

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

290

A PROPOSED FRAMEWORK FOR TEST SUITE
PRIORITIZATION AND REDUCTION USING THE

CLUSTERING DATA MINING TECHNIQUE

1 KHALID ELDRANDALY, 2MAHMOUD ABD ELLATIF, 3NORA ZAKI
1Professor of Information Systems, Faculty of Computers and Informatics, Zagazig University.
2 Professor of Information Systems, College of Business, Jaddah University, SA & Faculty of

Computers and Informatics, Helwan University.
3 Assistant Teacher, Faculty of Computers and Informatics, Zagazig University.

E-mail: 1eldrandaly66@gmail.com, 2mmlatif@uj.edu.sa, 3omarsabryel@gmail.com .

Abstract

Software testing is one of the most critical phases of the software development life cycle. The primary
purpose of software testing is to check the produced program or application before delivering it to the target
customer and to discover the hidden faults or errors that lead to system failure. The time and cost consumed
by software testing are one of the most critical limitations of software testing. The most consumed time in
software testing results from executing a large number of redundant and inefficient test cases. Therefore,
the automatic generated test cases should be filtered before executing them. Test suit reduction TSR and
test suite prioritization TSP are considered as a management method for test suites. They provide efficient
management for test suites by reducing and prioritizing the number of test cases. The main goal of this
research is to propose a framework for improving the software testing process by using the clustering-based
test suite prioritization and reduction techniques. The main objective of the proposed framework is to
generate an optimal set of test cases from the original set. The optimal set of test cases can be efficiently
executed in less time and cost. A case study is conducted to estimate the performance of the proposed
framework. The results show that the proposed framework is robust and valuable for software testing
process under the limited time and provides testers with some guides to obtain maximal benefit of the
proposed framework.

Keywords: Test Suite Reduction, Test Suite Prioritization, Code Coverage, Clustering Data Mining,

Proposed Framework.

1. INTRODUCTION

Test suit reduction and test suit prioritization are
the most Challenge of software testing. Especially
when time and cost are limited. Test suite reduction
techniques are based on applying selective
approaches to pick a smaller number of test cases
from the original test suite to generate a reduced set
(RS) of the test suite. Wherever, the test cases in
the reduced set should cover all the requirements as
covered by the original one. Although, during the
reduction process, it is possible to eliminate test
cases that have a high probability of fault detection.
Test suite prioritization techniques overcome this
limitation by presenting test cases in the best order
to improve the rate of fault detection [1], [2].

 This research proposes a framework for
managing the test suite by investigating the test
suite prioritization and reduction techniques where
the priority set (PS) of test cases is determined first.
Then the reduced set (RS) of test cases is generated
from the priority set in order to optimize the rate of
fault detection. This combination of test suite
prioritization and reduction techniques would be
valuable for testers who are under pressure because
of the limited time and cost of the testing process.

Recently, some studies have begun to
combine test suite prioritization and reduction
techniques. [3] Supposed a strategy to order test
cases in the reduced test suite to increase the
effectiveness of the testing process when testing
stops suddenly because of the limited time and

cost. Therefore, they applied reduction techniques
to select a small set of test cases that cover the

testing requirement from the original set and then
order the reduced test cases. They confirmed that

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

291

such an order is likely to improve the rate of fault
detection. Also, it guarantees that the most effective
test cases in the reduced suite would already be
executed in the case of early stopping of test
execution. They considered four well-known
reduction heuristics and applied them on two real-
world applications, and they used APFD to measure
their rate of fault detection. However, they did not
show how the order of test cases in a reduced suite
is performed. Furthermore, they compared between
test suites of the same size. Therefore, the used
APFD metric was suitable for their evaluation.
However, APFD metric may be unsuitable for
comparing the rate of fault detection for test cases
of different sizes.

In [4], they inspected the previous strategy
for a web application's domain. However, they
applied several prioritization approaches criteria
that are experimentally verified in web application.
They tried to order the test cases in RS based on
prioritization. Further, they developed a new metric
Mod_APFD_C that is used to measure the rate of
fault detection for test cases of different sizes. The
results ensured that the rate of fault detection was
improved when an ordered reduced test suite was
executed, especially when the tester does not have
sufficient time to run all test cases in RS. Also, the
tester can get the most effective test cases for early
execution.

This research differs from these works;
because they focus on applying the prioritization
techniques for RS. But, this research focuses on
using the reduction techniques for PS. It hybrid the
prioritization techniques and reduction techniques
in one component in the proposed framework. So
that, the prioritization and reduction process is
performed respectively not separately. However,
this work is similar to the work in [5] where they
focused on prioritization of user session-based test
cases for the web application. They proposed a tool
that is called CPUT. It is implemented by applying
the prioritization techniques that is experimentally
verified effectiveness in even driven software. They
implemented CPUT by four prioritization criteria to
allow the user to select one of these four criteria.
However, in the proposed CPUT, the reduction
process is optional for the user where he can choose
whether to reduce PS or not. The prioritization and
reduction process in CPUT tool are performed
separately. Therefore, this is the main difference
between the proposed framework and the proposed
tool CPUT. Although, CPUT tool used different
criteria to complete the prioritization process such
as (Length Gets/Posts, Number of parameters,

2way combinatorial, and random). Whereas, the
proposed framework uses other criteria for the
prioritization process.

Furthermore, the proposed framework is
based on applying coverage-based TSP and TSR
techniques because coverage metrics are valuable to
assess the quality of software testing. The code
coverage metric is widely used to measure the
percentage of code that has been covered and tested
by a test case. Therefore, the proposed framework
is similar to the work in [6] where they proposed
TestOptimizer framework that is based on applying
a code coverage based TSR and TSP techniques.
They combined TestFilter and St-Total techniques
to generate optimal test cases. Further, the proposed
TestOptimizer includes an optimizer component
that is responsible for computing the optimization
time based on the total time that is required for
running the implemented TSP or TSR techniques.
Based on the allowed optimization time, the
optimizer decides which test suite management to
implement: TSP, or TSR, or TSP/TSR, or
TSR/TSP.

Although, the proposed framework
investigates data mining techniques by applying
clustering-based TSP and TSR techniques.
Clustering technique is the most useful data mining
that is widely used for test case reduction and test-
suite prioritization due to its ability to reduce the
size of the test suite by removing the redundancy
from the test suite. Therefore, the proposed
framework is different from other works that are
tried to combine TSP and TSR techniques because
this work integrates between TSP and TSR where
the priority of test cases is determined at the first
step, and then the RS is generated from PS. An
optimal set of test cases with a high percentage of
fault detection will be created as a result of this
combination. This optimal list of test cases is
beneficial for execution under a limited time
constraint. Moreover, TSP and TSR are
implemented by applying the most active code
coverage-based TSP and TSR techniques that use
clustering data mining technique.

The Contribution of this research:
1- A proposed model that orders and reduces test

suites by using multiple coverage criteria and
different prioritization criteria.

2- An empirical comparison between the optimal
set of test cases against the original set of test
cases using some measurement metrics.

3- Provide a guide to testers on which the best
prioritization criteria to be selected based on
observed results of the empirical study.

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

292

2. BACKGROUND AND RELATED WORK

2.1 Test Suite Reduction (TSR):

The automatic generation of the test cases results in
the vast number of test cases. Therefore, the test
suite size becomes too long and may be contain
unnecessary and redundant test cases. At this point,
test cases are difficult to be managed and costly to
be executed [2]. Test suite size problem has been
addressed by proposing a test suite reduction TSR
approach [7] that also named test suite
minimization approach. The goal of this approach
is to select a minimal subset from the original test
suite that covers a set of test requirements. The
definition of test suite reduction problem can be
summarized as follow [8]:
Given: a test suite TS that contains a set of test
cases {tc1, tc2, tc3,…….,tcn}that can cover a set of
requirements Req={R1, R2, R3,….., Rn}.
Problem: find the minimal subset RS⊆TS that
satisfies all of the requirements Req where each
requirement can be covered by at least one test
case.

The test suite reduction is an essential
challenge in software testing because the test suite
size directly affects the time and cost of the testing
process and hence, its effectiveness. Therefore, it is
useful and profitable to have as a small set of test
cases as could reasonably be expected [9], [10]. The
number of test suite reduction techniques have been
widely proposed and experimented. The main
objective of TSR techniques is to reduce the size of
the test suite based on some criteria to limit the
executing time and its costs. The optimal minimal
test suite should be satisfied with some criteria,
such as maximum coverage, high fault detection,
and minimum execution time [11].

The data mining techniques play a vital
role in test reduction due to its ability to extract
hidden patterns of test cases by detecting the
similarities between the test cases and deleting the
redundant ones [12], [13]. Many different studies
use data mining techniques in test suite reduction.
The most applied data mining technique to test
suite reduction is a clustering approach [2], [12],
[14], [15].
2.1.1 Clustering-based test suite reduction
technique:

Cluster analysis is an essential domain in data
mining. The primary task of the clustering analysis
in test case reduction is to divide a set of test cases
within single test suite into clusters where each
cluster contains the test cases that have the same or

similar characteristics and different from the test
cases in other clusters [9]. The cluster algorithms
divide the set of test cases based on the similarity or
dissimilarity metrics that are used to measure the
similarity between test cases. These metrics such as
Minkowski metric, Euclidean distance and
Supermun distance [16].

Clustering technique is the most useful
data mining that is widely used for test case
reduction due to its ability to eliminate the
redundancy from the test suite and reduce the size
of the test suite. Clustering-based test case
reduction techniques can be classified into
Coverage based test case reduction, Similarity-
based test case reduction, and Density-based test
case reduction [17].
2.1.2 Coverage based test case reduction
techniques:

Code coverage is a useful metric to assess the
quality of software testing. It is used to measure the
percentage of code that has been covered and tested
by a test suite. Code coverage can be measured by
using many metrics such as [12]:
1. Function coverage: the number of called

function or subroutine in the code.
2. Statement coverage: the number of executed

statements in the code.
3. Branch/ path coverage: the number of IF

statements that have both true and false path.
4. Conditional / decision coverage: the number

of Boolean expressions that are evaluated to
both true and false.

The test case that is able to exercise the
maximum percentage of the code in the software
under test SUT is efficient test case. The output of
code coverage measurement provides information
about the area that is not covered and also this
information can be used to direct the test generators
to create a test case that able to test area that has not
been covered before [18]. Therefore, code coverage
is widely used in regression testing, test case
reduction, and test case prioritization.

The main objective of coverage-based test
suite reduction techniques is to reduce the size of
the test suite by eliminating the redundant test cases
and select the optimal test case that has a maximum
percentage of code coverage. The most proposed
coverage-based test case reduction techniques use
K-Means clustering algorithm concerning different
code coverage metrics. In this regard, [19] proposed
a technique for test case reduction by using the K-
Means algorithm based on branch coverage. They

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

293

performed white box testing and black-box testing
by generating a set of test cases by using Pex
software tool. Then, they applied K-Means
clustering to reduce the number of test cases based
on branch coverage as the code coverage metric.
The results show that the K-Means clustering
reduces the test suite size and keeps the same
coverage in reduced test suit. Other studies [20],
[21], [22] also used the K-Means clustering
algorithm but, for path coverage.

An empirical study presented in [23]
suggested that using multi coverage criteria rather
than single coverage is more effective in selecting
test cases that can expose different faults.
Therefore, some studies use more than one
coverage metric to improve fault detection
capability. In [24], they proposed an approach for
test case reduction based on multi coverage criteria
such as function, statement, and branch. They
applied hierarchical clustering algorithm. The
proposed approach can reduce the size of the test
suite and at the same time, maintaining the ratio of
code coverage and fault prediction capability of the
reduced suite. The limitation of the proposed
approach is the complexity of the hierarchical
clustering algorithm.

 On the other side, [12] proposed the same
approach for test case reduction to decrease the
time and cost of executing them. But, they used a k-
mean clustering algorithm instead of hierarchical
clustering to group several test cases into clusters
and then remove the redundant test cases that have
equal distances to cluster centre point. The
proposed approach applied for test case reduction
based on the most two attributes of test cases:
coverage (branch, path, and method coverage) and
cyclomatic complexity CC. They also used multi
coverage criteria in addition to CC attribute of test
cases. The advantage of using two different
attributes of test cases (coverage and CC) rather
than single attribute (coverage) is to increase the
chance of selecting test cases that have a high
ability to detect different faults. So, their proposed
approach can reduce the size of the test suite by
removing only the test cases that are not necessary
for testing. Also, the coverage after the reduction
process still offered good results.

The advantage of the coverage-based test
suit reduction techniques is the high rate of test suit
reduction and the saved time [17]. Therefore, the
coverage aspect is a vital issue that needs to be
considered in test suite reduction. So, the proposed
framework is built on code coverage-based test suit
reduction technique that uses multi coverage
criteria rather than single coverage. Although, the

main limitation of the coverage-based techniques is
that the path coverage consumes more time to
calculate the coverage from source code, especially
in the extensive system [8].
2.1.3 The benefit and limitation of test case
reduction techniques:
As evident, using test-suite reduction (TSR)
techniques have a good impact on the effectiveness
of the testing process in terms of time and cost.
They help the manager to (1) execute the test cases
in less time. (2) Observe the test results. (3) Handle
the testing data.

Although, the primary limitation of these
techniques is the significant decrease of fault
detection capability because some of the removed
test cases that are eliminated during the reduction
approach have a latent ability to reveal the faults.
Also, the rate of fault detection of the reduced test
suite may be less than the rate of fault detection of
the original test suite [13]. Therefore, the tradeoff
between the size of test cases and their fault
detection capability must be taken into account
when applying test suite reduction techniques. To
overcome this limitation, test suite prioritization
(TSP) techniques should be used to improve the
rate of fault detection.

2.2 Test Suite Prioritization (TSP):

Another real challenge of software testing is the
order by which test cases are executed. Test suite
prioritization TSP [25] aims to schedule test cases
in perfect order so that some objective function
such as rate of fault detection can be maximized
during the execution. The main goal of TSP is to
execute the test cases that have the maximum fault
detection capability at a first position to minimize
the cost and time of execution by early detection of
faults. TSP provides many advantages: increasing
the rate of fault detection, reducing the costs of
testing, increasing the reliability of SUT, and
increasing the coverage of the code [26].

Many researchers proposed many
techniques for test case prioritization [27], [1], [28]
to help the testers to solve TSP problem. The main
goals of TSP techniques are to enhance the fault
detection rate and reduce the time and cost of
execution. Most proposed techniques prioritize the
test cases based on the code coverage criteria [29]
where the test cases can be ordered based on the
number of statements, or the number of functions,
or a number of blocks that are covered by each test
cases. Also, several studies [30], [31] that have
been applied code coverage based prioritization

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

294

techniques showed good results for the effectiveness of regression testing.
To evaluate the rate of fault detection

that is considered as the essential objective function
of TSP techniques, the number of faults that are
detected by each test case should be measured.
Different metrics are used to measure how
prioritized test cases revealed faults. APFD
(Average Percentage of Faults Detected) is a
popular metric that is used for a long time for
measuring the rate of fault detection [32]. The
values of APFD metric are ranged between 0 to
100, where the maximum value of APFD means a
high rate of fault detection. The limitation of APFD
metric is it assumes that all faults have the same
severity and all test cases have the same costs.

 The severity and costs of faults may
vary according to different factors of the testing
environment. Therefore, [33] presented a new
metric to overcome the limitation of APFD metric.
The proposed metric is termed as APFD per cost
(APFDc). It considers the different severity of test
cases and different costs of faults. Other metrics are
introduced, such as saving factor (SF), normalized
APFD (NAPFD), the average severity of faults
detected (ASFD), .etc. Catal and Mishra concluded
the distribution of these metrics through systematic
study. They stated that APFD metric is quite
dominant of all wherever it is used by 34% of the
chosen papers [34].

2.2.1 Clustering-based test suite prioritization

techniques:

Clustering analysis plays a vital role in
test case prioritization as well as in test case
reduction. It enhances the rate of fault detection and
execution time. So that the most important test
cases will be identified and executed early. Several
approaches for clustering-based test suite
prioritization are proposed [35], [36], [37]. The
basic concept of these approaches is based on
applying a clustering data mining technique to test
suite and then prioritize test cases in each cluster
based on different types of information. The most
types of information that are used by the proposed
TSP techniques are:
1. Code coverage: is one of the basic metrics that is
used to measure the effectiveness of test cases. It
shows how many lines, statements, branches, and
decisions are covered by each test case. Code
coverage is mostly used in TSP techniques due to
its simplicity and its effectiveness where the better
coverage gives a greater rate of fault detection [38],
[18].

2. Cyclomatic complexity (CC) [39]: is another
metric that used to measure the number of
independent paths through a given method in the
program. This number of independent paths
determines the maximum number of test cases that
should be executed to test the program code.
Cyclomatic complexity can be calculated manually
from the flow chart or flow graph that is developed
from the source code. It is calculated using the
following equation: CC= E-n+2, Where E is the
number of edges and n is the number of nodes.
Another method for CC calculation is: CC = (the
number of loops + the number of conditionals) + 1
3. Fault history information: it contains
information about the number of faults that are
detected by each test case during the first execution
of SUT. Each executed test case and its related fault
history information are stored in the test repository.
[29] Assumed that if test cases have detected faults
in a previous execution, then it could have a high
possibility to detect faults when they will be re-
executed in the current version of SUT. They tried
to explore this assumption by implementing TSP
technique based on the fault history information of
test cases. The results ensured that fault detection
history is vital information for TSP techniques and
could improve the effectiveness of the prioritization
process. Furthermore, the fault history information
does not require prior knowledge of source code;
unlike coverage, require detailed analysis of source
code.

Recently, some researches use other
types of information such as requirement coverage
prioritization, cost-aware prioritization, time aware
prioritization and model-based prioritization. Also,
[29] used the combination information of code
complexity and fault history information to
prioritize the test cases per clusters. The
effectiveness of TSP technique can be improved by
using two sophisticated information such as code
complexity and fault history information.
Mukherjee and Patnaik summarized the different
approach of TSP through a systematic survey by
reviewing 90 scholarly articles from 2001 to 2018
[40].
Among this different information, the proposed
framework uses the code coverage, cyclomatic
complexity, and fault history information for
prioritization process because this three information
is familiar to the tester and can be collected and
calculated easily as well as their effective relation
to test cases.

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

295

3. THE PROPOSED FRAMEWORK:

The proposed framework is inspired by [5], [6],
[12], [16], [19], [22], [29]. It supports test-suite
prioritization and reduction using clustering data
mining technique. It helps the tester to generate the
optimal set of test cases that can be executed in less
time and cost. The optimal set should achieve
higher detection of faults with maximum code
coverage. The optimal set of test cases is generated
by applying the clustering-based TSP and TSR
technique to the original set of test cases. Then,
selecting the high order test cases that satisfy the
user requirements and covers most of the code with
minimal repetition of test cases.

The proposed framework can be applied
for any software application. It only needs some
prior information from the test leader about code
coverage and fault history information. Then, it
automatically handles a vast number of test cases
according to coverage and prioritization criteria.
Figure1 shows the high-level structure of the
proposed framework that consists of four basic
components: (I) Test repository (II) Organizer (III)
TS-clustering (IV) Prioritizer and Reducer (PR)
engine. The issues and design options of these
components are discussed as follow:
I. Test repository:

It contains essential information that has
been driven by test leader such as test suites, source
code of SUT, coverage criteria and fault history
information. It also includes the gathered
information that is calculated by software tools
such as code coverage and cyclomatic complexity.
All this information is retrieved by the Organizer
component to complete the function of the
proposed framework.

II. Organizer:

It monitors and organizes the prioritization
and reduction process of test cases by retrieving the
needed information from the test repository and
then calling the clustering mechanism, and the PR
engine, respectively.
III. TS-clustering:

The main purpose of this component is to
classify the input data set (test cases) into the
number of clusters. It is implemented by applying
the K-means clustering algorithm. This algorithm is
considered one of the simplest and most popular
unsupervised learning algorithms for data
clustering. It is used extensively in practical
implementation due to its simplicity. K-means
clustering algorithm follows a simple and
straightforward approach. First, it groups the input

data sets into K groups where “K” is initially
selected to represent cluster centres. After that, the
distance between cluster centres and each data
points are measured. All data points can be moved
to the cluster centre whose distance to the centre is
the nearest. After that, the new cluster centre can be
calculated by the mean value of the data in each
group and again the distance value between each
data points and new centres is recalculated in order
to assign the data points to the closest cluster
centre. Summarize of K-means clustering algorithm
[39]:
1. Select K as initial cluster centres randomly;
2. Calculate the distance between each data points
and cluster centres;
3. Assign each data points to the nearest centres;
4. Recalculate the new centres of each cluster;
5. Repeat from step2 until no data points are
reassigned;

The necessary inputs to this procedure are
the set of test cases and “K” initial specified
number of clusters. While the output is the number
of clusters where each cluster contains similar test
cases that have the same features, this means that
each cluster displays some redundant test cases.
The problem of test cases repetition can be handled
by the PR engine.

IV. The PR engine:

It is the core component of the proposed
framework. It handles the problem of test case
reduction and prioritization by combining
clustering-based TSP and TSR techniques.
Therefore, the PR engine includes clustering-based
TSP and TSR techniques that have been
experimentally validated and proven effective in
test case prioritization and reduction problem. The
main objective of the PR engine is to represent the
test cases in optimal order without redundancy for
effective execution. The PR engine performs two
basic processes: the prioritization process and
reduction process
1. The prioritization process:
This process is initiated after creating the clusters
of test cases to order the test cases per each cluster
based on some criteria with the objective function
of early detection of faults. The prioritization
process is implemented by three prioritization
criteria (code coverage, cyclomatic complexity, or
fault history information) that are mentioned
previously in section 2.2.1. The proposed
framework allows the tester to select one from the
three prioritization criteria based on the available
information about code coverage and fault
detection. The ranked test cases per clusters are

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

296

exported to the buffer until the reduction process is
called by the organizer.
2. The reduction process:

This process is initiated after prioritizing
the test cases per cluster. The objective of this

process is to eliminate the redundant test cases from
each cluster by selecting unique and high-level
priority test case from each cluster. So, in order to

Figure 1. The Proposed Framework.

select the high-level priority test case, an effective
selection approach is implemented in the reduction
process.

The selection approach visits each cluster
to pick the first-order test case. The selection
approach may visit the clusters in a random order of
the clusters or in the primary order in which the
clusters are generated by clustering tool. But, to
optimize the priority of test cases, a feature is added
to the PR engine where the clusters are ranked in an
order based on the selected prioritization criteria.
Then the selection approach visits the clusters in
the new order. This feature enables the PR engine
to produce an optimal set of high order test cases.
The picked test cases from each cluster are exported
to the buffer.
3.1 Assumption:

For proper operation of the proposed framework,
the following assumption must be taken into
account when implementing the proposed
framework:
ASS1: unavailability of time to execute more test
cases and fault detection is a critical issue for a test
manager.

ASS2: apply prioritization process before the
reduction process to optimize the rate of fault
detection.
ASS3: the prioritization process can be
implemented by any proposed TSP techniques as
well as the reduction process can be performed by
any proposed TSR techniques.
3.2 The Function Of The Proposed Framework:
This section illustrates how the proposed
framework functions under the previous
assumption. In the beginning, all the required inputs
are accepted from a test leader. Next, code coverage
and cyclomatic complexity are calculated by
software tool, and they are stored in the test
repository. After that, all the required information is
forwarded to the organizer. Next, the organizer
begins in monitoring and organizing the process of
the PR engine through the following steps. Figure 2
summarizes the steps of the proposed approach for
the PR engine:
Step1: Apply the clustering approach:

Once all the required inputs are available
to the organizer. Then, it calls the TS-clustering to
apply the K-means clustering in order to group test
cases into clusters. The necessary inputs to TS-

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

297

clustering are test cases with code coverage and CC
attributes and the initial “K”. Based on these inputs,
the K-means start to perform the clustering
approach. K-means clustering can be clustered test
cases according to only code coverage or both
cyclomatic complexity and code coverage.
Code coverage-based clustering is applied when the
tester selects either the code coverage or cyclomatic

complexity criteria for prioritization while code
coverage and cyclomatic complexity-based
clustering are used when the tester selects fault
history information for prioritization. The output of
this step is “k” number of clusters that contains
redundant test cases.

Figure 2. The Proposed Approach For The PR Engine.

Step 2: Prioritize the test cases per clusters:
Once clusters of test cases are created.

Then, the organizer calls the PR engine to start its
function. It begins with the prioritization process.
Prioritization process takes created clusters and
prioritization criteria as inputs in order to arrange
test cases per clusters. In the proposed framework,
the prioritization process is implemented by three
methods:
1. Code coverage-based test suite prioritization
(cov-TSP): test cases can be ordered in descending
order according to the number of code statements,
branches, paths, or methods. Theses code coverage
information is computed at the beginning for each
test case by a software coverage tool.
2. Cyclomatic complexity-based test case
prioritization (cyc-TSP): test cases can be ordered
in descending order according to the code

complexity metrics. This metric is calculated for
each test case by a software coverage tool.
3. Fault history information-based test case
prioritization (fault-TSP): test cases can be
ordered in descending order according to the
number of faults that are detected by each test case
in the previous executions. The numbers of faults
that are detected by each test case are retrieved
from test repository, and then the ratio of fault
detection for each test case is calculated by dividing
the number of faults that detected with each test
case by the total number of faults. The values of
fault detection ratio range between zero and one
and they are used to order test cases.

The prioritization process is done by
following only one of the above criteria. The output
of the prioritization process is the same number of
input clusters but with prioritized test cases. The

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

298

prioritized test cases per clusters are handed over to
the buffer.
Step 3: Prioritize the clusters:

Before the reduction process start, the
selective approach should follow a way to visit the
clusters. The tradition way that is frequently used is
to visit clusters in the same order that is generated
by the clustering tool. To optimize the
effectiveness of the selected test cases, it is useful
to visit clusters according to the higher priority of

clusters. Therefore, this step is necessary to be
performed to prioritize clusters. This can be done
by ordering the clusters based on the maximum
value of prioritization criteria in each cluster. The
priority of clusters gives the PR engine a feature
that increases the efficiency of the proposed
framework. The output of this step is a new order
for the clusters.
Step 4: Reduce the test cases per clusters:

In this step, the organizer calls the
reduction process to remove the redundant test
cases. The test cases within the same cluster are
assumed to have the same behavior. Whereas the
test cases that have the same distance values within
this cluster are supposed to be repetitive and must
be removed from this cluster. The reduction process
is implemented by applying an effective selection
approach. The procedure of the selective approach
is as follow: first, the selection approach visits
clusters by their new order. It selects the first test
case from the first order cluster and put it in an
empty list. Then, it removes this selected test case
from the original list of test cases. Next, the second-
order test case is retrieved, and its distance value
compares with the distance value of previously
added test cases in the list. If the distance value of
the retrieved test case is equal to the distance value
of any test cases within the list. Then, this test case
is not added into the list in order to avoid the
redundant test cases. Else, it is added into the list.
The same process is repeated until the last test case
in that cluster is retrieved. Second, the procedure is
moved to the second-order cluster and begins to
retrieve the test cases with the same process. Third,
it moves to the next order cluster and so on. This
procedure continues until all clusters are visited.

The output of this step is the optimal set of
test cases that contains a high priority and unique
test cases. This optimal set of test cases can be
effectively executed in SUT and accordingly
improving the software testing process.
4. CASE STUDY:

To verify the proposed framework, an

empirical study is conducted through the following
phases:
Phase 1: Test case generation and data collection

A java source code for Fee Report
(Student Management System) [41] is downloaded.
The fee management system is used to maintain the
records of students for a long time and make a
straightforward calculation of students' fee where
the accountant can be added, viewed, or deleted by
admin. And then the accountant can add, remove,

edit, or view student to check paid and a due fee of
the student. The source code of the Fee System
consists of 1,696 Lines of code, 15 classes, and
different methods per each class.

Eclipse is used to run the Fee System [42].
Eclipse is a Java integrated development
environment (IDE) that is widely used for
developing Java applications. It contains many
features and plug-ins that present all the
functionality for any application written in Java
programming language. The following steps are
performed by using Eclipse:
 1. Generate a set of test cases for the source
code of the Fee System using CodeProAnalytix
tool:

CodeProAnalytix is a free automated
software testing tool that was developed as a plug-
in for Eclipse. It has many features, such as code
metrics and code coverage calculation. The main
feature of this tool is the Junit test case generation,
where different test cases can be generated
automatically for each input class. By this tool, 142
automated test cases are generated for some classes
of Fee System, and 9 test cases are generated
manually for other classes. Table 1 represents the
number of automatic and manual test cases that are
generated for each test suite with 151 test cases as a
total.

Table 1. Number Of Generated Test Cases For Different

Test Suite.
Test Suite_Name Number of

generated test
cases

Test Suite_Accountant 12

Test Suite_Accountant_Dao 26

Test Suite_Student 27

Test Suite_Student_Dao 77

Test Suite_Accountant_login 4

Test Suite_Add_Accountant 2

Test Suite_Add_Student 3

Total 151

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

299

2. Calculate the code coverage data for the
generated test cases using Eclemma tool:

Eclemma is a free testing tool for Java
code coverage in Eclipse, available under the
Eclipse marketplace. It automatically calculates
code coverage for test cases directly into Eclipse. It
supports four types of code coverage that are listed
in a view menu: Instructions counters, Branch
counters, Line counters, and Method counters.
3. Calculate cyclomatic complexity for the
generated test cases using JaCoCo metrics:

JaCoCo metrics is a plug-in in Eclemma
for code coverage and the cyclomatic complexity
calculation. It is used to calculate the cyclomatic
complexity for test cases.

The generated code coverage data
(Instructions, Branch, Line, and Method) and
cyclomatic complexity for 151 test cases that are
generated by Junit tool are collected and stored in
Excel file with CSV extension. Table 2 shows a
sample of test cases with six attributes: TC_ID,
Instruction, Branches, Lines, Methods, and
C_Complexity.
Phase 2: case study setup

 To understand the function of the
proposed framework, three case scenarios are
presented to help in understanding the work of the
basic components of the proposed framework based
on the prioritization criteria that is selected by the
tester. The proposed framework allows the tester to
choose from three prioritization criteria: code
coverage, cyclomatic complexity, or the number of
detected faults.
1. Case Scenario A: code coverage as a
prioritization criteria

Suppose the tester selects code coverage
data as prioritization criteria. Based on the coverage
data that is collected for the generated test cases,
four types of code coverage data are calculated
(Instructions, Branch, Line, and Method). The
tester should select one from these four coverage
data as prioritization criteria. Then, the organizer
calls the TS_clustering to perform multi-code
coverage based clustering using other types of code
coverage data and cyclomatic complexity. For
example, if the tester selects Instruction code
coverage as prioritization criteria, then code
coverage based clustering is performed based on
(Branch, Line, and Method) and cyclomatic
complexity. Therefore, there are four case studies in
this case scenario based on the selected type of
code coverage data.

Table2. Sample Set For Fee System's Test Cases
Coverage Data.

One case study is selected where the tester
selects Instruction code coverage as prioritization
criteria, and the proposed approach for the PR
process is implemented through the following
steps:
1. Apply the K-means algorithm:

 SPSS [43] is used to perform a code
coverage based clustering using K-means
algorithm. SPSS is statistical analysis software with
a fast and powerful solution for statistical problems.
It is used by many researchers such as market,
education, health and data miner researchers. It
supports clustering analysis using K-means
algorithm and hierarchal algorithm. SPSS
clustering analysis is used because it uses a simple
interface for K-means clustering and can calculate
the distance of each input data from the cluster
centre and shows the calculated distance in the
output of the clustering process. Distance data is
essential for a later reduction process.

In K-means cluster analysis window, only
Branch, Line, Method and C_Complexity variables
are selected for clustering, and the number of
clusters is decided to be four clusters (K=4) as
illustrated in figure 3. After applying the K-means
algorithm, the result of clustering analysis is
exposed as in figure 4. Figure 4 represents a list of
test cases with new variables: cluster number and
distance. The distance variable contains the
distance value of each test case from its cluster
centre. The test cases in each cluster are stored in
tabular form within the SQL database in four
tables: cluster_1, cluster _2, cluster_3, cluster_4.

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

300

Each one has three columns: TC_ID, prioritization
criteria (Instruction), and Distance

Figure 3. K-Means Clustering Analysis For Scenario A.

2. Prioritize the test cases in each cluster:

 The records inside each cluster table are
ordered in descending order based on values of
prioritization criteria (Instruction attribute). So, the
test cases in each cluster are prioritized based on
Instruction code coverage data, and a new order of
test cases is created.
3. Prioritize the clusters:

The applied K-means clustering creates
the four clusters in this order: cluster 1, cluster 2,
cluster 3, and then cluster 4. But, to select a high
priority of test cases. The clusters must be ordered
based on the maximum value of Instruction
attribute in each cluster. This can be done by
calculating the maximum value of Instruction
attribute in each cluster table and then order theses
values in descending order. A new order of the
clusters is created as C1, C2, C3, and C4.

Figure 4. Sample Of K-Means Clustering Output For

Scenario A.

4. Reduce the test cases per clusters:
In this step, the redundant test cases are removed.
To generate the optimal set of high priority and
unique test cases, the selective approach that is
mentioned in section 3.2 is used to retrieve the
ordered test cases from each cluster by visiting the
clusters in order that results in the previous step
(step 3). The procedure of the selective approach
can be illustrated by an example. See figure 5 and
suppose ten test cases are clustered into two
clusters.
2. Case Scenario B: Cyclomatic complexity as a
prioritization criteria

In this case scenario, the tester is supposed to select
cyclomatic complexity as prioritization criteria.
Consequently, a multi-code coverage based
clustering is processed using only the four types of
code coverage data (Instructions, Branch, Line, and
Method). The previous four steps are implemented
respectively for this scenario. At the end of this
scenario, an optimal list of high priority and unique
test cases is created based on cyclomatic
complexity prioritization criteria. The optimal list
of this scenario contains only 63 test cases
compared to the optimal list of scenario A that
includes 70 test cases.
3. Case Scenario C: Faults history as
prioritization criteria.

In this case scenario, the tester is supposed to select
faults history as prioritization criteria.
Consequently, a multi-code coverage based
clustering is processed using the four types of code
coverage data (Instructions, Branch, Line, and
Method) and cyclomatic complexity. To implement
the steps of the proposed approach for this scenario,
a history of the number of real faults is required.
Faults that are supposed to have been detected by
each test case during the first execution of the Fee
System. But, there are no faults history data for the
Fee System. Therefore, the number of faults is
seeded manually into the source code of the Fee
System. And then execute each test case against
these faults to determine which faults can be
detected by each test case. 15 faults are seeded in a
different position in the source code.
The numbers of faults that are detected by each test
case are represented in table 3. Based on these
number of faults, the average value of fault
detection for each test cases is calculated by
dividing the number of faults that are detected by
each test case (No.faults) by the total number of
faults (15 faults). The average values of fault

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

301

detection represent the rate of fault detection. Then,
these values are used as prioritization criteria for
this scenario. Respectively, the four steps of the
proposed PR process are implemented for this
scenario. Accordingly, an optimal list of high
priority and unique test cases is generated based on
the rate of fault detection as prioritization criteria.
The optimal list contains only 68 test cases. Figure
6 shows the number of test cases before and after
the PR process for each case scenario.

Table 3. Sample Data For The Number Of Detected
Faults.

TC_ID No.faults Average no.faults

1 2 0.13

2 1 0.07

3 0 0.00

4 0 0.00

5 1 0.07

6 3 0.20

7 1 0.07

8 2 0.13

9 2 0.13

10 0 0.00

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

302

Figure 5. Example Of The Selective Procedure For Reduction Process.

Cluster2

Order test cases in each cluster by Instruction
attribute

Cluster1 Cluster2

Order the clusters based on the maximum Instruction
values.

C1 C2

Optimal list

Select test cases that have distinct values of Distance
attribute, starting from the first order cluster C1 and
then the second order cluster C2.

Cluster1

R
ed

un
da

n
t

te
st

ca
se

s

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

303

Figure 6. Number Of Test Cases For Scenario A, B, And
C.

Phase three: measurement metrics
The measurement metrics that are used to evaluate
the proposed framework are code coverage and
APFD. The code coverage is recomputed using
Eclemma tool for the optimal set of test cases that
are generated in each case scenario. Table 4, Table
5, and table 6 represent the average coverage before
and after the PR process for each case scenario.
And figure 7 shows the average of code coverage
for the three scenarios before and after the PR
process.

Table 4. The Code Coverage Before And After The PR
Process For scenario A.

Code coverage Before After

Instructions 85.00% 89.00%

Branches 70.20% 70.00%

Lines 80.00% 78.30%

Methods 93.00% 90.6%

Average 82.05% 81.97%

Table 5. The Code Coverage Before And After The PR

Process For Scenario B.
Code coverage Before After

Instructions 85.00% 80.00%

Branches 70.20% 69.00%

Lines 80.00% 78.60%

Methods 93.00% 91.20%

Average 82.05% 79.70%

The second measurement is the APFD metric that is
mentioned in section 2.2. The APFD is calculated
by the following Equation [44].

𝐀𝐏𝐅𝐃 ൌ 𝟏 െ
𝐓𝐅𝟏 𝐓𝐅𝟐 ⋯ 𝐓𝐅𝐦

𝐧𝐦

𝟏
𝟐𝐧

Where, T ==> a set a test suite, F ==> a set of
faults, n ==> number of test cases in T, m ==>
number of faults in F, and TFi ==> the position of
the first test in T that catches fault i. Figure 8,
figure 9, and figure 10 show the APFD for each
scenario.

Table 6. The Code Coverage Before And After The PR

Process For Scenario C.
Code coverage Before After

Instructions 85.00% 84.00%

Branches 70.20% 70.20%

Lines 80.00% 78.00%

Methods 93.00% 93.00%

Average 82.05% 81.30%

Figure 7. The Average Of Code Coverage For Scenario

A, B, And C.

5. RESULTS

The results show that:
 According to figure 6 the size of test suites is

reduced in each case scenario after implementing
the proposed approach for the PR process by
54%, 58%, and 55% for scenario A, scenario B,
and scenario C respectively. Subsequently, the
execution time of the testing process for the Fee
System will be reduced, and results in lower
costs. The findings indicate that the proposed
framework can effectively reduce the size of test
suites by more than 50%. This contributed to
confirm the importance of using the TSR
techniques in the proposed PR model.

 The average of the code coverage for each
scenario after implementing the PR process is
81.97% for scenario A, 79.70% for scenario B,
and 81.30% for scenario C. as illustrated, the
average of the code coverage still achieving a

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

304

good result compared to the average of the code
coverage before PR process that is 82.05%.

 From figure 7, the results indicate that the
percentage of code coverage reduction for each

scenario is different according to the prioritization
criteria that are selected by the

tester. For scenario A where the instruction
coverage data is used as prioritization criteria, the
percentage of code coverage reduction is 0.1% that
is best over the two other scenarios (3% and 0.9%
for scenario B and scenario C, respectively).
However, the percentage of code coverage
reduction for scenario A and scenario C are very
close to each other (0.1% and 0.9%). The findings
indicate that there may be a significant relationship
between the percentage of code coverage reduction
and the selected prioritization criteria. This
contributed to determine which the best
prioritization criteria to be selected.

Figure 8. APFD For The Optimal Set Of Scenario A.

Figure 9. APFD For The Optimal Set Of Scenario B.

Figure 10. APFD For The Optimal Set Of Scenario C.

 The results of APFD for each scenario indicate
that scenario A has a higher value of 69.20%
compare to scenario B and scenario C (65.20%
and 52.50%, respectively). Although, the scenario
C has the lowest value of fault detection rate. But,
this result may be differed for real faults history.

6. DISCUSSION:

Based on the hand results, this section
discusses the fundamental trends that are observed
from results analysis as well as the related points
concerning software testing area of research. The
following issues are concluded:
 The proposed framework can effectively

prioritize and reduce the test cases and provide
the tester with the optimal set of test cases that
will be executed in less time without more losing
in code coverage rate. Subsequently, the proposed
framework is useful for a tester when he hinders
with the time and cost of the testing process.

 Investigate both test suite prioritization and
reduction techniques in the proposed framework
improve its effectiveness by combining them in a
way (the PR process) that is efficient for different
testing situations.

 Implementing multi-code coverage based
clustering for prioritization and reduction
techniques optimize the effectiveness of both
techniques. As illustrated from the results: in
scenario A where the tester selects instruction
code coverage as a prioritization criterion, the
clustering approach is based on multi-code
coverage (Branch, Line, and Method) and
cyclomatic complexity as another attribute of test
cases. In this scenario, both prioritization and
reduction technique is based on code coverage
data. Consequently, scenario A has the highest
value of code coverage. As well as in scenario C,
where the tester selects the average of fault
detection as a prioritization criterion, also the
clustering approach is based on multi-code
coverage and cyclomatic complexity as another
attribute of test cases. Therefore, the average
value of code coverage for scenario C is very
close to the average value of code coverage for
scenario A. but for scenario B, the average value
of code coverage is less than other two scenarios
because the clustering approach in this scenario is
based only on code coverage data without any
additional attributes of test cases.

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

305

 The value of APFD for each scenario is not high
enough, but they still yielded good results for the
fault detection rate.

 Based on the results, the tester can take maximal
advantage of the proposed framework if he
follows some guides. The first choice for
prioritization criteria should be a code coverage
data; this can be developed in the proposed
framework by making the code coverage as the
default choice for prioritization criteria. The
second choice is fault history, and cyclomatic
complexity is the last choice. The tester may
follow these guidelines when all these data are
available in the test repository. Otherwise, the
tester makes the appropriate decision based on the
available data.

The main limitations of this study should be
highlighted as follow:
 The study is conducted with only one SUT that is

a java source code application, and not be
generalized for a different sizes and types of
application. Therefore, future work should
consider other applications for more
generalization.

 The prioritization criteria are confined to only
three types of information: code coverage,
cyclomatic complexity, and faults history.

 The manual method that is used for fault seeding,
the limited number of seeded faults, and the
distribution of faults in source code are the major
limitation of this study.

 The APFD measurement metric is not accurate to
measure the rate of fault detection when fault
severity and costs of test cases are considered.
Therefore, this study assumed that all faults have
the same severity, and all test cases have the same
cost. But, when fault severities and costs are
considered, this study should provide additional
measurement metrics for the rate of fault
detection.

7. CONCLUSION AND FUTURE WORK

The proposed framework is practical for
improving the software testing process in terms of
time and cost. It uses a clustering-based test suite
prioritization and reduction techniques. It aims to
automatically generate an optimal set of test cases
by combining test suite prioritization and reduction
techniques based on clustering data mining
technique. The optimal set of test cases can be
effectively executed under a limited time constraint.

Moreover, the proposed framework can
order and reduce test suites by using multiple code
coverage criteria and different prioritization criteria.
Therefore, the proposed framework can improve
the software testing process when the time is
limited, and fault detection is a critical issue for a
test manager.

Furthermore, the proposed framework is
evaluated by conducting an empirical study. The
results indicate that the proposed framework can
effectively prioritize and reduce the size of test
suites with a high percentage of code coverage for
each scenario (81.97% for scenario A, 79.70% for
scenario B, and 81.30% for scenario C) and good
value of APFD for each scenario (69.20% for
scenario A, 65.20% for scenario B, and 52.50%, for
scenario C). Therefore, the proposed framework is
robust and valuable for software testing process.

For future work, it is essential to evaluate
the proposed framework for different types and
sizes of SUT. It is required to use other criteria for
prioritization and conduct additional case studies
for further estimation of the proposed framework. It
is needed to make a questionnaire to take the
opinions of the testers for the proposed framework.

REFERENCES

 [1] Sharma N, Purohit GN. Test case prioritization

techniques “an empirical study”. In2014
International Conference on High Performance
Computing and Applications (ICHPCA) 2014
Dec 22 (pp. 1-6). IEEE.

[2] Coutinho AE, Cartaxo EG, Machado PD. Test
suite reduction based on similarity of test
cases. In7st Brazilian workshop on systematic
and automated software testing—CBSoft 2013.

[3] Bertolino A, Cartaxo E, Machado P, Marchetti
E, Ouriques JF. Test suite reduction in good
order: comparing heuristics from a new
viewpoint. On Testing Software and Systems:
Short Papers. 2010 Oct:13.

[4] Sampath S, Bryce RC. Improving the
effectiveness of test suite reduction for user-
session-based testing of web applications.
Information and Software Technology. 2012
Jul 1;54(7):724-38.

[5] Sampath S, Bryce RC, Jain S, Manchester S. A
tool for combination-based prioritization and
reduction of user-session-based test suites.
In2011 27th IEEE International Conference on
Software Maintenance (ICSM) 2011 Sep 25
(pp. 574-577). IEEE.

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

306

[6] Khan SU, Lee SP, Parizi RM, Elahi M. A code
coverage-based test suite reduction and
prioritization framework. In2014 4th World
Congress on Information and Communication
Technologies (WICT 2014) 2014 Dec 8 (pp.
229-234). IEEE.

[7] Harrold MJ, Gupta R, Soffa ML. A
methodology for controlling the size of a test
suite. ACM Transactions on Software
Engineering and Methodology (TOSEM). 1993
Jul 1;2(3):270-85.

[8] Alian M, Suleiman D, Shaout A. Test case
reduction techniques-survey. International
Journal of Advanced Computer Science &
Applications. 2016 May 1;1(7):264-75.

[9] Ilkhani A, Abaee G. Extraction test cases by
using data mining; reducing the cost of testing.
In2010 International Conference on Computer
Information Systems and Industrial
Management Applications (CISIM) 2010 Oct 8
(pp. 620-625). IEEE.

[10] Singh R, Santosh M. Test case minimization
techniques: a review. International Journal of
Engineering Research & Technology (IJERT).
2013 Dec;2(12).

[11] Shrivathsan AD, Ravichandran KS, Sekar KR.
Test suite reduction mechanisms: a survey.
International Journal of Applied Engineering
Research. 2015;10(18):39841-8.

[12] Saifan AA, Alsukhni E, Alawneh H, Sbaih
AA. Test case reduction using data mining
technique. International Journal of Software
Innovation (IJSI). 2016 Oct 1;4(4):56-70.

[13] Raamesh L, Uma GV. Reliable mining of
automatically generated test cases from
software requirements specification (SRS).
arXiv preprint arXiv:1002.1199. 2010 Feb 5.

[14] Kansomkeat S, Thiket P, Offutt J. Generating
test cases from UML activity diagrams using
the Condition-Classification Tree Method.
In2010 2nd International Conference on
Software Technology and Engineering 2010
Oct 3 (Vol. 1, pp. V1-62). IEEE.

[15] Dubey Y, Singh D, Singh A. Amalgamation of
Automated Test Case Generation Techniques
with Data Mining Techniques: A Survey.
International Journal of Computer
Applications. 2016 Jan;975:8887.

[16] Khan FA, Gupta AK, Bora DJ. An efficient
approach to test suite minimization for 100%
decision coverage criteria using K-Means
clustering approach. IJAPRR International Peer
Reviewed Refereed Journal. 2015;2(VII):18-
26.

[17] Mottaghi N, Keyvanpour MR. Test suite
reduction using data mining techniques: A
review article. In2017 International
Symposium on Computer Science and
Software Engineering Conference (CSSE)
2017 Oct 25 (pp. 61-66). IEEE.

[18] Shahid M, Ibrahim S, Mahrin MN. A study on
test coverage in software testing. Advanced
Informatics School (AIS), Universiti Teknologi
Malaysia, International Campus, Jalan
Semarak, Kuala Lumpur, Malaysia. 2011.

[19] Chantrapornchai C, Kinputtan K,
Santibowanwing A. Test Case Reduction Case
Study for White Box Testing and Black Box
Testing using Data Mining. International
Journal of Software Engineering and Its
Applications. 2014;8(6):319-38.

[20] Muthyala K, Naidu RA. A novel approach to
test suite reduction using data mining. Indian
Journal of Computer Science and Engineering.
2011 Jul;2(3):500-5.

[21] Dash R, Dash R, Siksha IT. Application of K-
mean algorithm in software maintenance.
International Journal of Emerging Technology
and Advanced Engineering. 2012 May;2(5).

[22] Subashini B, JeyaMala D. Reduction of test
cases using clustering technique.
InInternational Conference on Innovations in
Engineering and Technology (ICIET'14) 2014.

[23] Jeffrey D, Gupta N. Improving fault detection
capability by selectively retaining test cases
during test suite reduction. IEEE Transactions
on software Engineering. 2007 Jan
8;33(2):108-23.

[24] Prasad S, Jain M, Singh S, Patvardhan C.
Regression Optimizer A Multi Coverage
Criteria Test Suite Minimization. International
Journal of Applied Information Systems
(IJAIS), Foundation of Computer Science FCS,
New York, USA. 2012 Apr;1(8).

[25] Kumar A, Singh K. A Literature Survey on test
case prioritization. An international journal of
advanced computer technology. Compusoft.
2014 May 1;3(5):793.

[26] ur Rehman I, Malik SU. The impact of test
case reduction and prioritization on software
testing effectiveness. In2009 International
Conference on Emerging Technologies 2009
Oct 19 (pp. 416-421). IEEE.

[27] Zhou ZQ, Sinaga A, Susilo W. On the fault-
detection capabilities of adaptive random test
case prioritization: Case studies with large test
suites. In2012 45th Hawaii International
Conference on System Sciences 2012 Jan 4
(pp. 5584-5593). IEEE.

Journal of Theoretical and Applied Information Technology

31st January 2020. Vol.98. No 02
 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

307

[28] Jiang B, Zhang Z, Chan WK, Tse TH.
Adaptive random test case prioritization.
InProceedings of the 2009 IEEE/ACM
International Conference on Automated
Software Engineering 2009 Nov 16 (pp. 233-
244). IEEE Computer Society.

[29] Carlson R, Do H, Denton A. A clustering
approach to improving test case prioritization:
An industrial case study. In2011 27th IEEE
International Conference on Software
Maintenance (ICSM) 2011 Sep 25 (pp. 382-
391). IEEE.

[30] Shahid M, Ibrahim S, Mahrin MN. A study on
test coverage in software testing. Advanced
Informatics School (AIS), Universiti Teknologi
Malaysia, International Campus, Jalan
Semarak, Kuala Lumpur, Malaysia. 2011.

[31] Do H, Mirarab S, Tahvildari L, Rothermel G.
The effects of time constraints on test case
prioritization: A series of controlled
experiments. IEEE Transactions on Software
Engineering. 2010 Jun 7;36(5):593-617.

[32] Rothermel G, Untch RH, Chu C, Harrold MJ.
Test case prioritization: An empirical study.
InProceedings IEEE International Conference
on Software Maintenance-1999
(ICSM'99).'Software Maintenance for Business
Change'(Cat. No. 99CB36360) 1999 Aug 30
(pp. 179-188). IEEE.

[33] Elbaum S, Malishevsky A, Rothermel G.
Incorporating varying test costs and fault
severities into test case prioritization.
InProceedings of the 23rd International
Conference on Software Engineering 2001 Jul
1 (pp. 329-338). IEEE Computer Society.

[34] Catal C, Mishra D. Test case prioritization: a
systematic mapping study. Software Quality
Journal. 2013 Sep 1;21(3):445-78.

[35] Medhun Hashini DR, Varun B. Clustering
approach to test case prioritization using code
coverage metric. International journal of
engineering and computer science. 2014.

[36] Arafeen MJ, Do H. Test case prioritization
using requirements-based clustering. In2013
IEEE Sixth International Conference on
Software Testing, Verification and Validation
2013 Mar 18 (pp. 312-321). IEEE.

[37] Pathania Y, Kaur G. Role of Test Case
Prioritization based on Regression Testing
using Clustering. International Journal of
Computer Applications. 2015 Jan 1;116(19).

[38] Rothermel G, Untch RH, Chu C, Harrold MJ.
Prioritizing test cases for regression testing.
IEEE Transactions on software engineering.
2001 Oct;27(10):929-48.

[39] Upadhyay AK, Misra AK. Prioritizing test
suites using clustering approach in software
testing. International Journal of Soft
Computing and Engineering (IJSCE). 2012
Sep;2(4).

[40] Mukherjee R, Patnaik KS. A survey on
different approaches for software test case
prioritization. Journal of King Saud University-
Computer and Information Sciences. 2018 Oct
3.

[41] https://www.javatpoint.com/free-java-projects.
[42] https://marketplace.eclipse.org/content/ibm.
[43] https://www.ibm.com/analytics/spss-statistics-

software.
[44] Pradeepa R, VimalDevi K. Effectiveness of

test case prioritization using APFD metric:
Survey. InInternational Conference on
Research Trends in Computer Technologies
(ICRTCT—2013). Proceedings published in
International Journal of Computer
Applications®(IJCA) 2013 (pp. 0975-8887).

