

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

194

UNDERSTANDING ENERGY PROFILE FOR SOFTWARE
APPLICATION

1AREEJ A. AHMED, 2SHAWKAT K. GUIRGUIS, 3MAGDA M. MADBOLY
1,2,3 Department of Information Technology, Institute of Graduate Studies and Researches,

 Alexandria University, Alexandria, Egypt
1 Research and Development Center, Ministry of Electricity, Baghdad, Iraq

1areej_abdulmunem@yahoo.com , 2 shawkat_g@yahoo.com, 3mmadbouly@hotmail.com

ABSTRACT

The expansion of energy-aware software is considered major necessity for a lot of computers and smart
phone devices. Coinciding with the high importance of computers, electricity cost increasing, Energy
measurement techniques have been evolved for measuring and enhancing the energy consumption of
software layers. In spite of this fact, these techniques can't determine enough energy information. And they
can't locate how and where the energy is wasted within software. Therefore, a framework is proposed to
offer valuable imagination for programmers to write energy efficient code and software. And to creates a
comparison study in energy evolution model of software applications to gain opportunities for energy
minimizing.
Keywords: AES, software methods, Energy utilization, Energy growth, Jalen approach, key length.

1. INTRODUCTION

In the last time, energy aware software is
widespread, coinciding with using portable
electronic devices such as smart phones, laptops,
and tablets. In these devices energy is becoming an
essential issue. Therefore, energy saving is
considered sustainable development goal [1].
Recently, scientific research confirmed that energy
is consumed in information technology systems by
both hardware and software components [2].
Software consume energy indirectly, it is
influencing on the energy consumption of the
hardware [3]. Therefore, Software has a high
weight in consuming energy comparing with
hardware [4].

 Therefore, minimizing the energy
consumption of software application is an essential
necessity and a technological challenge [5].
Moreover, program developers lack for deep
knowledge of energy consumption. So, energy
microscope at the application level is needed to
diagnose the hungry parts [6] [7]; to improve new
methods consuming lower energy; and to balance
performance vs. energy consumption towards
building energy efficient applications [8].

 To address energy aware shortcomings, we
propose in this paper a framework for presenting

the energy models of some encryption and
decryption algorithms by using the most remarkable
approach; and comparing energy evolution models
of applications. The other sections are introduced as
follows. Section 2, we offered motivations keys and
aims that lead to this work. In section 3, the
framework and methodology is described and
system implementation steps are illustrated. Section
4, outlines the results from the experimental
evaluation to ascertain and assess the framework
that proposed in section 3. The analysis and
discussion of these results are in section 5. Finally,
the conclusion and future work in Section 6.

2. MOTIVATIONS KEYS & AIMS

Energy represents a critical matter in the
handled electronic private devices especially
laptops and mobile phones. Therefore, researchers'
attention is directed to measure energy
consumption by preparing different approaches.
However, these approaches have many advantages
and some limitations or drawbacks. This paper
contribution is therefore presenting measurement
approaches and tools in order to make a comparison
among them, and then facilitates choosing the most
efficient approaches and tools.

 Energy measurement is classified as
following:

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

195

 Hardware based measurement [9]: Hardware
based measurement is represented the most
reliable methodology. But it has some
restrictions such as: it suffers from noise, has a
portion of power loss during measurement
process, and it demands a certain types of
battery.

 Software based measurement (internal
profiling) [10]: When we taking about the
internal (profiling) software based
methodology, the external hardware is not
demanded. However, energy profiling
software has many determinations: it
generates additional energy consumption
caused by energy logging application, and has
some of installation troubles.

 And software based measurement (external
profiling) [11]. Which limited by tasks
supplied by OS API. And it has several data
communication problems.

 Therefore, in this paper a comparison is
presented among measurement methodologies as
shown below in table 2.1.

Table 2.1: Energy measurement methodologies

Hardware
based

Software
based

internal
profiling

Software
based

external
profiling

Accurate
measuring

Only
estimation

Very accurate

Measure
energy for

whole system

For internal
components

For internal
components

Not
expensive

Free Expensive

Easy to use Easy to use Hard to use

Required
additional
hardware

Not required Required

Obtainable
everywhere

Online
download

Hard to find

Hard analysis deep analysis
Very deep
analysis

 PowerScope [12] represent the best
example about hardware based measurement tool
which is offering energy usages of applications by a
digital multimeter and a distinct computer. This
tool is most reliable and it has three basic
components: system monitor, energy analyzer and
energy monitor.

Several approaches supply fine-grained
energy measurement, like eLens [13] which is a
peripheral approach that combines the both
concepts together: per-instruction energy evolution
model to detect the energy consumption for each
method inside application, and the program analysis
to specify paths of energy information, eLens is
characterized by accuracy, rapidity, and there isn't a
necessity to vary the mobile operating system or to
require the power meter.

e-Surgeon [14] is a software approach
used for assigning high consuming energy points of
Application Servers. This approach includes two
levels of energy measurement: Operating system
level and process level. The first level is used for
measuring the energy usage of coarse grained level
(such as energy consumption of processes used by
different hardware devices CPU, network,
memory), and the latter is used for measuring the
energy consumption at fine grained level (classes
and methods).

 Application profiling tools are so
valuable but it is restricted by programming
language such as ANTS profiling for .Net language
[15].

The internal profiling software based
measurement use the external hardware [16][10].
this is clearly occurs when we use eprof [17] to
estimate energy utilization at code level; although
Eprof is helpful approach but it has some
restrictions so it requires a fundamental changes to
kernel, thus limiting the flexibility of the approach.

Other software tool is Joulemeter [18] that
compute the energy consumption of both hardware
(virtual machines, servers, desktops, and laptops)
and software applications running on a computer.it
can measure energy usage of computer resources,
like CPU utilization and screen brightness, But its
model can't estimate without laboratory
benchmarks this makes it low flexibility [19].

PowerTop[20] is a Linux tool which
diagnoses software component that consume more

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

196

energy. PowerTOP has advanced interface to
present and estimate the energy profile; allowing
developers determining which processes taking
more energy [21]. PowerTop share similarities with
pTop tool [22] in profiling at a process-level. pTop
is extremely accurate and doesn’t require extra
hardware, but it has little overhead. pTop provides
energy-aware APIs in mobile devices and cloud
computing. Another version exist called pTopW
[23].

Energy Checker [24][11] is a software tool
that estimates the power consumption of the
application by using counters. Therefore, it needs a
hardware powermeter, so it is hard to deduct the
energy consumption of software.

Also other software based approaches are
PowerAPI [14][25] and Jalen [26] , Both tools
employs power models for measuring the energy
utilization of software. PowerAPI evaluates in a
real-time the energy consumption of process for

variant hardware resources, by submitting an API.
Jalen is building to offer the energy consumption of
applications at the code level (for processes and
even for methods).

In this paper a comparison study of energy
measurement and estimation approaches is
presented as followed in table 2.2

Table 2.2: Comparative study of energy measurement approaches of software

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

197

In spite of the previous approaches is

measuring energy consumption of software
application accurately. But they lack of energy
measurement approaches depend on context
information and their finite granularity. They have
restricted understanding of how energy is
consumed by software. A lot of researches are
performed to conclude the internal function of
software, but they failed in providing enough
energy information. Others can't diagnose energy
leaks; Also they can't diagnose which process or
method is consumed more energy than is necessary.
Therefore the core concern of the research is:

- Detecting how and where energy is consumed at
the code level. It is a great necessity to assign
the hungry process or method within software
for improving energy efficient software.

- Also offer energy evolution model and knowing
the effect of changing input parameter on
energy consuming scenario. This is considered a
fundamental requirement to give guidelines for
software programmers to choose the best energy
efficient method for their software, and finally
to implement the green coding principles.

 3. PROPOSED METHODOLOGY
3.1 The Framework Methodology
 It's predictable that energy orientation of
methods is changing when its parameters are
changed. Knowing this effect is very valuable for
application developers to choose optimal parameter
value [27]. So; this framework is proposed to infer
the energy evolution model of software code
depending on the variability of their input
parameters.

Figure 3.1: Framework methodology.

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

198

 To illustrate this framework, methodology
is demonstrated in Figure 3.1 as follows: at first
gathering CPU utilization of the executing method
in an application. These data are collected through
an intermediary such as a virtual machine after
injecting the jar file for measurement approach as a
Java agent during the start of the program. Then the
total energy consumption of the application (in this
framework an AES) is collecting by CPU. This
information is acquired using application level
measurement tool (Power API). Later, data which
gathered previously is used with code level energy
models to measure the energy consumption of
application methods by hardware resource. This is
done by using statistical sampling version of jalen
(STS) measurement approach [28] because it
doesn’t require any changes on the application code
and it has a little overhead. Finally, computing and
correlating all consequences after many execution
cycles to present energy evolution model of
application methods through a virtual machine
while varying its input parameters.

3.2 Energy Measurement & Energy Models for

CPU
Energy models for CPU are discussed in

[26] is used as illustrated in formula (1):

 (1)

Then is gained from formula (2)

 (2)

In Java programming language the
application code is mostly executed within threads,
so at first the power consumption for threads is
computed then for methods in the last observing
cycle as in formula (3):

 (3)
 represents the power

consumed, is the CPU time of the
thread , and is the duration of the
monitoring cycle. Later CPU utilization for
methods is computed in formula (4):

 (4)

Also in the last observing cycle,
representing the execution time

of method, and is representing the
execution time of all methods. Finally, the power
consumption of methods of formula (1) is
computed by using formula (5):

 (5)

In this framework, AES is used as the

most significant standard for symmetric algorithm
because AES provides strong encryption and has
been selected by National Institute of Standards and
Technology (NIST) as Federal Information
Processing Standard in 2001, and in 2003 the
United States Government announced that AES is
secure enough to protect classified information up
to the top secret level.

To display the effect of modifying the key

length as input parameters (that specifies the
number of repetitions of transformation rounds that
convert the plaintext to the ciphertext); an AES
symmetric encryption/ decryption algorithm is
constructed with ability creation variant key length
(1024 and its multiples) to obtain method's energy
directions.

In more details, first the algorithm is run

with creating specific key length, and encrypting/
decrypting in many times a large text [29]. Then
it’s the time Jalen working (which is a Java
observing agent to compute the method's energy
consumption of an algorithm. Energy values are
saved in csv file. Then this process is running but
with other input parameter to graph energy
evolution model finally towards detecting methods
which are hungry for energy.

3.3 Proposed System Implementation

&Graphical Design
The implementation of the proposed

system, which comes with better understanding for
energy profile, is as follows: at first running the
system associated parts and then moving to a
question that specifies whether to select the
application which is wanted to monitor its energy,
or to display a previous energy profile: this step is
determined manually by the user.

CMD window is run for monitoring the

application, and an initialization the energy profile
procedure starts to begin calculating energy
consumption of an application by using Jalen. This
depends on a specification to the key length and the

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

199

loop quantity (the number of times the encryption
and decryption of specific text). The previous step
is also determined manually by the user. Next, the
key generation process is done to create the key
which is used to encrypt a specific text. Then
retrieve the original text by using the key that
generated previously. Later, energy profile is
stopping and followed by saving results in CSV file
which display the energy profile finally.

Proposed system used three Graphical

User Interfaces (GUIs) as follows: First UI is
named (Jalin) and made by Microsoft.net
framework 4.5. Windows form “help in opening
CMD window, running commands, displaying a list
of energy information, and at the end drawing the
energy chart”.

Second UI is CMD that used for

monitoring energy consumption of an application
(AES). Third and last UI: is made by Java
programming language and consists of three
buttons determining the applications’ main steps
(key generation, encryption, and decryption).

4. EXPERIMENTATIONS

This section reports the results from the
experimental evaluation including several
experimental results performed by concluding the
energy directions of an AES and RSA algorithms to
ascertain and assess the framework that proposed in
chapter 3 as follows:

4.1 Research Material

The proposed framework described in
section3consists of the following applications: The
AES and RSA encryption and decryption
applications that are built in Java Script
Programming Language version 7 and 8, Maven
version 3 is used to obtain Jalen measurement, and
finally Graphical User Interface made by
Microsoft.net framework 4.5. Windows form that
used for opening CMD, running commands and at
the end drawing the energy chart. The energy
consumption of methods in AES algorithm is
measured using files downloading from
https://github.com/adelnoureddine/jalen (the
statistical version of Jalen).

Then framework is tested and validated in
experiments by using files downloading from the
website
http://www.arvindguptatoys.com/arvindgupta/cbt14
-Short%20Stories%20For%20Children.pdf. The
framework is implemented with a laptop: Dell
inspiron n 5010 with the following specification:

Intel® core ™ i3 CPU M350 at 2.27 GHz processor
with 4.00 GB Installed memory (RAM) DDR3
SDRAM PC3-10600, 666.7 MHz, this machine
equipped with operating system Windows ®
version 8.1 Professional Edition, and system type:
64 bit operating system (x64- based processor).

. These instructions give guidance on layout,
style, illustrations and references and serve as a
model for authors to emulate. Please follow these
specifications closely as papers which do not meet
the standards laid down, will not be published.

4.1.1 Evaluation metrics
 Objective: the main objective of this work is to

offer an energy profile for software applications
while varying their input parameters and
concluding the energy directions of an AES and
RSA algorithms.

 Performance description: performance
description of this work with the change which
we will talk about in comparison method 4.1.2
is very necessary.

 Target: creating framework to reach our
objectives, and to provide guidelines for
software developers to help them implement
green coding principles.

4.1.2 Comparison Method
 JALEN UNIT profiler application
presented by the University of Lille Ph.D. students
in France [30] which is used to present energy
evolution model of application methods. While
JALEN UNIT profiler uses Jalen for monitoring
energy consumption of applications at the code
level by using Intel Core 2 Duo 6600 processor at
2.40 GHz and running Lubuntu Linux 13.04 64 bits
operating system. This allows to see the impact of
changing both the hardware component and the
operating system on power efficiency of an RSA
algorithm based on Hardware components consume
energy.
 Jalen associates the energy consumption of
hardware to the software code that initiated the task
for hardware components. Therefore, energy
consumption is highly dependent on hardware
components.

4.2 Experimental Results

In this section, the framework is tested with
many experiments to evaluate the amount of energy
consumed of an AES algorithm in each experiment,
and then made to prove our search point by results.
In the first experiment, encryption and decryption is
done for 50 times So that to obtain enough

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

200

execution evidence to measure energy utilization,
but in the second, the encryption and decryption is
done for 100 times.

For each one there is consideration procedure

as follow:
- At the beginning, the AES algorithm is

run with creating specific key length 1024
- And encrypting/ decrypting the given text.
- At this point Jalen observes and computes

the energy consumption for the whole
AES via requisition Power API; and for
the methods of an AES especially. In
addition to CPU time.

- Energy values are saved in csv file.

Then the former procedure is rerunning but
with double key length (2048, 3072, 4096, 5120,
and 6144). At last all outcomes get together to
graph energy evolution model finally towards
detecting methods which are hungry for energy.

In the previous framework, the procedure is

performed for ten times at each key length; and
then extracts the average energy utilization of the
all application. Furthermore, is performed for the
run time.

Table 4.1: Energy profile of whole AES in variant

key length.

Application
Key length

Run
time
(m)

Average
energy
in Joule

No. of
encryption

&
decryption

(times)

AES 1024 NULL NULL 50

AES 2048 NULL NULL 50

AES 3072 10:15 1391.4494 50

AES 4096 13:11 1805.333 50

AES 5120 19:29 2185.716 50

AES 6144 22:03 2346.280 50

AES 1024 8:17 812.655 100

AES 2048 14:25 1674.933 100

AES 3072 15:37 1972.112 100

AES 4096 18:58 2418.530 100

AES 5120 22:46 2591.085 100

AES 6144 28:57 2886.285 100

Figure 4.1: Energy growth of whole application.

Therefore, the STS version of Jalen is

appointed to indicate which method is responsible
about this energy progress. Results, in figures 4.2
and 4.3 infer that there are two hungry methods for
energy in AES algorithm:

- AES.AddRoundKey, which is the basic
element in AES energy consumption.

- And AES.SubBytes.

The energy values of the rest methods are too
light in comparing with the above methods. So,
these outcomes underline the requirement for deep
measurement at the code level.

There are many values of energy which are not

obtainable as offered in tables 4.1, 4.2, and 4.3; this
is happened when we generate AES's key with
length 1024, and 2048 in 50 times encryption and
decryption.

These insensible values belong to many

considerations:
- The operating system is highly

advancement in compared with other
operating systems.

- The speed of the processor makes Jalen
doesn’t feel or recognize these values.

- Besides to the above, AES is considered
very lightweight algorithm.

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

201

Table 4.2: Energy profile of AES methods with

variant key length in 50 times.

Figure 4.2: Energy growth of application methods in
50 times.

Table 4.3: Energy profile of AES methods with

variant key length in 100 times.

Application
Key length

Run time
(m)

Energy of
Add

Round
Key in
Joule

Energy of
Sub Bytes
in Joule

AES 1024 NULL NULL NULL

AES 2048 NULL NULL NULL

AES 3072 10:15 1201.804 218.184

AES 4096 13:11 1479.226 298.364

AES 5120 19:29 1655.512 385.395

AES 6144 22:03 1729.222 434.324

Figure 4.3: Energy growth of application methods in
100 times.

Application
Key length

Run time
(m)

Energy of
Add

Round
Key in
Joule

Energy of
Sub Bytes
in Joule

AES 1024 8:17 862.694 68.740

AES 2048 14:25 1218.576 287.805

AES 3072 15:37 1533.140 358.128

AES 4096 18:58 1730.216 415.852

AES 5120 22:46 1814.038 531.009

AES 6144 28:57 2223.145 652.353

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

202

AES also doesn’t require extra energy. This fact
is corroborated when we tried to encrypt and
decrypt a small text in 50, 100, and even 100000
times; energy value was also approximately null or
not obtainable.

 We also test our framework with other software
application (RSA encryption / decreption
application).

 The energy profiler application used to
infer energy growth of both AES and RSA
algorithms at the code level while varying its input
parameters. This is done by using Jalen with Intel®
core ™ i3 CPU processor; and Windows operating
system (as offered in section 4.1).

 In our framework strategy figure 4.4 shows
energy profile of RSA algorithm, and illustrates the
exponential growth when the application is run with
a variant key length.

The same strategy which done with AES, is
executed here with RSA; but with more multiples
of key length.

Table 4.4: Energy Profile Of Whole RSA In Variant Key
Length.

Application key
length

Run
time(m)

Average
energy in Joule

RSA 1024 NULL NULL

RSA 2048 NULL NULL

RSA 3072 NULL NULL

RSA 4096 NULL NULL

RSA 5120 8:49 1218.691

RSA 6144 9:32 1365.772

RSA 7168 10:44 1682.225

RSA 8192 16:58 2943.006

RSA 9216 21:18 3680.821

Figure 4.4: Energy Growth Of Whole Application (RSA)
In Our Framework.

In more details, at first we run RSA with 1024,

2048, 3072 and 4096. But we discovered that there
are many values of energy which are not obtainable
as offered in table 4.4; this is happened when we
generate RSA's key with length 1024, and 2048 in
100 times encryption and decryption. Our
explanation for these insensible values is:

 The operating system is highly advancement

in compared with other operating systems.
 The speed of the processor makes Jalen

doesn’t feel or recognize these values.

 But we note that there is an obvious growth in
energy consumption. This is happened when we run
RSA with 5120 key length. Then energy expansion
is continuing with 6144, 7168, 8192, and finally
9216 key length.

 4.3 Comparison with Previous Experiments

 In this framework, performance
description of Jalen with different hardware and
operating system is very valuable. Therefore,
experiments results in the second scenario with
RSA show that there are many values of energy
consumption which are not available and Jalen

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

203

doesn’t sense them, as shown in table 4.4 and
described in the previous section (4.2). This
signifies that energy consumption value of RSA is
clearly born with 5120 key length and more; this is
through 100 times of encryption and decryption.

 While in the French study [30], energy

consumption value of RSA methods begin since
1024 key length is generated. And it is still
increasing in consumption. we noticed that the
energy consumption of RSA become obvious at the
key length 3000 bit and more obtained through 10
times of encryption and decryption, and by using
Intel Core 2 Duo 6600 processor and Linux
operating system as shown in figure 4.5.

This variant explain the impact of changing

both the hardware component and the operating
system on power efficiency of an RSA algorithm
based on Hardware components consume energy.

Figure 4.5: Energy Growth Of Whole
Application (RSA)[30].

 Although an energy consumption of RSA
algorithm is increased in this work due to the
different hardware that machines use thus
consuming different amount of energy, also due to
an alternative operating system, and the number of
traces of encryption and decryption; but still

keeping similar energy trends and distribution in
RSA methods.

This proved that running software on
different machines does not necessarily change the
energy distribution between their software methods.
Thus, proposing an empirical model of the
evolution of energy consumption of software code
is relevant, and can be used by the developers.

5. DISCUSSIONS

From our framework and experiments we
obtained many essential principles:

 Presenting a comparative study among
measurement approaches and tools is very
important to minimize energy consumption
of software by choosing the most efficient
approaches and tools.

 Inferring the energy profile of software code
depending on the variability of their input
parameters is very valuable for application
developers to choose optimal input
parameter value.

 When the same framework is executed on a
variant hardware, the values of energy will
vary too. This belongs to the hardware
nature. (The best example about this case is
AES.AddRoundKey method).

 Observing energy consumptions at the code
level is considered as a first class necessity
to expose energy distribution. This
knowledge provides deep understanding for
programmers in order to choose alternative
methods which require lower energy.

 A software approach (STS Jalen) is
employed for deeper energy estimating.

 Studying the impact of changing both the
hardware component and the operating
system is very valuable. This will allow
knowing the power efficiency of software
application based on Hardware components
consume energy.

 Furthermore, monitoring energy progress at
the application level is not enough. So, we
need for more analysis to understand the
fundamental reasons for this energy
evolution.

 Our work is useful to use in software
industry especially in software designing
companies by replacing and choosing
optimal input parameter value which making
the application consuming less energy (i.e
key length in AES encrypting/ decrypting
algorithm). Also making programmers
choose alternative methods which require

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

204

less energy (choosing methods instead of
AES.AddRoundKey, and AES.SubBytes
methods in AES encrypting/ decrypting
algorithm).

5.1 Research Pros and Cons
 Pros:

 This work gives us deep layer of knowledge
of the energy usage and distribution within
software.

 Offers the validity of the framework by
detecting the hungry methods which leading
to the exponential growth of AES
algorithms.

 Preparing guidelines for software
programmers to assist them choosing the
most efficient method.

 Proposed system benefits are increased with
the using of AES encryption and decryption
algorithm which is very secret and robust
algorithm, in addition of using buy a large
number of people.

Cons:
 This framework observes methods

individually without noticing the
interrelation between methods. This is due to
many requirements such as a large time, and
the professional team who have a deep
knowledge in software engineering.

 Mathematical analysis of this work is still
manual; therefore, using analysis techniques
is an essential requirement, such as Principal
Component Analysis (PCA). This could be
helpful to knowing the effect of changing
the input parameter on the energy usage of
the method.

 6. CONCLUSION & FUTURE WORK
Learning and limitations are gained from

our framework such as:
 The existing framework in this paper

illuminates and maps the energy evolution
trend of application methods depending on
its parameters. But, it doesn’t define the
indirect impact on other methods.

 Therefore, studying this impact is very
necessary. Also we need to present energy
profile depending on other input parameter.
Thus, leads for clear description on energy
utilization profile. Significantly, leads to
conclusions that might help a developer to
choose efficient software code.

 The current work depends on CPU energy
only. So, our future work is a framework
which depends on disk energy in presenting
energy evolution models for software
methods.

REFERENCES:
[1] A. Noureddine, A. Bourdon, R. Rouvoy,

and L. Seinturier, “Monitoring Energy
Hotspots in Software”, In Automated
Software Engineering Journal (ASEJ),
ISSN: 0928-8910 (print version) 1573-
7535 (electronic version), No. 10515, Feb.
2015.

[2] G. Kalaitzoglou, M. Bruntink, and J. Visser,
“A Practical Model for Evaluating the
Energy Efficiency of Software
Applications”, 2nd International Conf. on
ICT for Sustainability (ICT4S 2014),
Stockholm, Aug. 24-27, 2014, pp. 77-86.

[3] L. Ardito, “Energy Aware Self- Adaptation
in Mobile Systems”, In Proceedings of the
International Conference on Software
Engineering (ICSE), San Francisco, CA,
USA ,2013, pp. 1435-1437.

[4] A. Noureddine, A. Bourdon, R. Rouvoy,
and L. Seinturier, “A preliminary study of
the impact of software engineering on green
IT”, In First International Workshop on
Green and Sustainable Software (GREENS),
Jun. 2012, pp. 21–27.

[5] A. Trefethen, and J. Thiyagalingam,
“Energy-aware software: Challenges,
opportunities and strategies”, Journal of
Computational Science, Vol. 4, Issue.6, Nov.
2013, pp. 444-449.

[6] T. Hönig, C. Eibel, W. Schröder-Preikschat,
B. Cassens, and R. Kapitza, “Proactive
Energy-Aware System Software Design with
SEEP”, In Proceedings of the 2nd Workshop
on Energy Aware Software-Engineering and
Development, (Oldenburg, Germany, 25 Apr,
2013, pp. 6-7.

[7] G. Costa, and H. Hlavacs, “Methodology of
measurement for energy consumption of
applications”, 11th IEEE/ACM International
Conf. on Grid Computing (GRID), Brussels,
Oct. 25-28, 2010, pp. 290-297.

[8] G. Calandrini, A. Gardel, I. Bravo, P.
Revenga, J. Lázaro, and F. Toledo-Moreo,
“Power Measurement Methods for Energy
Efficient Applications ”, International
journal of sensors, Vol. 13, Issue. 6, 18 June
2013, pp. 7786-7796.

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

205

[9] N. Thiagarajan, G. Aggarwal, A. Nicoara, D.
Boneh, and J. Singh, “Who Killed My
Battery: Analyzing Mobile Browser Energy
Consumption”, ACM International
Conference on Mobile Web Performance,
Lyon, France, Apr. 16–20, 2012, pp. 41-50.

[10] A. Pathak, Y. Charlie Hu, and M. Zhang, “
Where is the energy spent inside my app?
Fine Grained Energy Accounting on
Smartphones with Eprof”, proceedings of the
ACM Eurosys workshop, 2012, pp. 29-42.

[11] A. Noureddine, R. Rouvoy, and L.
Seinturier, “A Review of Energy
Measurement Approaches”, ACM SIGOPS
Operating Systems Review 47, Mar 2013, pp.
42-49.

[12] G. Procaccianti, A. Vetro', L. Ardito, and M.
Morisio, “Profiling power consumption on
desktop computer systems”, In Proc. of the
First international conf. ACM on
Information and communication on
technology for the fight against global
warming,Verlag, Berlin, 30 Aug 2011, pp.
110-123.

[13] S. Hao, D. Li, W. Halfond, and R.
Govindan, “Estimating mobile application
energy consumption using program
analysis”, 35th International Conf. on
Software Engineering (ICSE),
Press Piscataway, NJ, USA ,18-26 May
2013, pp. 92-101.

[14] A. Noureddine, A. Bourdon, R. Rouvoy, and
L. Seinturier, “e-Surgeon: Diagnosing
Energy Leaks of Application Servers”,
INRIA Research Report, Project-Teams
ADAM, Jan. 2012, pp. 1-27.

[15] J. Vratislav, “ Performance Profiling for
.NET Platform”, Master's diss. of Computer
Science and Engineering, Czech Technical
University, Faculty of Electrical
Engineering, Prague, January 2012.

[16] M. Kambadur, and M. Kim, “Energy
Exchanges: Internal Power Oversight for
Applications”, CUCS Technical Report
(cucs-009-14), Columbia University, New
York, USA, Mar. 2014, pp. 1-11.

[17] S. Schubert, D. Kosti´c, W. Zwaenepoel, and
K. Shin, “Profiling Software for Energy
Consumption”, IEEE International Conf. on
Green Computing and Communications
(GreenCom), France, 2012, pp. 1-8.

[18] A. Kansal and F. Zhao, “Fine-grained energy
profiling for power-aware application
design”, Proceedings of the 1st Workshop on
Hot Topics in Measurement and Modeling of
Computer Systems at ACM Sigmetrics
(HotMetrics’08), June 2008, pp. 26–31.

[19] H. Hassan, and A. S. Moussa, " Power
Aware Computing Survey", International
Journal of Computer Applications (0975 –
8887), Vol. 90 , No.3 , March 2014, pp.
21-26.

[20] A. Faria, L. Aguiar, D. Lara, and A.
Loureiro, “Comparative Analyses of Power
Consumption in Arithmetic Algorithms
Implementation”, IEEE 10th International
Conference on Trust, Security and Privacy in
Computing and Communications
(TrustCom), Changsha, Nov. 16-18, 2011,
pp. 1247-1254.

[21] Intel, “LessWatts.org - Saving Power on
Intel systems with Linux”,
http://www.lesswatts.org, 2011.

[22] T. Do, S. Rawshdeh, and W. Shi, “pTop: A
Process-level Power Profiling Tool”, In Hot
Power’09: Proceedings of the 2nd Workshop
on Power Aware Computing and Systems,
Big Sky, MT, US, Oct. 2009.

[23] H. Chen, Y. Li and W. Shi, “Fine-Grained
Power Management Using Process-level
Profiling”, research gate article, Jan. 2012.

[24] S. Zhang, "Adding Intel® Energy Checker
SDK Instrumentation to Your Application",
Intel developer zone, Santa Clara, USA, Jul.
2012.

[25] A. Noureddine, A. Bourdon, R. Rouvoy,
and L. Seinturier, “Powerapi: A software
library to monitor the energy consumed at
the process leve”l, ERCIM News journal,
(92), Jan. 2013, pp. 43-44.

[26] A. Noureddine, A. Bourdon, R. Rouvoy, and
L. Seinturier, “Runtime Monitoring of
Software Energy Hotspots”, Proceedings of
the 27th IEEE/ACM International
Conference on Automated Software
Engineering(ASE’12), Essen, Germany,
Sep. 2012, pp. 160-169.

[27] A. Ahmed, S. Guirguis, M. Madboly,
“Energy Evolution Model for AES and RSA
Algorithms”, International Journal of
Engineering & Science Research (IJESR),
Vol. 5, Issue. 7, July 2015, pp. 625-633.

[28] https://www.github.com/adelnoureddine/jale
n.

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

206

[29] http://www.arvindguptatoys.com/arvindgupt
a/cbt14Short%20Stories%20For%20Childre
n.pdf

[30] A. Noureddine, A. Bourdon, R. Rouvoy,
and L. Seinturier, “Unit Testing of Energy
Consumption of Software Libraries", In
Software Engineering Aspects of Green
Computing track of the 29th Annual ACM
Conference Symposium on Applied
Computing (SAC’14), Gyeongju, South
Korea ,Mar. 2014, pp.1200-1205.

