
data of health news Twitter [26]. Which stored in
the UCI machine learning repository to find the
best results. To clarify the operations that occur in
the experimental study in more detail; we can
simply divide it into six stages, from section 4.1 to
section 4.6.

 In section (4.1) we show the experimental
setup. Section (4.2) performs processing and
operations on the data. Section (4.3) presents
features and how to extract them. Section (4.4)
present the training and classification processes.
Section (4.5) show the evaluation criteria which
measure the performance of the system. Section
(4.6) provides results and discussion.
4.1. Experimental Set-Up Stage

The proposed approach was implemented with
python3.7 using anaconda3 prompt. The software
was Microsoft Windows 10. The hardware has
Intel(R) Core (TM) i7-6500U CPU @ 2.50HZ
2.60HZ with 16G memory.
4.2. Data Processing Stage

This stage contains to process of collecting
and normalizing the dataset.
4.2.1. Collected data

Twitter is a microblogging feature that lets
authors post "tweets". Each tweet is limited to 140
characters and often shares opinions on various
topics. Most programs written to access Twitter
data provide a library that acts as an interpreter
around the Twitter search and streaming API and is
therefore constrained by API restrictions. One of
these limitations is that you can only be sent 180
requests every 15 minutes with a maximum number
of 100 tweets per request. The biggest drawback of
the search API is that you've only been able to
access the tweets written in the last seven days.
This is the major impasse for anybody looking for
old data to create any model.

So, we manually scraped data from Twitter.
By using a username and user handler for each user
to obtain Twitter corpora. We create our dataset of
author classified tweets, which using a Twitter
client application that randomly collects public

statuses using Twitter Scraper. A python-based
twitter corpus collected by a tool called taspinar
(Twitter Scraper) [27]. With Twitter Scraper, no
limitation existing in the API. We excluded people
which their team typing to them on Twitter or many
persons which people may write about them; since
we achieve the credibility of our collected data. We
tried to collect as much as possible the real public
persons' tweets with more than topics like sports,
politics, media, music, etc. It is natural for people to
speak on different subjects. otherwise, the benefit
will be very limited. This will be added strength to
the approach. Because the system is learning more
different words, and it is more distinguished
between them.
4.2.2. Normalization data

The data has multiple users that represent
multiple topics, we chose these users based on the
number of tweets, as they have the most tweets in
their domain. We used 30 users with 1000 tweets
per user from different fields.

We made some operations to normalize our
dataset; we used a module called CUCCO for text
normalization and preprocessing [28], which helped
us to remove accent marks, stop words, extra white
spaces and replace punctuation, URL, emojis,
replace emails, replace symbols). Also used for
analysis data library called Pandas [29]. The final
form of data after processing like as Table 1.

Table 1 Final Form Data.

Index
of tweet

Text user

24 yes reverse https twitter comhayson
tweets status num

Kristen
Bell

657 toutes mes felicitations au pm
abeshinzo pour ...

Justin
Trudeau

467 Turn bull government plan fairer
share gst leav...

Scott
Morrison

791 num york times reported good
helps give recei...

Bill
Gates

96 num lilydpenha happy birthday
love

Amitabh
Bachchan

901 labor plans grow economy plans
suffocate highe...

Scott
Morrison

1041 court
skyscraperhttpstwittercomchefcourt
num s...

Dwayne
Johnson

1327 num
monthshttpstwittercomrudrasrk
num status num

Shah
Rukh
Khan

908 congrats orlando ortega silver
medal rio num

Rafa
Nadal

1139 twitter deal sony num num lens
worn works per...

Jonathan
Morrison

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3204

4.3. Feature Extraction
Now we can propose a feature extraction

based on Word Embeddings and TF-IDF as the
following steps:
 Train word embeddings by using word2vec

which supplied by the Spacy package [23].
 To get the vector representation for each word

we can use Spacy. This is an open-source
library for Natural Language Processing (NLP)
written in Python which used for parsing,
tagging, and entity recognition. Spacy has been
prepared and executed to give us a balance of
accuracy, speed, and size. Embedding strategy
with subword features is used to support huge
vocabularies in small tables.

 Used the large English model on Spacy [30]
which consists of over 1 million unique vectors
with vocabulary, syntax, entities, and written
text like blogs, news, and comments. Its vector
representation consists of 300 dimensions.

 Then train a TFIDFVectorizer [22] to get the
TF-IDF vector for each word in the whole
corpus. Which able to distinguish the authors
by their words.

 The TF-IDF technique calculates the inverse
document frequency for each word. By doing
it; can weight words based on its importance in
the context. Now each word has a weight, and
we have a vector for each word. We used only
the most important words to have a higher
impact on the user vector.

4.4. Training and Classification Stage
This stage contains training and classification
processes.

4.4.1. Training process
Our data contains about 30 users, 50 words

per user, and 300-word shape per word which has
been much training for the best performance. Now,
we show the steps that have been applied for
training to get the best performance.
 The collected data were grouped according to

the users. Then, it has been normalized using
the CUCCO model, the data is divided into a
train and test data. The training data was
conducted and then transformed the data to
vectors.

 Matrix X with a user and tweet was obtained,
and Y had a true or false indicating whether the
tweet belonged to that user. Every user's tweet
was compared to all the tweets of other users,
and therefore we could get very large data to
train our approach to that, although the data

was balanced, we took all tweets and user
tweets from other users equally.

 The train and test data were saved on disk then,
loaded them from disks and return (x_train,
y_train), and (x_test, y_test). Then an
organized x, y matrix was got. In the training,
we have provided the data in Table 2. Where
W in this table refers to a vector weight for
each word, and n refers to the numbers of
words for each user. The tweet vector was built
using the Spacy tool. The tweets we used in the
testing data was different from the tweets used
to build the vector of the training.

Table 2 Weighted Vector of The User.

 After completing all the operations on the data,

we want to reduce the matrix of three-
dimensional tweets to two-dimensional by
reducing the text matrix to one matrix, which
combines all vectors from each tweet in the
chosen method in the parameters that convert
one tweet [1500 * 300] into one vector [300].

 The trainer function has re-trained on a text
matrix to build the words vectors matrix, then
saves it.

 As we know that the Spacy vector size is 300
dimensions, so the vector for each word is
obtained and saved. Then convert the text
matrix to the corresponding word2vec matrix,
where each text is replaced by a matrix with
shape (N, 300) (N: the number of words in the
TF-IDF model, 300: word2vec length).

 The text was transformed to TF-IDF,
multiplied the idfs by factor. Then multiplied
each word by its vector. The matrix was
obtained with train size 30000 tweets for all
uses, 300 vectors for each word, and 1500
words for tweets. So, the size of the final
matrix was enormous so this matrix must be
reduced numbers of flouts from 64 to 16 bits
by getting the mean of this matrix. The features
have been extracted from the final matrix after
reducing.

Weighted tweet vector belong to
[W01, W02, …. W0n] user_0

[W11, W12, …. W1n] user_1
[W21, W22, …. W2n] user_2

[W31, W32, …. W3n] user_3

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3205

4.4.2. Classification process
In this step, the author can be identified and

classified among the other different authors and
identifies if the tweet belongs to him or not.
Machine learning algorithms have been applied to
classify this approach including:
 Logistic Regression; which used to specify

observations to a separate set of classes,
converts its output using the logistic sigmoid
function to return a probability value. For
example, classification problems used in Email
spam or not spam.

 Stochastic Gradient Descent (SGD); which
used to find the values of the parameters of a
function that minimizes the cost function as
much as possible.

 Support Vector Machines (SVM); are a set of
supervised learning models used for
classification and regression.

 Support Vector Clustering (SVC); is a similar
method that is also based on kernel functions
but is suitable for unsupervised learning. It is
the main method of data science.

 Linear Support Vector (Linear SVC); similar to
SVC with parameter kernel=’ linear’, but
implemented in terms of liblinear rather than
libsvm. So, this class supports both dense and
sparse input and the multiclass support is
handled according to a one-vs-the-rest scheme.

 k-Nearest Neighbors (kNN); the neighbors are
taken from a set of objects for which the class
(kNN classification) or the object property
value (kNN regression) is known. It's based on
feature similarity approach.

 Gaussian Naive Bayes; Naive Bayes can be
extended to real-valued attributes and the
Gaussian (or Normal distribution) is the easiest
to work with it because we need only to
estimate the mean and the standard deviation
from your training data.

 Decision Tree; used a tree as a model of
decisions and their possible result. It is a
flowchart in each input node represents a
"test", each branch represents the result of the
test, and each leaf node represents a class label
and the paths from the root to leaf represent
classification rules.

 Extreme Gradient Boosted (XGB); is a
decision tree, used a more regularized model
formalization to control over-fitting, which
gives it better performance.

 Random Forest; creates decision trees on
randomly selected data samples, gets a
prediction from each tree, and selects the best
solution utilizing voting. It is considered as a

highly accurate and robust method. including
“gini”; this is how much the model fit or
accuracy decreases when you drop a variable.
It is the total decrease in node impurity,
“entropy”; is the measures of impurity,
disorder, or uncertainty in a bunch of
examples. Depending on the number of classes
in your dataset.

4.5. Performance Measures Stage

To evaluate the performance of our proposed

approach, we should use the basic performance
measures from the confusion matrix. From the form
of the confusion matrix, we will measure accuracy,
precision, recall or sensitivity, F1 Score, specificity,
g-mean, and ROC/AUC Curve. Table 3 consists of
four outputs “True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN)”
produced by a binary classifier [31].

Table 3 Confusion Matrix of Total Population

 Accuracy: Calculated as the total number of

true predictions (TP + TN) divided by the total
population in (TP + FP + TN + FN).

 (4)

 Precision: It is also called a positive predictive

value (PPV). Calculated as the number of true
positive predictions (TP) divided by the total
number of positive predictions (TP + FP).

 Recall (Sensitivity): It also called a True

Positive Rate (TPR) or Recall (REC).
Calculated as the number of true positive
predictions (TP) divided by the total number of
positive observed (TP+FN).

 ሺ6ሻ

 F1 Score: is the harmonic mean or sub-contrary

mean of Precision and Recall.

 Prediction
Positive Negative

Observed
True TP TN

False FP FN

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3206

 ሺ7ሻ

 Specificity: It is also called True Negative Rate

(TNR). calculated as the number of true
negative predictions (TN) divided by the total
number of negative observed (TN+FP).

 ሺ8ሻ

 G-mean: is the geometric mean of recall and
precision. It is a performance metric that
calculates an sqrt of true positive rate *
positive predictive value.

 ሺ9ሻ

 ROC or AUC Curve: The Receiver Operating

Characteristics Curve (ROC) or Area Under
the Curve (AUC) can be used for visualizing
and checking the classification model’s
performance of the multi-class classification
problem. It is capable to distinguish between
classes. This curve plots by two parameters:
True Positive Rate (TPR); which known as

sensitivity or probability of detection ,

versus False Positive Rate (FPR), ,

which known as the probability of false alarm
 [1-specificity].

4.6. Results and Discussion Stage

This stage displays the result of the TF-IDF

vectorizer, word embedding, proposed AV with
TF-IDF & word2vec approach, and the discussion.
4.6.1. TF-IDF vectorizer

To evaluate our approach, we performed
some experiments including applied TF-IDF to our
dataset under some conditions. From Table 4 we
can show that the number of vocabularies has been
used as number features; We concluded that when
the features increased, the performance
measurements improved.

Table 4 Results for TF-IDF Under Some Features
Conditions.

Classifiers # of
features

Precision Recall F1-score

Logistic
Regression

100
features

39% 35% 34%

1000
features

62% 61% 61%

10000
features

73% 72% 72%

Stochastic
Gradient
Descent (SGD)

100
features

29% 30% 27%

1000
features

57% 59% 57%

10000
features

73% 73% 73%

Multinomial
Naïve Baise

100
features

37% 35% 34%

1000
features

59% 60% 59%

10000
features

74% 73% 73%

Linear Support
Vector

100
features

39% 34% 33%

1000
features

61% 60% 60%

10000
features

74% 74% 74%

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3207

4.6.2. Word Embedding
We also use a pre-trained word2vec

model[30], trained on the Twitter dataset, which
contains embeddings for unique words. After
applying it on a lot of words; the distance between
two words like “dog” and “fish” is indeed larger
than the “dog” and “cat” distance, another
important thing is the values range of the “dog”
vector. Meaning that it can distinguish between
words and the distance calculated is increased or
decreased by gender, royal, and location. We can
see, “cat” is very similar to “dog” so the distance is
closed, while “fish” is not very similar to either of
them, as shown in Figure 2.

Figure 3 The Distance for a Pre-trained Word2vec
Model.

4.6.3. TF-IDF with Word Embedding

Table 5 shows the combination of TF-IDF and
word embedding in Cross-Topics datasets talking
about different topics which refer to as (CT), and
other Twitter datasets, which downloaded from UCI
with a Single-Topic talking about healthy news,
which refers as (ST)[26]. Table 5 summarizes the
performance of ML algorithms that applied to our
proposed approach and displays the best one. The
best results achieved were marked with bold font.

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3208

Table 5 Result of TF-IDF with Embedding Approach in our Dataset (CS) and Health News UCI Dataset (ST).

As shown in Table 5 best result appear in
the random forest classifier which has the
best F1-score 87%in the CT dataset. The
following figures have shown the Roc
curve for the proposed approach after
applied machine learning algorithms on

our dataset CT and UCI dataset health
news ST. Which had been clarified from
figure 4 to figure 11 in the CT dataset, and
from figure 12 to figure 19 in the ST
dataset.

Classifiers Accuracy Precision Recall F1-score Specificity G-mean
CT ST CT ST CT ST CT ST CT ST CT ST

Random Forest
Classifier”100_gini”

86% 38% 90% 44% 86% 38% 87% 35% 99% 95% 88% 37%

Random Forest
Classifier”100_entropy”

85% 38% 90% 44% 86% 39% 87% 36% 99% 95% 87% 37%

Random Forest
Classifier”10_gini”

85% 31% 89% 32% 85% 31% 86% 29% 99% 95% 87% 28%

Logistic Regression
Classifier

41% 38% 45% 41% 42% 38% 42% 34% 97% 95% 43% 35%

Stochastic Gradient
Descent (SGD)
Classifier

38% 38% 51% 49% 39% 35% 38% 31% 97% 95% 46% 39%

Linear Support Vector
Classifier

47% 42% 50% 43% 48% 43% 47% 40% 98% 95% 49% 39%

k-nearest-
neighbors Classifier

50% 37% 53% 39% 50% 38% 51% 36% 98% 95% 52% 34%

Gaussian Naive Bayes
Classifier

32% 29% 37% 32% 33% 29% 32% 28% 97% 95% 34% 30%

Decision Tree Classifier 84% 23% 89% 23% 85% 23% 86% 23% 99% 94% 86% 20%
Gradient Boosted
(XGB) Classifier

61% 38% 65% 42% 62% 39% 63% 36% 98% 95% 63% 37%

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3209

Figure 4 ROC Curve for Random Forest Classifier for Our
Twitter Data.

Figure 5 ROC Curve for Logistic Regression Classifier
for Our Twitter Data.

Figure 6 ROC Curve for (SGD) Classifier for Our Twitter
Data.

Figure 7 ROC Curve for Linear Support Vector
Classifier for Our Twitter Data.

Figure 8 ROC Curve for k-NN classifier for Our Twitter
Data.

Figure 9 ROC Curve for Gaussian Naive Bayes
Classifier for Our Twitter Data.

Figure 10 ROC Curve for Decision Tree Classifier for Our
Twitter Data.

Figure 11 ROC Curve for (XGB) Classifier for Our
Twitter Data.

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3210

Figure 12 ROC Curve for Random Forest Classifier for
UCI Dataset Health News.

Figure 13 ROC Curve for Logistic Regression Classifier
for UCI Dataset Health News.

Figure 14 ROC Curve for (SGD) Classifier for UCI
Dataset Health News.

Figure 15 ROC Curve for Linear Support Vector
Classifier for UCI Dataset Health News.

Figure 16 ROC Curve for k-NN classifier for UCI Dataset
Health News.

Figure 17 ROC Curve for Gaussian Naive Bayes
Classifier for UCI Dataset Health News.

Figure 18 ROC Curve for Decision Tree Classifier for
UCI Dataset Health News.

Figure 19 ROC Curve for (XGB) Classifier for UCI
Dataset Health News.

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3211

4.6.4. Discussion
 The durability and strength of our
proposed approach are in combination between
vectors of TF-IDF and word embedding, also in
Cross-Topics. The results were very encouraging in
the dataset with different topics on single ones. This
is an interesting and illuminating discussion that the
proposed approach achieves promising results when
compared to previous works especially in short
texts. We see that the difference in results depends
on the nature of different data. As we see the results
of the system are excellent in the data with different
subjects like our social Twitter, that have more than
topic like (sports, politics, media, music, etc.)
which make a proposed approach learn more new
words every training and be able to distinguish the
authors, and not satisfactory in the data with similar
subjects like health news Twitter data that took
about the health topic only. Although the subjects
are similar, the accuracy and efficiency of
verification are low, since there is no discrimination
and distinguish the distinctive words of each author,
because more than one author can speak on the
same subject using the same words and thus cause
confusion between the authors, and the efficiency
becomes weak to distinguish between the authors.

5. CONCLUSION AND FUTURE WORK

Authorship verification is a very important task
that appeared recently. It is one of the most modern
areas of natural language processing which
determines whether a document belongs to a
particular author or not. Therefore, many types of
research and attempts are being proposed in this
field.

In this paper, we proposed an authorship
verification approach, which depends on TF-IDF
and word2vec that used the word embeddings
method. Our approach can learn how to distinguish
between the author's words, which depending on
vectors that try to describe any close or far from the
author. Some important steps are taken toward
developing the performance. Our contribution is
particularly useful in short texts of the different
subjects of a dataset and got results in promising
than a single subject. The robustness of our
approach was depended on a combination of the
TFIDF method and the Word Embedding method.
This helps us to understand the natural language to
predict the real author. The accuracy of current
authorship verification technology depends mainly
on the number of candidate authors, the size of
texts, and the number of training texts. Finally,

results showed that the proposed approach has
promising results and outperform in random forest
classifier.

In future work, we will improve our
performance on scaling our proposed approach to
work on a large number of users that require a
larger resource than the ones we have, due to the
vectors we generate for our data. which is very
large to deal with and to do operations on our
available resources. We will work to improve these
limitations in future work.

REFERENCES

[1] Stein, B., Lipka, N., and Prettenhofer, P.:

‘Intrinsic plagiarism analysis’, Language
Resources and Evaluation, 2011, 45, (1).

[2] Stein, B., Lipka, N., and zu Eissen, S.M.:
‘Meta analysis within authorship verification’,
in Editor (Ed.) ^(Eds.): ‘Book Meta analysis
within authorship verification’ (IEEE, 2008,
edn.).

[3] Coulthard, M.: ‘Author identification, idiolect,
and linguistic uniqueness’, Applied linguistics,
2004, 25, (4).

[4] Manevitz, L.M., and Yousef, M.: ‘One-class
SVMs for document classification’, Journal of
machine Learning research, 2001, 2, (Dec).

[5] Ehrhardt, S.: ‘7 Authorship attribution
analysis’, Handbook of Communication in the
Legal Sphere, 2018, 14.

[6] Koppel, M., and Winter, Y.: ‘Determining if
two documents are written by the same author’,
Journal of the Association for Information
Science and Technology, 2014, 65, (1).

[7] Potha, N., and Stamatatos, E.: ‘Improving
author verification based on topic modeling’,
Journal of the Association for Information
Science and Technology, 2019

[8] Stamatatos, E.: ‘A survey of modern
authorship attribution methods’, Journal of the
American Society for information Science and
Technology, 2009, 60, (3).

[9] Litvak, M.: ‘Deep Dive into Authorship
Verification of Email Messages with
Convolutional Neural Network’, in Editor (Ed.)
^(Eds.): ‘Book Deep Dive into Authorship
Verification of Email Messages with
Convolutional Neural Network’ (Springer,
2018, edn.).

[10] Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., and Dubourg,
V.: ‘Scikit-learn: Machine learning in Python’,
Journal of machine learning research, 2011, 12,

Journal of Theoretical and Applied Information Technology
31st October 2020. Vol.98. No 20
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3212

(Oct).
[11] Li, Y., Xu, L., Tian, F., Jiang, L., Zhong, X.,

and Chen, E.: ‘Word embedding revisited: A
new representation learning and explicit matrix
factorization perspective’, in Editor
(Ed.)^(Eds.): ‘Book Word embedding
revisited: A new representation learning and
explicit matrix factorization perspective’
(2015, edn.).

[12] Mikolov, T., Yih, W.-t., and Zweig, G.:
‘Linguistic regularities in continuous space
word representations’, in Editor (Ed.) ^(Eds.):
‘Book Linguistic regularities in continuous
space word representations’ (2013, edn.).

[13] Koppel, M., and Schler, J.: ‘Authorship
verification as a one-class classification
problem’, in Editor (Ed.) ^(Eds.): ‘Book
Authorship verification as a one-class
classification problem’ (ACM, 2004, edn.).

[14] Chen, X., Hao, P., Chandramouli, R., and
Subbalakshmi, K.: ‘Authorship similarity
detection from email messages’, in Editor (Ed.)
^(Eds.): ‘Book Authorship similarity detection
from email messages’ (Springer, 2011, edn.).

[15] Brocardo, M.L., Traore, I., Saad, S., and
Woungang, I.: ‘Authorship verification for
short messages using stylometry’, in Editor
(Ed.) ^(Eds.): ‘Book Authorship verification
for short messages using stylometry’ (IEEE,
2013, edn.).

[16] AbdulRazzaq, A.A., and Mustafa, T.K.:
‘Burrows-Delta method fitness for Arabic text
authorship Stylometric detection’, in Editor
(Ed.) ^(Eds.): ‘Book Burrows-Delta method
fitness for Arabic text authorship Stylometric
detection’ (IJCSMC, 2014, edn.).

[17] Maitra, P., Ghosh, S., and Das, D.: ‘Authorship
Verification-An Approach based on Random
Forest’, arXiv preprint arXiv:1607.08885,
2016

[18] Benzebouchi, N.E., Azizi, N., Aldwairi, M.,
and Farah, N.: ‘Multi-classifier system for
authorship verification task using word
embeddings’, in Editor (Ed.) ^(Eds.): ‘Book
Multi-classifier system for authorship
verification task using word embeddings’
(IEEE, 2018, edn.).

[19] Mueller, J., and Thyagarajan, A.: ‘Siamese
recurrent architectures for learning sentence
similarity’, in Editor (Ed.) ^(Eds.): ‘Book
Siamese recurrent architectures for learning
sentence similarity’ (2016, edn.).

[20] Schroff, F., Kalenichenko, D., and Philbin, J.:
‘Facenet: A unified embedding for face
recognition and clustering’, in Editor (Ed.)
^(Eds.): ‘Book Facenet: A unified embedding
for face recognition and clustering’ (2015,
edn.).

[21] Lan, M., Tan, C.-L., Low, H.-B., and Sung, S.-
Y.: ‘A comprehensive comparative study on
term weighting schemes for text categorization
with support vector machines’, in Editor
(Ed.)^(Eds.): ‘Book A comprehensive
comparative study on term weighting schemes
for text categorization with support vector
machines’ (2005, edn.).

[22] ‘TF-IDF Vectorization’, pp. https://scikit-
learn.org/stable/modules/generated/sklearn.feat
ure_extraction.text.TfidfVectorizer.html

[23] Potha, N., and Stamatatos, E.: ‘A profile-based
method for authorship verification’, in Editor
(Ed.) ^(Eds.): ‘Book A profile-based method
for authorship verification’ (Springer, 2014,
edn.).

[24] Mikolov, T., Sutskever, I., Chen, K., Corrado,
G.S., and Dean, J.: ‘Distributed representations
of words and phrases and their
compositionality’, in Editor (Ed.) ^(Eds.):
‘Book Distributed representations of words and
phrases and their compositionality’ (2013,
edn).

[25] Kenter, T., Borisov, A., and De Rijke, M.:
‘Siamese cbow: Optimizing word embeddings
for sentence representations’, arXiv preprint
arXiv:1606.04640, 2016

[26] Karami, A.: ‘Health News in Twitter Data Set’,
2015.https://archive.ics.uci.edu/ml/datasets/He
alth+News+in+Twitter#

[27] GitHub: ‘"taspinar/twitterscraper"’.
https://github.com/taspinar/twitterscraper

[28] davidmogar: ‘‘Text normalization library for
Python’’. https://github.com/davidmogar/cucco

[29] McKinney, W.: ‘pandas: a foundational Python
library for data analysis and statistics’, Python
for High Performance and Scientific
Computing, 2011.

[30] Yang, X., Macdonald, C., and Ounis, I.: ‘Using
word embeddings in twitter election
classification’, Information Retrieval Journal,
2018, 21, (2-3).

[31] Espíndola, R., and Ebecken, N.: ‘On extending
f-measure and g-mean metrics to multi-class
problems’, WIT Transactions on Information
and Communication Technologies, 2005.

