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ABSTRACT 
 

This paper presents a two-stage framework for fast and accurate instance segmentation of objects in traffic 
scene images based on region-based convolutional neural network. For improving the inference speed of the 
proposed framework, a lightweight deep convolutional neural network which achieved high accuracy in very 
limited computational budgets is adopted to generate base feature maps. To enhance the segmentation 
performance on small objects, this paper designs an enhanced module to generate fused feature map which 
improves the resolution of small objects and simultaneously includes more semantic information. The fused 
feature map enhances the classification performance and the segmentation performance of small objects. 
Furthermore, an improved RoI pooling process based on deformable RoI pooling is proposed in this paper. 
The improved RoI pooling employs a lightweight offset prediction branch which contains fewer parameters 
compared with standard offset prediction branch, thus improving the inference speed of the proposed 
framework. For evaluating the proposed framework on instance segmentation of objects in traffic scene 
images, the Cityscapes dataset is adopted. Experimental results show the effectiveness of the proposed 
method on both accuracy and inference speed. 

Keywords: Instance Segmentation, Autonomous Driving, RoI Pooling, Deep Convolutional Neural Network, 
Region-based Convolutional Neural Network 

 
 
 
1. INTRODUCTION  
 

Recently, image segmentation is applied in 
many problems, such as medical image analysis 
systems, autonomous driving systems, video 
surveillance systems, and so on. Image segmentation 
includes semantic segmentation and instance 
segmentation. Semantic segmentation can be 
formulated as a classification of pixels with semantic 
labels, where pixels are labelled based on a set of 
fixed object categories. Instance segmentation 
further extends semantic segmentation problem by 
separating each of detected object in image. 
Recently, many methods for image segmentation 
have been proposed and applied in real world 
problems. These methods can be divided into two 
groups: traditional approaches and deep learning 
approaches. Traditional approaches include region 
merging [1], k-means clustering [2], clustering 
techniques [3], conditional and Markov random 

fields [4], K-nearest neighbor [5], and sparsity-based 
[6], and so on.  

With the fast development of deep learning in 
recent years, a variety of image segmentation 
approaches based on deep learning have been 
proposed. The deep convolution neural networks 
(CNNs) can learn the features of the objects to be 
segmented with the dataset autonomously and 
improve the performance of its model gradually. 
CNNs mainly consist of three type of layers: 
convolutional layers, which uses a filter of weights 
to extract features from image; nonlinear layers, 
which apply an activation function on feature maps 
to enable the modeling of non-linear functions by the 
network; and pooling layers, which replace a small 
region of a feature map with some statistical 
information to reduce spatial resolution. Each unit in 
every layer receives weighted inputs from a small 
region of units in the previous layer. This small 
region is called receptive field. In CNNs, the higher-
level layers learn features from increasingly wider 
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receptive fields. The main computational advantage 
of CNNs is that all the receptive fields in a layer 
share weights, resulting in a significantly smaller 
number of parameters than fully connected neural 
networks. Since the development of fully 
convolutional networks [7], the accuracy of image 
segmentation has been improved rapidly.  Recently, 
the researcher has been tackling the more 
challenging instance segmentation task, whose goal 
is to localize object instances with pixel-level 
accuracy, jointly solving object detection and 
semantic segmentation. In this paper, a deep 
learning-based framework for fast and accurate 
instance segmentation of objects in traffic scene 
images is introduced. The proposed framework 
improves the inference speed on instance 
segmentation tasks and the accuracy on 
segmentation of small targets. For improving the 
inference speed of the proposed framework, a 
lightweight deep convolutional neural network 
which achieved high accuracy in very limited 
computational budgets is adopted to generate base 
feature maps. For enhancing the segmentation 
performance on small objects, this paper designs an 
enhanced module to generate fused feature map 
which improves the resolution of small objects and 
simultaneously includes more semantic information. 
Furthermore, an improved RoI pooling process 
based on deformable RoI pooling is proposed in this 
paper. The improved RoI pooling employs a 
lightweight offset prediction branch which contains 
fewer parameters compared with standard offset 
prediction branch, thus improving the inference 
speed of the proposed framework. 

The remaining of this paper is organized as 
follows. Section 2 introduces the related work. 
Section 3 details the proposed framework. Section 4 
provides the experimental results and comparison 
between the proposed method and other methods on 
public datasets. Finally, the conclusions and future 
works is drawn in Section 5. 
 
2. RELATED WORK 
 

Earlier methods for image segmentation 
include region merging [1], k-means clustering [2], 
clustering techniques [3], conditional and Markov 
random fields [4], K-nearest neighbor [5], and 
sparsity-based [6]. These traditional methods adopt 
hand-crafted features for segmenting each pixel in 
image. Driven by the effectiveness of deep CNNs 
recently, many methods for image segmentation 
have been proposed and achieved great 
improvements. Long et al. [7] proposed to use fully 
convolutional network (FCN) for semantic 

segmentation. FCN takes input image of arbitrary 
size and produces correspondingly sized output with 
efficient inference and learning. Liu et al. [8] 
introduced ParseNet, which added global context to 
deep convolutional networks for semantic 
segmentation. ParseNet used the average feature for 
a layer to augment the features at each location. To 
integrate more context, several approaches 
incorporate probabilistic graphical models. Chen et 
al. [9] proposed to combine the responses at the final 
deep CNN layer with a fully connected Conditional 
Random Field. The proposed model showed that it is 
able to localize segment boundaries at a higher 
accuracy rate than previous methods. Schwing and 
Urtasun [10] presented a method that jointly trains 
CNNs and fully connected CRFs for semantic image 
segmentation. This model achieved encouraging 
results on the challenging PASCAL VOC 2012 
dataset. In [11], the authors proposed to formulate 
Conditional Random Fields (CRFs) with CNN-
based pairwise potential functions to capture 
semantic correlations between neighboring patches. 
In addition, an effective network with traditional 
multi-scale image input and sliding pyramid pooling 
is designed for improving performance. Another 
popular branch of deep networks for image 
segmentation is based on the encoder-decoder 
architecture. Noh et al. [12] proposed a novel 
semantic segmentation algorithm by learning a deep 
deconvolution network. This model mitigates the 
limitations of the existing methods based on fully 
convolutional networks by integrating deep 
deconvolution network and proposal-wise 
prediction. Badrinarayanan et al. [13] proposed a 
novel and practical deep fully convolutional neural 
network architecture for semantic pixel-wise 
segmentation termed SegNet. The main novelty of 
SegNet is in the way the decoder upsamples its lower 
resolution input feature maps. Specifically, it uses 
pooling indices computed in the max-pooling step of 
the corresponding encoder to perform non-linear 
upsampling. This eliminates the need for learning to 
up-sample. In [14], the authors first learned object 
regions under the supervision of the ground-truth 
segmentation. The object region representation was 
then computed by aggregating the representations of 
the pixels lying in the object region. Finally, the 
relation between each pixel and each object region 
were computed, and the representation of each pixel 
with the object-contextual representation was 
augmented. Zhang et al. [15] developed a road 
segmentation/extraction algorithm based on U-Net 
[16]. U-Net is a well-known architecture. Various 
extensions of U-Net have been developed for 
different kinds of images. To integrate the resolution 
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Figure 1: Example of RoI Pooling with 7×7 Input Feature Map. (a) Input Image with Region Proposal Generated by 

the RPN, (b) The Coordinates of Proposal on The Last Feature Map, (c) The Coordinates of Proposal on The Last 
Feature Map After The First Step of RoI Pooling, (d) Cropped Proposal Are Divided into Bins to Generate 2×2 

Feature Map, (e) Output Feature Map of RoI Pooling After Max Pooling.

and semantic information of different convolution 
layers, many methods have been designed based on 
the Feature Pyramid Network (FPN) proposed by 
Lin et al. [17]. Zhao et al. [18] proposed the Pyramid 
Scene Parsing Network, which exploits the 
capability of global context information by different-
region-based context aggregation through a pyramid 
pooling module together with the proposed pyramid 
scene parsing network. This approach achieved 
state-of-the-art performance on various datasets. He 
et al. [19] proposed Adaptive Pyramid Context 
Network (APCNet) for semantic segmentation. 
APCNet adaptively constructs multi-scale 
contextual representations with multiple well-
designed Adaptive Context Modules (ACMs). Each 
ACM leverages a global image representation as a 
guidance to estimate the local affinity coefficients 
for each sub-region, and then calculates a context 
vector with these affinities. Faster R-CNN [20] is a 
popular two-stage framework, which achieved state-
of-the-art performance on object detection. Based on 
Faster R-CNN, He et al. [21] proposed a Mask R-
CNN for object instance segmentation. Mask R-
CNN extends Faster R-CNN by adding a branch for 
predicting an object mask in parallel with the 
existing branch for bounding box recognition. Liu et 
al. [22] proposed The Path Aggregation Network 
(PANet) based on the Mask R-CNN and FPN 
models. PANet enhances the entire feature hierarchy 
with accurate localization signals in lower layers by 
bottom-up path augmentation, which shortens the 
information path between lower layers and topmost 
feature. In addition, an adaptive feature pooling 
which links feature grid and all feature levels to 
make useful information in each level propagate 
directly to following proposal subnetworks was 
introduced. Hu et al. [23] proposed a new partially 
supervised training paradigm, together with a novel 
weight transfer function, that enables training 
instance segmentation models on a large set of 
categories all of which have box annotations, but 
only a small fraction of which have mask 
annotations. 

 
3. PROPOSED METHOD 
 
3.1 Improved RoI Pooling for Enhancing 
Instance Segmentation 

RoI pooling is first introduced in Fast R-CNN 
[24] for extracting fixed-sized feature maps for each 
proposal generated by the first stage. Fixed size 
feature maps are needed for the R-CNN in order to 
classify them into a fixed number of classes. In RoI 
pooling process, the features inside any valid region 
of interest are converted into a small feature map 
with a fixed spatial by max pooling operation. 
Although RoI pooling performs well in classification 
problems, which is robust to small translations, the 
misalignments between the RoI and the extracted 
features occur in RoI pooling process have a large 
negative effect on predicting pixel-accurate masks. 
In [21], the authors proposed RoIAlign for extracting 
fixed-sized feature maps for each proposal generated 
by the region proposal network. RoIAlign removes 
the harsh quantization of RoI pooling, properly 
aligning the extracted features with the input. 
RoIAlign led to a large improvement in instance 
segmentation compared with RoI pooling. In [25], 
Deformation RoI pooling is introduced. 
Deformation RoI pooling includes a RoI pooling 
process followed by a fully connected layer to 
generate the normalized offsets, which are then 
added to the spatial binning positions. After 
generating offsets, the deformable RoI pooling 
employs RoI pooling to generate the output feature 
map based on input regions with augmented offsets. 

To elaborate on the improved RoI Pooling 
proposed in this paper, the RoI pooling, RoIAlign, 
and Deformation RoI pooling are explained first, and 
then the improved RoI Pooling is introduced. 
 
3.1.1 RoI pooling 

In Faster R-CNN [20], the RPN generates 
region proposals with the offsets for each anchor 
based on the last feature map of the base network. 
The coordinates of proposals, which are presented 
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Figure 2: RoIAlign Operation.

 
Figure 3: Example of RoIAlign with 7×7 Input Feature Map. (a) Input Image with Region Proposal Generated by the 

RPN, (b) The Coordinates of Proposal on The Last Feature Map, (c) Cropped Proposal Are Divided into Bins to 
Generate 2×2 Feature Map, (d) Four Regularly Sampled Locations in Each RoI Bin Are Calculated by Bilinear 

Interpolation, (e) Output Feature Map of RoIAlign After Max Pooling.

based on original image size, can be obtains based 
on these offsets. The last feature map was decreased 
𝑘 times from the original image via convolution 
layers and pooling layers. To get the coordinates of 
proposals relative to the last feature map size and 
generate fixed size feature map, RoI pooling first 
divides each coordinate generated by the RPN by 𝑘 
and take an integer part (e.g., ሾ𝑥/𝑘ሿ). Next, new 
coordinates are used to crop proposal from the last 
feature map. Then, cropped proposals are divided 
into bins (e.g., 7×7), and the maximum value in each 
bin is taken as the value of pixel in the fixed size 
feature map. Figure 1 shows an example of RoI 
pooling process with 7×7 input feature map. RoI 
pooling performs well in box classification. 
However, the misalignments between the RoI and 
the extracted features occur in RoI pooling process 
have a large negative effect on predicting pixel-
accurate masks. 
 
3.1.2 RoIAlign 

RoIAlign was first introduced in Mask R-CNN 
[21] to mitigate the misalignments between the RoI 
and the extracted features in RoI pooling process. In 
the first step of RoIAlign, each coordinate generated 
by the RPN is divided by 𝑘 without rounding. Thus, 
new coordinates relative to the size of the last feature 
map are float values. In the second step, cropped 
region in the last feature map is divided into grid 
(e.g., 2×2). For generating values in these bins, 

RoIAlign chooses four regularly sampled locations 
in each RoI bin and use bilinear interpolation [26] to 
compute the exact values of the input features at 
these locations as shown in Figure 2. In the final step, 
among these four points, maximum or average value 
from each bin is taken as the value of pixel in the 
fixed size feature map. Figure 3 shows an example 
of RoIAlign with 7×7 input feature map. RoIAlign 
removes the harsh quantization of RoI pooling, 
properly aligning the extracted features with the 
input. RoIAlign leads to large improvements in 
instance segmentation. 
 
3.1.3 Deformable RoI pooling 

Deformable RoI pooling is introduced in [25] 
as shown in Figure 4. In Deformable RoI pooling 
process, pooled feature map is first generated by 
adopting regular RoI pooling. From the pooled 
feature map, a fully connected layer is used to 
generate the normalized offsets, which are then 
added to the spatial binning positions. The offset 
normalization is necessary to make the offset 
learning invariant to RoI size. After generating 
offsets, the deformable RoI pooling employs RoI 
pooling to generate the output feature map based on 
input regions with augmented offsets. 
 
3.1.4 Improved RoI pooling 

Figure 5 illustrates the structure of the 
improved RoI pooling proposed in this paper. The 
proposed improved RoI pooling is inspired by 
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Figure 4: The Structure of Deformable RoI Pooling.

 
Figure 5: The Structure of The Improved RoI Pooling Proposed in This Paper.

deformable RoI pooling and improves it for instance 
segmentation in two ways. First, the deformable RoI 
pooling employs regular RoI pooling process for 
offset prediction branch, which obtains features from 
k×k sub-regions and passes these features through a 
fully connected layer. Instead, this paper uses a 
lightweight offset prediction branch which contains 
fewer parameters than the deformable RoI pooling. 
More specific, the lightweight offset prediction 
branch adopts RoIAlign to obtains features from 
k/2×k/2 sub-regions followed by a fully connected 
layer. With smaller input vector of features, the 
number of parameters in subsequence layer will 
decrease. Next, the standard deformable RoI pooling 
employs regular RoI pooling in the fixed size feature 
map generation branch to generate the output feature 
map based on input regions with augmented offsets.  
In contrast, the improved RoI pooling proposed in 
this paper adopts RoIAlign in the fixed size feature 
map generation branch to generate the output feature 
map based on input regions with augmented offsets.  
As a result, the harsh quantization of RoI pooling is 
removed, and the extracted features are properly 
aligning with the input, thus leading to large 
improvements in instance segmentation as shown in 
the experimental results section. 
 

3.2 Network Architecture 
Figure 6 presents the overall architecture of the 

proposed network. The proposed network is 
designed based on two-stage framework. The region 
proposal network [20] is used at first stage to 
generate object proposals, and the network head is 
adopted at second stage for bounding box 
recognition and mask prediction to each object 
proposal. For the backbone network, this paper 
adopts ShuffleNet architecture [27] to generate the 
base feature maps. ShuffleNet is a lightweight deep 
CNN network which achieves the best accuracy in 
very limited computational budgets. By shuffling the 
channels, ShuffleNet outperformed MobileNetV1 
[28]. Figure 7 shows the architecture of ShuffleNet 
network. There are total four blocks in ShuffleNet 
followed by a max pooling layer and a dense layer. 
The first block consists of a convolution layer and a 
max pooling layer. Other blocks are composed of a 
stack of ShuffleNet units. The number of bottleneck 
channels is set to 1/4 of the output channels for each 
ShuffleNet unit. This paper discards the last max 
polling layer and dense layer in ShuffleNet 
architecture. 

To enhance the segmentation performance on 
small objects, this paper designs an enhanced 
module to generate fused feature map which 
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Figure 6: The Overall Architecture of The Proposed Network.

 
Figure 7: The Architecture of Reduced ShuffleNet Used in This Paper.

improves the resolution of small objects and 
simultaneously includes more semantic information 
which enhances the classification performance. In 
the enhanced module, multi-scale deconvolution 
operation is first used to upsample the output of the 
third and fourth convolution block. Next, the feature 
maps at different blocks, including the second 
convolution block and two deconvolution blocks, are 
assembled to generate concatenated feature map. It 
should be noted that L2 normalization is adopted at 
each feature map before concatenation operation to 
effectively keep the feature values from different 
convolution layers on the same scale. For input 
vector 𝑥 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ሻ, L2 normalization is 
defined as follow: 

 
𝑥 ൌ

௫

‖௫‖మ
ൌ

௫

ට∑ |௫|మ

సభ

   (1) 

where 𝑥 denotes the normalized vector, ‖𝑥‖ଶ 
denotes the L2 normalization of 𝑥, 𝑛 denotes the 
number of channels. 

Finally, a 1×1 pointwise convolution is used to 
compress the number of channels within the 
concatenated feature to generate fused feature map. 
The fused feature map is used as input features for 
the RPN and the network head. 

For the network head, this paper follows [22] 
to design the network head. The fixed size feature 
map generated by the improved RoI pooling module 
is fed into two subnetworks. The first subnetwork 
includes two fully connected layers followed by two 
parallel fully connected layers for classifying and 
regressing each of proposed. The second subnetwork 
includes two paths. The upper path consists of four 
3×3×256 consecutive convolutional layers and one 
deconvolutional layer. The deconvolutional layer is 
used to upsample feature with a factor of two. The 
upper path predicts a binary pixel-wise mask for 
each class. The lower path consists of two 3×3 
convolutional layers followed by a fully connected 
layer to predict a class-agnostic foreground/ 
background mask. Finally, mask of each class from 
the upper path and mask of foreground/background  
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Table 1: The Number of Instances of Each Object Category in The Training Set of The Cityscapes Dataset. 

Object category Person Rider Car Truck Bus Train Motorcycle Bicycle 

Number of 
instances 

17,900 1,800 26,900 500 400 200 700 3,700 

Table 2: Results on The Cityscapes Dataset. 

Methods Results 

 AP (%) AP50 (%) Time (ms) 

DWT [30] 15.6 30 - 

SAIS [31] 17.4 36.7 - 

SGN [32] 25 44.9 - 

Mask R-CNN [21] 26.2 49.9 330 

PANet [22] 31.8 57.1 480 

Proposed Method 30.6 56.2 180 

prediction from the lower path are added to obtain 
the final mask prediction. 
 
4. EXPERIMENTAL RESULTS 
 
4.1 Dataset and Metrics 

The proposed approach for instance 
segmentation is evaluated on the Cityscapes dataset 
[29]. Cityscapes is a large-scale database with a 
focus on semantic understanding of urban street 
scenes. This dataset contains a diverse set of stereo 
video sequences recorded in street scenes from 50 
cities, with high quality pixel-level annotation of 
5,000 frames in the fine training set, in addition to a 
set of 20,000 weakly annotated frames in the coarse 
training set, which is not used in this paper for 
instance segmentation purpose. The fine training set 
consists of 2,975 images for training, 500 images for 
validation, and 1,525 images for testing. All images 
have the resolution of 2048×1024 pixels. The 
instance segmentation task involves 8 object 
categories. Table 1 shows the number of instances of 
each object category in the training set of the fine 
training set. 

For the evaluation metrics, this paper uses the 
standard COCO metrics, including mask AP 
(averaged over IoU thresholds) and AP50 (mask AP 
at an IoU of 0.5), for reporting instance segmentation 
results on the Cityscapes dataset. Note that mask AP 
is evaluating using mask IoU. 
 
4.2 Experimental Results on Cityscapes Dataset 

This paper reports the instance segmentation 
results on the Cityscapes dataset as shown in Table 

2. Five recent approaches for instance segmentation 
are used to compare the results and show the 
effectiveness of the proposed approach, including 
DWT [30], SAIS [31], SGN [32], Mask R-CNN 
[21], and PANet [22]. DWT proposed to combine 
intuitions from the classical watershed transform and 
modern deep learning to produce an energy map of 
the image where object instances are unambiguously 
represented as energy basins. SAIS introduced a 
novel object segment representation based on the 
distance transform of the object masks. In addition, 
the authors designed an object mask network with a 
new residual-deconvolution architecture that infers 
such a representation and decodes it into the final 
binary object mask. SGN employed a sequence of 
neural networks, each solving a sub-grouping 
problem of increasing semantic complexity in order 
to gradually compose objects out of pixels. It should 
be noted that all methods in Table 2 use only the fine 
training set of the Cityscapes dataset for training 
network. As shown in Table 2, the proposed method 
obtains 30.6% of AP and 56.2% of AP50 on the 
Cityscapes test set. The proposed method 
outperforms DWT, SAIS, SGN, and Mask R-CNN 
on both AP and AP50. Specially, compared with 
Mask R-CNN, the proposed method improves the 
AP and the AP50 by 4.4% and 6.3% respectively. It 
can be seen that PANet achieves the best results on 
the Cityscapes dataset with 31.8% of AP and 57.1% 
of AP50. However, PANet is slower than the 
proposed method with 0.48 second for processing an 
image, while the proposed method takes only 0.18 
second. This result shows the effectiveness of the 
proposed method on both accuracy and inference 
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Figure 8: Visual Results of The Proposed Method on The Cityscapes Dataset.
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speed. Figure 8 shows some visual results of the 
proposed method on the Cityscapes dataset. 
 
5. CONCLUSIONS 
 

This paper presents a deep learning-based 
framework for fast and accurate instance 
segmentation of objects in traffic scene images. The 
proposed framework improves the inference speed 
on instance segmentation tasks and the accuracy on 
segmentation of small targets. For improving the 
inference speed of the proposed framework, a 
lightweight deep convolutional neural network 
which achieved high accuracy in very limited 
computational budgets is adopted to generate base 
feature maps. For enhancing the segmentation 
performance on small objects, this paper designs an 
enhanced module to generate fused feature map 
which improves the resolution of small objects and 
simultaneously includes more semantic information. 
Furthermore, an improved RoI pooling process 
based on deformable RoI pooling is proposed in this 
paper. The improved RoI pooling employs a 
lightweight offset prediction branch which contains 
fewer parameters compared with standard offset 
prediction branch, thus improving the inference 
speed of the proposed framework. Experimental 
results on the Cityscapes dataset show the 
effectiveness of the proposed method on both 
accuracy and inference speed. 
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