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ABSTRACT 
 

In this article, composite materials are considered, and the explicit difference scheme in solving dynamic 
problems of elasticity theory was developed on the basis of a combination of the spatial characteristics and 
the splitting methods, by extending the scope of its application to inhomogeneous linearly deformable 
bodies.  This article discusses the stability of solving non-stationary problems of mechanics as applied to 
related problems of wave dynamics, and also compares the results of solutions obtained by the spatial 
characteristics method and the proven method, the algorithm for calculating the voltage at speeds at 
specific points, the situation at each special point with the interaction of a large number of nodes around 
her, communication and interaction. 
The 21st century can be attributed to the age of composite materials. Today, without them, it is almost 
impossible to imagine the construction of industry, civil and residential complexes. Composites have 
entered and still enter our life and almost completely replace traditional materials in construction, energy, 
transport, electronics, etc. 
Scientific and technical progress in the construction industry involves the usage of new and effective 
building materials with various complex of properties, different purposes. 
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1. INTRODUCTION  
 

 It's known that in a composition system 
such a composite materials in the vicinity of 
reinforcing elements implemented difficult tense-
deformed condition, which determines working 
capacity of all introduction, in the end. However, 
there are only few jobs dedicated to detailed 
investigation of stress fields, strains around the 
fibers and investigation of mutual influences of 
these fields. Apparently, it's explained by 
extraordinary difficulty of stress distribution in the 
vicinity of fibers, especially near boundary surfaces 
and by learning difficulties. 

As stated, it seems actual to hold such kind 
of investigations in the future.  

XX'th century technical progress leaded to 
creation of new constructional materials with high 
specific strength and rigidity  - composite materials 
or compositions.  

Composite material is the material, which 
was made artificially, which consists of several 
components stayed separately at macroscopic level 
in the finish structure with well-observed border 
between them [2].  

 As a general rule, composite material 
(composition) consists of two categories of 
elements: reinforcing substance and matrix. 
Reinforcing substance provides a material with 
physical and mechanical properties, such a strength 
and elasticity. Matrix surrounds given substance 
with own material, providing a product with shape.  

Compositional materials are divided into 
metallic and non-metallic matrixes (bases) with 
given distribution of reinforces (fiber, dispersed 
parts) in them. Herewith compositional materials 
allow to use individual properties of compositional 
components effectively. In a structural character 
compositional materials are subdivided into fibrous, 
hardened by continuous fibers and thready crystalls, 
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dispersion hardened compositional materials, made 
by pressing or rolling of various materials. 

Compositional materials are complicated 
materials, which include very different in 
components insoluble or sparingly soluble in each 
other components, that divided in strongly marked 
borders [2].  

Compositional materials' properties 
depend on physicomechanical properties of 
components and connection strength between them. 
Distinctive feature of compositional materials is in 
value of components, not in their disadvantages. At 
the same time compositional materials possess 
properties, which aren't familiar to another 
components. Sharply differed components with 
additional features are selected to optimize 
properties.  

To solve non-stationary problems in elastic 
media, one of the most convenient methods in 
applications is the bi-characteristics method using 
the ideas of the splitting method developed by G.T. 
Tarabrin [16]. An explicit difference scheme based 
on the bicharacteristic method with the use of the 
idea of splitting in spatial coordinates is adopted. 
Resolving difference equations are obtained for 
internal, boundary, angular, singular, and contact 
points of conjugation of a strip and a half-plane. To 
simulate the process of stress relief on a crack, 
singular generalized functions are used according to 
the method proposed in [5]. 

 
2. FORMULATION OF THE PROBLEM 
 

 Homogeneous isotropic band with 
rectangular cross section partially embedded in a 
homogeneous isotropic half-plane (take a look to 
Fig.1) [1], [5], [6]. Let coordinate (i=1,2) in a 

Cartesian systemoccupies the area 
 and the half-plane - 

.   

Property of linear elastic isotropical 
heterogeneous (k=1,2) materials occupies density 

, by Lame parameter , . At moment of time 
t≤0 the body stays at a rest- 

 
    (1) 

where are  the components of 
the velocity vector and the stress tensor in the k-
body. At the moment of time  (n=1,2,...,N) the 
upper boundary  of the rectangular 

strip is dynamically disturbed by normal stresses 
changing according to the law[4], [16].  

 
              (2) 

 
At times t11 + τ (n =1,2, ..., N), the 

boundary   is “pulled out” by 
tensile stresses. The applied voltage changes 
according to the law (Fig.2). 

Another boundary parts of heterogeneous 
body stay away from tension  
 

 
              (3) 

 

 
                                                           (4) 

 

 
Figure 1. Study Area And Biocharacteristics 

 
Conditions at contact borders meet the 

requirements of full adhesion of strip and half-
plane.  

,   
,                                           (5) 

 
,      

                                               (6) 

 
Here  is given boundary function and 

L1, L2, 1 are constant numbers, which determine 
sizes of strip and the contact area of heterogeneous 
environment.                    

Under the described conditions we need to 
research tense-deformed condition of D1 D2 
environment. To solve a given problem at the same 
time with initial problems (1) and boundary 
requirements (1) - (6) we use a system of equations, 
which include equations of movement and ratio of 
generalized law of Hook [3], [5], [19]. 
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Figure 2. Study Area And Observation Points. 

 
Here  is given boundary function and 

L1, L2, 1 are constant numbers, which determine 
sizes of strip and the contact area of heterogeneous 
environment.  
           Under the described conditions we need to 
research tense-deformed condition of D1 D2 
environment. To solve a given problem at the same 
time with initial problems (1) and boundary 
requirements (1) - (6) we use a system of equations, 
which include equations of movement and ratio of 
generalized law of Hook [7], [15], [17]. 
 

 
 

 =                      (7) 
 

At ;  - 
Kronecker symbol; - components of 
displacement vector and deformation tensor. 
Indexes α, β, j take value 1,2; further takes value i 
is not equal to j: by lower indicates after the comma 
are indicated derivativesat relevant spacial 
coordinate; upper full stops mean derivatives of the 
time; its necessary to sum up by greek indexes that 
are repeated two times. In the end, index k 
determines possessment of point areas at strip (k=1) 
or half space area (k=2) is not equal. 

The most comfortable way to find the 
solution of the problem is to have a look to 
dimensionless space of variables and desired 
parameters, which are obtained after entering the 
notation. 

 

; ; ; 

;     

  ;                                           (8) 

; 

; 

; 

 
Here the index * is given to dimensions; the 

index m refers to the material in which the velocity 
of longitudinal waves stays the greatest; d* is a 
characteristic linear size; ak, bk are equal to the 
propagation speeds of longitudinal and transverse 
waves in the k-th medium; tia a time. 
 
3. DETERMINING EQUATIONS OF THE 

DYNAMIC PROBLEM IN ELASTICITY 
THEORY 

Using the relations (8) for dimensionless 
quantities, we are able to get from equations (7) 
after light transformations (i≠j): 

 
; 

 

 
                  (9) 

 
Equations (9) are a linear homogeneous 

hyperbolic system of first-order differential 
equations with constant coefficients [12], [18] 

Its characteristic surfaces in three-
dimensional space (x1, x2, t) they are hyper cones 
with axes parallel to the time axis (see Fig.3). The 
system of equations (9) has two branches in 
characteristic cones. These cones coincide with the 
bi-characteristics of equations (9). Along the bi-
characteristics lying in the plane xj=const, equations 
(9) are functions of only two variables (xj;t). This 
process indicates that the conditions for a bi-
characteristic can be obtained as conditions in the 
corresponding one-dimensional task. The 
corresponding transformations can be performed if 
one of the spatial variables is fixed in the system of 
equations (9). In this case, the system of equations 
(9) is split into two systems of equations 
corresponding to the directions j=1 and j=2 (i≠j): 

 

 
 

        (10) 

 



Journal of Theoretical and Applied Information Technology 
30th September 2020. Vol.98. No 18 
© 2005 – ongoing  JATIT & LLS 

 
ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 

 
3701 

 

 
Figure 3. Characteristic Cones On The Plane 

 
Where the notation is entered:  

 

 

 
  (11) 

 
Differential equations of characteristics 

have the form: 
                                           (12) 

 
and the conditions for bi-characteristics are 

 

 
          (13) 

 
Here , if α = j, and 

, if α≠j. It can be seen from (12) that on each 
of the two hyperplanes there are two pairs of 
families of bi-characteristics defining longitudinal 

 and shear  velocities 
of wave propagation (see Fig.3). In each of the two 
planes (xj; t) there are two families of behavioral 
characteristics of positive and negative directions. 
The sign at top corresponds to the behavioral 
characteristics of the positive, and the lower sign 
corresponds to the negative directions. Equations 
(12) and (13) correspond to each other for the same 
pair of indices and for the same arrangement of 
signs. We use equations (10) and conditions (13) to 
find a solution to the formulated problem (1) – (8). 

  
4. SELECTING A POINT PATTERN FOR A 

TEMPLATE 
 

In order to perform numerical calculations 
of the formulated problem for a region with a given 
configuration D1D2, it is necessary to study the 
characteristic surfaces [3], [5], [18]. The body 
D1D2is subjected to non-stationary loads. The 
initial conditions (1) are given by the stresses and 

displacement velocities throughout the body, and 
the boundary conditions by the stresses on the 
surface (2) - (4). Both are seem to be continuous 
differentiable functions. The body structure is 
constructed toper mit existence of a coordinate 
system xi( i=1,2), in which the boundary surfaces 
are coordinates. Let the body D1D2 be divided 
into cells formed by intersections of coordinate 
surfaces xj=const(i=1,2). The linear dimensions of 
these cells in the direction of the axes x1 and x2are 
considered thought uniform and equal to h. The 
intersection of the lines xj= const (i=1,2) form the 
nodes. At these nodal points , the values of the 
desired functions are 
found at various points in time 

 with a time 
step of τ. The resulting grid is three-dimensional. 
The exact grid on the basis of which the difference 
scheme is constructed, in addition to the mentioned 
nodal points, contains points formed by the 
intersection of the bi-characteristics with 
hyperplanes t = const. Using an explicit difference 
scheme of the second order of accuracy makes it 
possible to establish the values of unknown 
quantities at the nodal points of the plane  of 
the time layer from their known values at the nodes 
of the previous layer . A template consisting of a 
node O and points , lying on the coordinate 

 and separated from the point O by 

distances   and ( Fig.4). Inclined 
straight lines starting from point A are bi-
characteristics. 

 

 
Figure 4. Point Grid Of The Difference Scheme For 

Internal Points. 
 

In the future, the values of the functions at 
the point O are assigned the upper sign "O"; at the 
points - lower and upper sign ± (for 
example ),and no additional index is 
assigned at point A. 
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A point grid of the difference scheme for 
internal node points is shown[8], [9], [10].  

Points O and A represent the same point of 
the body at the same moments of time that are 
separated from each other by one step τ in time. 

At the boundary points, the point network 
turns out to be somewhat different, since the 
boundary surfaces of the body cut off part of the bi-
characteristics. So, for example, in Fig.5. a dot grid 
is shown for a nodal point lying on the boundary 
xj=const, when the domain of definition is enclosed 
within xj≤const. In comparison with the internal 
nodes, there are no 4 bi-characteristics at the 
boundary nodal point that do not belong to the 
domain . 

Looking at higher scatter of the schemes 
the method of solving dynamic problems allows to 
define the particle velocity  and the 
components of the stress tensor  at point A on 
the current layer at time , if their values in the 
previous layer  in point On 
and adjacent points, . Schemes that 
differentiate are called explicits. Explicit schemes 
are need able because there are no difficulties in 
solving the systems of difference equations 
associated with them. These systems are solved 
separatly from one time layer to the next. In this 
case, the desired values at each node, unlike the 
implicit difference scheme, are calculated 
independently of the others. 

 

 
Figure 5. View Of The Bi-Characteristics On The 

Boundary Contour Xj = Const. 
 

Schemes that distinguish are called 
explicits. Explicit schemes are necessary because 
there are no problems in solving systems of 
difference equations associated with them. These 
systems are solved separately from one time layer 
to another. In this case, the required values in each 
node, in contrast to the implicit difference scheme, 
are calculated independently of the others. 

 
5. ALLOW A DIFFERENTIAL EQUATION 

TO SOLVE A DYNAMIC BOUNDARY 
VALUE TASKS 

 
5.а. Resolving difference equations at internal 
points. The calculated algorithm of the second 
order of accuracy is constructed here [11], [14], 
[16]. Integrating a system of equations (10) from 
point O to point A and relations (13) from point 

to point A by the trapezoid method (Fig.4) 

allows you to get expressions of the following type  
 

 

 

     (14) 
and 

 

 
            (15) 

 
where the unknown values at point A are taken 
without additional indexes.  

Values of functions at non-nodal points 
 are replaced with values calculated by the 

Taylor formula with accuracy to first order for the 
functions  and  and accurate to second 

order for functions  and  through their 

values at the nodal points O (x1, x2, t): 
 

 
    (16) 

and 

 

 
 

        

                             (17) 
 

The partial derivatives of the system of 
equations (10) with respect to the variable  are 
written as 
 

    

 



Journal of Theoretical and Applied Information Technology 
30th September 2020. Vol.98. No 18 
© 2005 – ongoing  JATIT & LLS 

 
ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 

 
3703 

 

                                             (18) 
 
Substituting relations (16), (17) in (15), 

and then eliminating with the help of (14) the 
variables ;  and taking into account (18), 
we can obtain eight equations for the derivatives of 

; , , in the estimated layer 
time  
 

 
 

           (19) 
 

By adding corresponding pairs of 
equations (19),we can find unknown derivatives 

 

 
              (20) 

 
The system of equations (20) can be used 

to define unknown derivatives both in the inner and 
boundary nodal points of area D1D2. Such 
expressions can be obtained directly by integrating 
the system of equations (9) according to the Euler 
scheme, first differentiating them by xj. Whatever it 
is good to have intermediate relations (19), which 
are used in solving systems of equations where 
boundary functions are already there. Substituting 
the equalities (20) in (14) allows us to obtain 
unknown functions , in the internal 
nodal points of a non-homogeneous body at the 
time . 
 
5.b. Different equations at boundary points. On 
the boundary lines xj= const , two voltage 
components are specified (see Fig.(2) – (4)) [4], 
[16]. The calculations aren't able to use conditions 
(19) on two bi-characteristics that do not belong to 
the domain D1D2  (Fig.5). Thus, in comparison 
with the internal points, the number of equations 
(19) is reduced to two. The complex of equations 
(19), (14), and two boundary conditions (2) – (4) 
(or (3)) are closed linear system with respect to 
unknowns (eight derivatives and five functions). 
The points of contact lines CR, PD and  CD are 
also considered as boundary points only for certain 
regions D1D2. At each of these points, the number 
of equations (19), (14) is 22, and the unknown ones 
are 26. A closed system of equations is revealed  if 
we use, not only equations (14), (19), but also four 
conditions for the rigid cordon of the band and the 
half-plane (5) or (6). 
 

5.c. Different equations in non-singular angular 
points. At the angular points F and E, 4 
components of the stress tensor are defined. 
According to the law of pairs of tangent stresses, 
only three of them become independent. The 
calculations as for conditions on 4 bi-characteristics 
that do not belong to the D1D2. The number of 
unknown derivatives can be reduced by direct 
differentiation of the boundary functions 
( ) in (2), (4), the derivatives 

 and are obtained. The 
unknowns revealed by solving equations (19) and 
(14) sequentially.  
 
5.d. Different equations in special angular 
points. At the contact points (P,R,C,D) the 
inhomogeneous medium D1D2 has special 
features. In this term, we discuss features in contact 
points similar to points C and D of the problem that 
is studied. Contact points P and R have their own 
characteristics. Developing the ideas first described 
in, we calculate the difference equations at special 
angular points of the body under study [1], [7], 
[18]. At special points P and R , it is assumed from 
physical considerations that the stress components 

 and are equal to zero and 
conditions (6), (4) are used. It is assumed that the 
region D1 along the PR line is mentally divided into 
subregions (I), (II). Thus, near the singular points P 
and R, three subregions (I), (II), (III) are considered 
(see Fig.1). For subregions (I) and (II) we accept 
conditions for the continuity of functions.  

 
;  
    (21) 

 
and their derivatives 

 
;  

                     (22) 
 

The derivatives can be 
discontinuous. 12 unknown derivatives for medium 
I and 8 derivatives for medium II are calculated by 
the formula (20). Substituting into equation (14) the 
derivatives found in this way for each subdomain 
and fulfilling conditions (16), (21) and (22), 
unknown functions are calculated at points P and R, 
as in multiply connected nodes of the set of 
subdomains (I), (II), (III). For example  
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The function  suffer 

discontinuities at these points and have the form  
 

 
, 

 
where the upper Arabic numerals indicate that the 
corresponding parameters belong to the k-th 
medium (k=1,2), and Roman numerals for the i-th 
medium (I), (II), (III) the subregions. 

At special corner points C and D the 
condition is assumed 

 
;             (23) 

as a consequence of equalities (5) and (6) with 
respect to the 1st and 2nd medium. 

Mentally dividing the neighborhood of 
points C and D in the second medium into three 
subregions (II, III, IV) extensions of the lines CR, 
PD, and CD for each subdomain of the 2nd medium 
use assumptions similar to those accepted at points 
P and R (conditions (21) and (22)) (see Fig.1). 

During getting unknown functions ; 
  in the points with a and D in 

subregion (III) derivatives of 1st and of 2nd order 
in equation (20) can not be calculated since these 
equations are linearly – independent for the 
respective common lines of subregions II and IV, 
and the second mixed derivatives are calculated 
separately, because central parts can not be used at 
all. 

In subdomains II and IV, it is assumed that 
all 16 derivatives   
suffer discontinuities. 

For each of the subregions (I, II, III, IV) 
unknown functions and their derivatives are 
calculated by solving equations (20) and (14) 
sequentially, taking into account the above 
conditions for the subdomain (III). Conditions (21), 
(22) and (23), unknown functions at special points 
C and D are formed from a multi-connected system 
of equations for subdomains (I, II, III, IV). For 
example, 

 

 
 

 
 

 
 

About what was said in sections (a –d) it 
can be noticed that the unknown values of 
derivatives at the nodal points of 

the study area D1D2 are thought equal to the 
derivatives on the lower layer in time (n=1, 2, 
... N), which are solved using the central difference 
at the inner nodal points, and at the boundary points 
by corresponding approximations "forward" and 
"back". 
 
6. ESTIMATION OF DYNAMIC STRIP 

"PULLING",  PARTIALLY FIXED IN A 
HALF PLANE 

 
Let's imagine a width made of a linearly 

elastic material, whose features are spoken by the 
density , the velocity of propagation of 
longitudinal  and the transverse  waves in the 
stationary rectangle of coordinates x1Ox2 is the 
region  in the initial moment 
of time the body is at rest [16], [17], [18]:  
 

      (24) 
 

At any other time tn+τ ( n=1,2,..., N) at the 
end x1=0 of the half strip, the boundary condition 
(2) applies. The rest of the boundaries of a 
homogeneous body are stress free 
 

    (25) 
 

The problem is reduced to integrating the 
system of equations (7) under both initial (24) and 
boundary conditions (2) and (25). 

The mathematical problem is formulated 
properly. At the initial moment of time t0 = 0, the 
ground occupying the half-plane  is at rest so that 

 
  (26) 

 
The impact tool action is modeled by the 

normal load perceived by the well base 
( ) and described like: 

 

 
 

            (27)      
 

The surface of the well and surface of the 
ground are not loaded. Under the characterized 
conditions, it is necessary to investigate the stress-
strain state of the soil, as well as establish the area 
and degree of compaction. 
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The boundary value problem is formulated 
in the initial (1),boundary (3) - (4) and pin (5) – (6) 
conditions (see Fig.1). At time tn+τ (n = 1,2, ..., N) 
the boundary x1=0,  (the end face of the 
inclusion EF) is “pulled out” by tensile stresses. 
The applied voltage varies according to the law 
(Fig.2). 

 
and 

 
    (28) 

 
The parameter τ0 determines the time 

moment after which the exponential nature of 
loading changes to a constant one (see the 
waveform of point 1 in Fig.7). 

In order to save computer RAM, it was 
necessary to limit the computational domain to a 
boundary ( ), which is 
chosen so that the disturbances reflected from it at 
any time cannot distort the stress and velocity field 
in the entire region research D1D2. The 
calculations were studied for various configurations 
of inclusions [12], [16]. In Fig.6-8 and Fig.11-18 
the calculation results are given for the following 
inclusion sizes 1=5h; L1=20h and  L2=40h. In Fig.9 
and 10 show the calculation results for the 
following inclusion sizes 1=3h; L1=20h and  
L2=25h. 

Calculated waveforms of normal 
and tangents voltage (k=1,2) 

at the time interval 0 ≤ t ≤140τ in six fixed 
observation points: 1(x1=0h, x2=0h), 2(x1=0h, 
x2=3h), 3(x1=10h, x2=3h), 4(x1=20h, x2=3h), 
5(x1=30h, x2=0h) and 6(x1=45h, x2=10h) are 
represented by curves in Fig.6-8. Oscillograms of 
normal  at fixed observation points are shown 
by the curves in Fig.6. The flat stress front by the 
boundary action at the end x1 =0 comes 
sequentially to the layers at the x1 coordinate.  

 

 
Figure 6. Oscillogram Of Normal Stresses 

 
 

The action of wave fronts and their 
interaction with diffracted waves leads to the fact 
that the character of the change in normal stresses 

they become alternating at the observed 
points 1, 2, 3, and 5. The sixth point is not shown in 
Fig.6. due to the smallness of their values, which is 
explained by a significant weakening of elastic 
perturbations as they pass into the region occupied 
by the matrix. At points 1, 2 and 3, starting from a 
certain point in time, symmetrical sinusoidal 
oscillations with respect to time are established at 
approximately constant amplitudes and frequencies 
at each point.  

In addition, at points 1 and 2, vibrations 
are carried out the same frequencies. At point 5 (the 
contact surface), oscillations asymmetric that are 
not symmetrical in time are observed. Normal 
stress at point 4, it remains tensile over time 
interval under consideration up to t=140τ. At the 
same time, the high voltage level at point 4, it 
changes drastically from the stresses at other 
observation points and is explained by the influence 
of angular diffraction emanating from the singular 
point P. 

 
Figure 7. Waveforms Of Normal Stresses 

 At Fixed Six Points 
 

 
Figure 8. Waveforms Of Longitudinal Velocities 

(K=1, 2) At 6 Points: 1 .(X1=0, X2=0), 2.(X1=0, 
X2=3h), 3.(X1=10h, X2=3h), 4.(X1=20h, X2=3h), 

5.(X1=30h, X2=0), 6.(X1=45h, X2=10h) 
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Figure 9. Changes in normal stresses at time 

t=100 t in coordinate x1 in sections 1(x2=0h), 1’((x2=0h), 
2 (x2=3h) 

 
The normal stresses (k=1,2) at all 

points of the considered time interval is stretchable 
in accordance with the law of the acting load t exp(-
t) (point 1). The values of normal stresses at 
the boundary point 2 coincide with their values at 
the point 1 and therefore are not given [13], [18]. 
For small values of time, the behavior of the curves 
at points 3, 4, and 5 is determined by the plane 
tensile wave that comes from the end face x1 = 0 
the initial exponential nature of the pulse applied at 
the x1 = 0 boundary comes sequentially to the 
underlying layers along the x1 coordinate. At point 
3 in the time interval up to t≤110τ due to the 
influence of diffracted waves, the normal voltage 

it fluctuates around the average value, 
starting from the time t≥110τ, it is set at the same 
level. As for points 4 and 5, the described behavior 
of normal voltage is repeated, but only at late 
points in time (t≥140τ). The behavior of the curve 
at point 4 differs from the stress changes at other 
points in that the vibrations are carried out with 
increasing amplitude. This circumstance is 
explained by the appearance of angular diffraction 
coming from the point P. At point 6, the level of 
normal stresses is significantly lower than 
the stresses at points 1, 2, 3, 4 and 5. This is 
explained by a noticeable weakening of the elastic 
waves passing through the contact boundary of 
dissimilar materials and by the low rigidity of the 
matrix material. The delay effect of the appearance 
of the normal stress  is comparable with the 
behavior of other state parameters with the 
exception of the normal stress  (see 
Fig.6).The character of the change in the normal 
voltage of the normal voltage repeats the 
form of the boundary action (point 1). 
 

 
Figure 10. Changes in normal  (curves 1, 2) and 
tangents stress at time t=100τ in coordinate x1 in 

cross-sections 1(x2=0h), 3’(x2=3h), 2(x2=3h) 
 
Time evolution of longitudinal velocities 

(k=1,2) particles at the accepted fixed 
observation points are shown by curves in Fig.8. At 
the initial stages of the movement, the longitudinal 
velocities (k=1,2) at all observed points  
change smoothly, repeating the form of the applied 
boundary action. Increasing the time, they also 
become ready to global changes. The curves at the 
observed points, except for point 6, are intertwined 
with each other, passing later into oscillatory 
motion. This is explained by the superimposition of 
a longitudinal elastic wave front reflected from the 
junction boundary of dissimilar materials and 
diffracted waves differing from the angular points P 
and D. Thus, the determining influence on the 
formation of the longitudinal velocity at points 4, 5 
and 6 is provided by the processes of reflection and 
refraction of elastic waves from the contact surfaces 
of heterogeneous materials. 
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Figure 11. Isolines of normal stresses  (k=1,2) at 

time t= 40τ 
 

In Fig.9 and 10 shows the change of the 
normal (i=1,2) and tangents of the 
stresses (k=1,2) in coordinate x1 in sections 1(x2=0; 
section belonging to the inclusion); 1’((x2=0; 
section belonging to the matrix material); 2(x2=3h; 
cross section belonging to both the inclusionand the 
matrix material) at the time moment t=100τ. The 
normal component of the stress ( k=1,2; see 
Fig. 9) in section 1 in the area of the protruding part 
of the inclusion 0 ≤ x 1≤ L1 with an increase in x1 

goes from stretching to compressing with a small 
amplitude. Near the contact area L1≤ x 1 ≤ L2 the 
voltage level increases sharply. At the output of 
their contact region (x1≥ L2), the normal component 
of the stresses it is greatly reduced. In section 
1’, which belongs to the matrix material. The 
values of normal  differ from their values  

 during inclusion, when switching from 
inclusion in the matrix, the normal component of 
stresses changes with a abruptly. In section 
2(x2=3h) at the boundary of the inclusion and the 
matrix, the normal voltage accepts a null 
value on a free surface at 0 ≤ x 1 ≤ L1. In the contact 
area (L1≤ x 1 ≤ L2) it starts increasing sharply. At 
the same time, the stress levels in sections 1 and 2 
differ not so much. At the exit from the contact 
zone (x1≥ L2), the normal component of the stresses 

decreases strongly and has a negative value. 
In the area of the matrix, they change little and are 
oscillatory in nature. Fig.10 combined graphs of 
normal  and tangent  stresses (k =1,2) 
along the х1 coordinate in the above sections are 
shown. The normal stresses (k=1,2) in 
sections 1 and 2 are stretchable. Near a singular 
point P (section 2), normal stresses take an 

extreme value that exceeds the nominal value by 
two times at the time under consideration.  

 

 
Figure 12. Isolines of normal stresses (k=1,2) at 

time t= 60τ 
 
Tangential stresses (k=1,2) in the 

contact area increase sharply from zero to its huge 
value and then slowly decrease to zero when 
entering the matrix material [1], [17]. The 
distribution of tangent stresses along the contact 
boundary of the inclusion and matrix in dynamic 
problems does not differ qualitatively from what 
occurs in the case of statics. The results illustrated 
by the calculated curves are consistent with the 
nature of the passing wave fronts. 
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Figure 13. Isolines Of Normal Stresses (K=1,2) At 

Time T= 100τ 
 
In Fig.11-18 in the plane х1Ох2, the isolines of 
normal (i=1,2) and tangents (k=1,2) 
determining the stress state in the entire region of 
the inhomogeneous medium D1D2 for individual 
moments of time. Constructed isolines of the stress 
tensor  allow you to reveal the most 

dangerous areas of the body D1D2 in terms of 
possible subsequent destruction. In contrast to the 
previously used in the presented figures, the 
following notation is used: solid, dashed, dashed 
and dashed lines indicate isolines corresponding to 
tensile, zero, and compressive stresses. 

The evolution of the normal and 
tangents the stresses (k=1,2) at time points 
t=40τ, t=60τ and t=100τ are shown in Fig.11 – 16. 
From these figures, we can conclude that the 
constructed isolines correspond to the character of 
passing wave fronts caused by multiple reflections 
and diffraction of elastic waves from plane 
boundaries. In Fig.17– 18 the isolines of normal 
stresses (k=1,2) at moments of time t=60τ 
and t=100τ. From the results shown in the figures, 
we can imagine a clear figure of the stress 
distribution in the vicinity of singular points, at the 
contact boundaries of dissimilar bodies. The 
regions of existence of significant stress gradients 
and their concentrations in the vicinity of corner 
points and at the contact boundaries of the inclusion 
and matrix are found. The normal stresses 

(k=1,2) in the entire region of the 

inhomogeneous body, they are stretchable at a time 
t=60τ and reach their maximum value equal to 0.48 
at a particular point P. The effects of stress 
concentration in the vicinity of the singular point P 
are well illustrated by the contours shown in Fig.18.  
 

 
Figure 14. The Isolines For The Shear Stresses 

(K=1,2) At Time T= 40τ 
 

 
Figure 15. The Isolines For The Shear Stresses 

(K=1,2) At Time T= 60τ 
 
The stress level is a function of time and at 
different points in time reaches different values at 
different points of the inhomogeneous medium 
[15], [17]. 
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The normal stresses (k=1,2) reach their local 
extremum equal to 0.63 in the transition area from 
free areas to the contact area of the inclusion and 
matrix. At the same moment of time, near the 
inclusion end face, the contours take the form of 
straight lines, indicating the transition to a steady 
state, which is consistent with the external load 
specified at the boundary. 
 

 
Figure 16. The Isolines For The Shear Stresses 

(K=1,2) At Time T= 100τ 
 

 
Figure 17. Isolines Of Normal Stresses (K=1, 2) 

At Time T= 60τ 
 

 This analysis are part of phenomena of 
dynamic load transfer on composite materials' 
component elements and at the same time 
demonstrates the possibility and effectiveness of 
the developed mathematical models of non-
stationary problems of elasticity theory. 

 
Figure 18. Isolines Of Normal Stresses (10 -2; 

K=1,2) At Time T= 100τ 
 

7.  CONCLUSION 
 
The basic results and analysis made under this 
theory, it allows us to reveal these conclusions: 
 An explicit difference scheme in solving 
dynamic problems in elasticity theory was 
developed on the basis of a combination of the 
spatial characteristics method and the splitting 
method, by extending the scope of its application to 
inhomogeneous linearly deformable bodies. 
 Applied to the contact problems of wave 
dynamics, the stability of the difference numerical 
solution of non stationary problems in mechanics is 
improved, which is shown in comparison of results 
of the solution obtained by the spatial 
characteristics method. 
 An algorithm for calculating stresses with 
velocities at special points, which are the corner 
points of a strip, a quarter of a plane, a half-plane 
with cuts and inserts, points of breaking of 
boundary conditions and the contact boundary of 
heterogeneous bodies, is developed nowadays. On 
the basis of the developed method, solving 
equations are obtained at the described special 
points and on contact surfaces. The state at each 
particular point is determined by the 
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interconnectedness and mutual influence of a large 
number of nodal points located in its vicinity. 
 Based on the developed technique, resolving 
equations are obtained at the described singular 
points and on the contact surfaces. The state at each 
particular point is determined by the 
interconnectedness and mutual influence of a large 
number of nodal points located in its vicinity. 
 Based on the developed methods, a package 
of application programs in algorithmic language for 
solving dynamic problems in homogeneous and 
inhomogeneous bodies in a wide range of non-
stationary external influences is revealed. 
 The phenomenon of dynamic stress 
concentration in the vicinity of singular points is 
established and their values are estimated under the 
conditions of solved partial problems.  
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