
Journal of Theoretical and Applied Information Technology
30th September 2020. Vol.98. No 18
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3080

ANALYSIS OF FLOW ENTRY REPLACEMENT
ALGORITHMS IN INTELLIGENT NETWORKS

1HYONGYOUNG KO 1YEHOON JANG 1NAMGI KIM
1Department of Computer Science and Engineering, Kyonggi University, Suwon 16277

E-mail: {kgu15460, jyh94, ngkim}@kyonggi.ac.kr
*Corresponding Author: Namgi Kim (ngkim@ kyonggi.ac.kr)

ABSTRACT
In recent years, as Internet services have diversified and grown rapidly, intelligent network environment has
dynamically changed with parameters such as traffic patterns and network topologies. To flexibly manage
such dynamic changes, SDN (Software Defined Network) technology has emerged. SDN enables more
flexible Internet services by dividing the network architecture into a control plane and data plane. By the way,
in the SDN, a problem with flow entry replacement may arise owing to flow table size restrictions within the
switches. A flow entry replacement problem can increase the packet processing time and degrade the quality
of service for the users. Therefore, we need to know exactly the performance of the flow entry replacement
algorithms. In order to practically analyze the performance of the flow entry replacement algorithms, we first
collect and analyze the actual Internet traffics of famous Internet services such as Instagram, Facebook,
Youtube, and Netflex. Then, we analyze the performances of flow entry replacement algorithms by the
collected traffic data. Based on the results, the LFU (Least Frequently Used) algorithm exhibits the worst
performance, whereas the FIFO (First In First Out), LRU (Least Recently Used), and SFF (Short Flow First)
algorithms show relatively better performances.

Keywords: Intelligent Network, Internet traffic, SDN, Flow Entry Replacement, Flow Table Management

1. INTRODUCTION

With the emergence and development of various
Internet services, Internet traffic patterns have
become more diverse and complex. These changes
may increase the network overhead and degrade
the quality of service for users. To solve such
problems, data centers have been established to
perform the distributed processing of traffic.
However, there are limitations in solving these
problems owing to the closed network
architectures of traditional Internet. To reflect new
Internet services and traffic patterns, traditional
network architectures need to perform updates on
each device through separate independent accesses.
Further, some functions may not perform properly
owing to compatibility issues. To fundamentally
address such issues, SDN (Software Defined
Network) technology has been developed. The
SDN features a network virtualization approach in
optimizing network resources and flexibly
adapting to network requirement and traffic
changes [1].

The SDN divides the network architecture into
the two planes: control plane and data plane. The
control plane performs bandwidth management,
forwarding control, resource management, etc.

based on the logically centralized network
topology. As a result, the SDN administrator can
identify and optimize the network from a global
perspective according to the operating environment.
In addition, the SDN can determine the
differentiated forwarding and packet processing for
operation according to the given policy. The SDN
switches are executed by receiving commands
from the SDN controller. As a result, packets are
simply forwarded in the switches without
executing the complex functions in data plane
[2][3].

In the SDN, packets are managed by units of
flow. Flows are generated in the SDN controller
based on the information such as the packet source
and destination. The flow tables, which have
information about flows, are managed and stored
in the SDN switches. Once a packet is arrived, the
switch searches a flow entry in the flow table
corresponding to the packet. If a matched flow
entry is found, packet processing, such as packet
delivery, modify, and destroy, is executed using the
information in the entry. If there is no entry that
matches the packet, the SDN switch requests the
SDN controller for generating a flow of the
corresponding packet. After receiving the flow

Journal of Theoretical and Applied Information Technology
30th September 2020. Vol.98. No 18
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3081

information from the controller, the switch stores it
in the flow table and processes the packet
according to the flow information.

In a large-scale network architecture, not all
network devices can be homogenous owing to the
needs or costs of each device function. Therefore,
heterogeneous SDN switches are generally
employed and the different switches which have
the different size of the flow table experience
different flow entry replacements. The frequent
flow entry replacement may increase the number of
exchanged messages with the controller and delay
in packet delivery [4][5][6]. Therefore, we need to
have an efficient flow entry replacement algorithm
which reduces the number of the replacement and
increases the flow entry matching rate for
improving the network performance. This is the
research question of this paper.

In order to justify the need of the flow entry
replacement algorithms in practical, we first collect
and analyze the actual Internet traffic data of
famous Internet services such as Instagram,
Facebook, Youtube, and Netflex. Then, we analyze
the performance of the representative flow entry
replacement algorithms such as FIFO (First In First
Out), LFU (Least Frequently Used), LRU (Least
Recently Used), and SFF (Short Flow First) [7] by
the collected Internet traffic data.

2. RELATED WORK

In the SDN network, the switch executes only
the simple forwarding functions. Instead, the
controller manages the network and sends flow
information for the packet processing to the
switches. Therefore, it is very important to reduce
the controller overhead for improving the network
performance. In order to reduce the controller
overhead, in [8], the switch that is processing a
large amount of traffic is migrated to another
controller that is processing a relatively smaller
amount of traffic. However, in this method, the
controller overhead may increase owing to
additional message exchanges for switching the
controller. As another method of reducing the
overhead, in [9], the Kandoo framework is
proposed to divide the controller into two levels:
root and local. This method involves the root
controller processing the requests for the entire
network status, while the remaining requests are
processed by the local controllers. In [10], a tag-in-
tag method was proposed to reduce the flow entry
by delivering flow to another switch. Similar to
[10], in [11], a method was proposed to classify the

network into core and edge. It adopts ARP
(Address Resolution Protocol) spoofing using the
virtual MAC (Media Access Control) address and
physical MAC address. However, this method is
hard to implement as ARP spoofing requires
changes of the kernel implementation of the host.

The related works discussed above have
presented methods such as changing the network
architecture or forwarding traffic as a means of
reducing network overhead. However, not many
studies have been conducted for solving the
overhead that can occur when the flow entry needs
a replacement owing to a full flow table. In [7], the
SFF (Short Flow First) algorithm was proposed to
select a target flow entry for replacement based on
the flow characteristics when the flow table is fully
occupied. However, synthetic Internet traffic data,
which were manually generated by the authors of
that study, were used for the performance
evaluation. The performance of the SFF algorithm
in the real Internet traffic environment remains
uncertain.

In this paper, we first analyze the actual Internet
traffic patterns by collecting them from the popular
Internet services. Then, we evaluate the
performances of the representative algorithms that
can be used for flow entry replacement. These are
the contributions of our paper.

3. TRAFFIC COLLECTION AND ANALYSIS
OF REPRESENTATIVE INTERNET
SERVICES

Table 1: Environments for traffic collection

Parameters Values

OS Ubuntu 16.04

Browser Chrome v.77.0.3865.75

Packet capture tool Wireshark v.2.6.8

Table 2: Internet services for traffic collection

Services Contents

Instagram
Social network data

(video, photo, text, etc)

Facebook
Social network data

(video, photo, text, etc)

Youtube
Stored multimedia data

(video, audio)

Netflix
Stored multimedia data

(video, audio)

Journal of Theoretical and Applied Information Technology
30th September 2020. Vol.98. No 18
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3082

In this section, we show the actual Internet
traffic data that were collected and analyzed. Table
1 shows the traffic capture environment and Table
2 shows the list of Internet services and content
types for collecting traffic data.

3.1 Instagram traffic

Instagram [12] is designed to receive content
when a user requests content information. The

incoming information includes the content
uploader’s user name, profile picture, content
photo, and profile pictures of the users who left
comments along with comment information. As
shown in Figure 1, Instagram service receives data
in three main flows: query, content, and log flows.
The query flow indicates the requested content
information by the user and the request result. The
content flow is for sending content and the log flow
collects logs for optimizing the user environment.

 (a) Query flow (a) Picture traffic

(b) Content flow (b) Video traffic

(c) Log flow (c) Log, query, and module traffic

Figure 1: Traffic pattern of Instagram service Figure 2: Traffic pattern of Facebook service

Journal of Theoretical and Applied Information Technology
30th September 2020. Vol.98. No 18
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3083

As shown in the figure, the packets are periodically
transmitted every 10 seconds in the log flow even
if the content does not include any video data.

3.2 Facebook traffic

Facebook [13] receives relatively more
information than Instagram. Facebook receives not
only requested contents but also various types of
additional data such as story photos, streaming, and
advertisements. As shown in Figure 2, Facebook

also transmits data in three main flows. The picture
traffic flow indicates the Cascading Style Sheets
and JavaScript files related to photos or user
interfaces. The video traffic flow indicates the flow
related to video data. Lastly, the log, query, and
module traffic flow indicates the flow related to log,
query, and module call data. Similar to Instagram,
in the content, query, and module call flow, packets
are transmitted irregularly as the data are processed
according to the user requests. However, the

(a) 1080p (b) 720p

(c) 480p (d) 360p

(e) 240p (f) 144p

Figure 3: Traffic pattern of Youtube service

Journal of Theoretical and Applied Information Technology
30th September 2020. Vol.98. No 18
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3084

packets related to logs are periodically transmitted
every 5 seconds.

3.3 Youtube traffic

Youtube [14] is the largest video sharing Internet
service in the world, enabling any user to watch,
upload, and share videos. Youtube allows users to
watch videos in different qualities such as 144p,
240p, 360p, 480p, 720p, and 1080p. The Uniform
Resource Locator (URL) for Youtube traffic
collection is shown in Table 3.

Table 3: Youtube content URL for traffic collection

URL Content Type

https://youtu.be/kQJ4ulRELHo video

The traffic patterns collected from the Youtube
service are displayed in Figure 3. As shown in the
figure, the packets are received at regular intervals
in each video quality. The data transmitting
intervals become shorter and the number of packets
gradually increases when the video quality is
higher.

3.4 Netflix traffic

Netflix [15] is a service that shares pre-produced
multimedia contents. Netflix supports the
streaming of videos in three different qualities: low
quality, medium quality, and high quality. The low
quality video generates a data transfer rate of up to
0.3 GB per hour. The medium quality video
generates up to 0.7 GB per hour. Lastly, the high
quality video generates up to 3 GB for HD, and up
to 7 GB for 4K UHD resolutions per hour. The
content used for collecting Netflix traffic is shown
in Table 4.

Table 4: Netflix content for traffic collection

Content Type

Ingress: the animation animation

The collected Netflix traffic results are displayed
in Figure 4. In the Netflix traffic, data transmission
intervals were almost the same for all video
qualities. Instead, the number of packets is
increased when the requested video quality is high.

(a) Low quality video

(b) Middle quality video

(c) High quality video

Figure 4: Traffic pattern of Netflix service

3.5 Traffic pattern summary

Although there exist a small portion of video
data, Instagram and Facebook data mostly
comprise web data. Nevertheless, a periodic packet
transfer was observed owing to the log collections
for user optimization. Youtube and Netflix use the
MPEG-DASH (Moving Picture Expert Group-
Dynamic Adaptive Streaming over HTTP) [16]
protocol. Whereas Netflix frequently forwards
packets in short interval periods, Youtube has a

Journal of Theoretical and Applied Information Technology
30th September 2020. Vol.98. No 18
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3085

traffic pattern that collects and transfers large
chunks of packets over longer intervals.

4. REPRESENTATIVE FLOW ENTRY
REPLACEMENT ALGORITHMS

The representative algorithms that can be used
for replacing flow entries in the flow table of the
SDN switch include the widely known FIFO, LFU,
and LRU algorithms along with the SFF algorithm.
The FIFO algorithm replaces the entry stored for
the longest time in the flow table. The concept of
the algorithm is to replace the entry that has been
retained for the longest time when adding a new
entry as the old entry has been sufficiently used.
The FIFO algorithm method is inefficient when
there is a large flow of packet transmission for a
long time as it selects the target entry for deletion
based on the duration of registered time

The LFU algorithm replaces the entry that has
the lowest matching number among the entries in
the flow table. The concept here is that an entry
with a high number of matches is likely to have
more matches in the future as well. If a recently
added entry may no longer be used when the flow
table is full, the LFU algorithm can continuously
perform at a high level. However, it can become
inefficient once there is a large flow of continuous
packet transmission.

The LRU algorithm replaces the entry that has
not been matched for the longest time in the flow
table. The algorithm can perform well under the
assumption that the entry that has not been matched
for the longest time will no longer be used. In
addition, it has the advantage that the recently
matched entry is retained in the flow table
regardless of when the flow is registered or the
number of times that the packets have used the
entry.

The SFF algorithm categorizes a flow entry into
a short flow or long flow based on the flow
matching cycle. It assumes that the packets of the
short flow are transmitted for a short period of time
and the packets of the long flow are continuously
transmitted for a long period of time. Therefore,
this algorithm attempts to replace the entry that has
not been matched for the longest time among the
short flow entries first. If no corresponding entry is
found among the short flow entries, it selects the
target entry for deletion from the long flow entries.
A typical Internet service example of a short flow
is a web service and an example of a long flow is a
streaming service.

5. PERFORMANCE EVALUATION WITH
ACTUAL INTERNET TRAFFICS

To evaluate the performances of the flow entry
replacement algorithms, an experimental network
topology was constructed using Mininet emulator
[17], as shown in Figure 5. The topology was
designed to have the packets start from four web
server and four video servers, and arrive at 40 client
nodes.

Figure 5: Experimental topology

The packets used in the experiment were
generated through the tcpreplay packet tool [18]
based on the traffic patterns collected from the
actual Internet. The flow table size of the SDN
switch used in the experiment varied from 10 to 30
entries. The details of the experimental parameters
are summarized in Table 5.

Table 5: Experimental parameters

Parameters Values

Flow table size
(SW1-SW2-SW3)

10-10-10, 20-20-20, 30-30-30
10-20-30, 30-20-10,
30-10-30, 10-30-10

Number of flows 40 web and 40 video flows

Number of
packets

830K

5.1 Flow miss rate

A flow miss occurs when an incoming packet
does not match any existing flow entry in the flow
table. When such a flow miss occurs, the switch
requests the controller to generate a new flow. It
results in message overhead owing to multiple
message exchanges between the controller and
switch. The flow miss rate indicates the rate of
packets having flow misses out of the entire group
of packets. If the flow miss rate is high, the
message overhead between the switch and flow
increases. Frequent packet delays also occur,
where the packets are blocked and cannot be
forwarded until a new flow entry is generated.

Journal of Theoretical and Applied Information Technology
30th September 2020. Vol.98. No 18
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3086

Figure 6 shows the flow miss rates with a flow
table size of 10 flow entries in switches #1, #2, and
#3. As shown in the figure, the LFU algorithm
exhibited the highest flow miss rate, whereas the
FIFO, LRU, and SFF algorithms demonstrated
relatively lower flow miss rates. The same flow
table sizes were used in switches #1, #2, and #3 and
the number of flow misses was almost the same in
each switch.

Figure 6: Flow miss rate with 10-10-10 flow entries

Figure 7: Flow miss rate with 20-20-20 flow entries

Figure 8: Flow miss rate with 30-30-30 flow entries

Figures 7 and 8 display the miss rates when the
flow table sizes in switches #1, #2, and #3 are 20
and 30, respectively. As observed from the results,
the flow miss rates decreased with the increase in
the flow table size owing to the increased
probability of having the flow corresponding to the
incoming packet.

Figures 9, 10, 11, and 12 display the experiment
results of configuring different flow table sizes for
each switch. Figure 9 shows the flow miss rates of
each algorithm when the flow table sizes are 10, 20,
and 30 for switches #1, #2, and #3, respectively. As
shown in the figure, switch #1 had the highest
number of flow missed packets. This is because the
flow table size of switch #1 was the smallest.

Figure 9: Flow miss rate with 10-20-30 flow entries

Figure 10 shows the flow miss rates of each
algorithm when the flow table sizes are 30, 20, and
10 for switches #1, #2, and #3, respectively. Here,
the highest flow miss rate was found in switch #3
because of the switch having the smallest flow
table size.

Figure 10: Flow miss rate with 30-20-10 flow entries

Journal of Theoretical and Applied Information Technology
30th September 2020. Vol.98. No 18
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3087

Figure 11 shows the flow miss rates of each
algorithm when the flow table sizes are 30, 10, and
30 for switches #1, #2, and #3, respectively. Here,
the highest flow miss rate was found in switch #2
because it had the smallest flow table size.

Figure 11: Flow miss rate with 30-10-30 flow entries

Figure 12 shows the flow miss rates of each
algorithm when the flow table sizes are 10, 30, and
10 for switches #1, #2, and #3, respectively. Here,
switches #1 and #3 had the highest flow miss rates
as they had the smallest flow table sizes at 10, and
switch #2 had almost negligible flow misses.

Figure 12: Flow miss rate with 10-30-10 flow entries

Thus, the flow miss rates of the flow entry
replacement algorithms have been measured using
actual Internet traffic patterns in the environment
of having various flow table sizes. The experiment
results showed the highest flow miss rates in the
LFU algorithm in all cases. In addition, FIFO, LRU,
and SFF algorithms showed relatively lower flow
miss rates compared with the LFU algorithm.

5.2 Packet delay due to flow entry replacement

If an incoming packet enters the switch and the
corresponding flow entry is not in the flow table,
the switch asks the controller to generate a flow.
During this process, a delay is occurred and the
packet cannot be forwarded to the next switch until
the new flow entry is created in the switch. This
type of delay can cause quality degradation of the
services to which the corresponding packet belongs.
Thus, it can be inferred that the service qualities
improve with the decrease in the packet delays
owing to the flow misses.

Figure 13 shows the delayed packet ratio in the
switch when the flow table size is 10 for switches
#1, #2, and #3. If the ratio of delayed packets
displays 1, it denotes that all the packets
transmitted within the network have been delayed
owing to the flow miss in all switches. The legend
111 shown in the figure indicates the switch
number in which the packet has been delayed. 111
represents the packets that delay in switches #1, #2,
and #3. In the same way, 100 represents the packets
that delay in switches #1 only. As seen in the figure,
the LFU algorithm had the largest number of
delayed packets. On contrary, the FIFO, LRU, and
SFF algorithms had a relatively lower number of
delayed packets.

Figure 13: Delayed packets with 10-10-10 flow entries

Figures 14 and 15 show the delayed packet ratios
of each algorithm when the flow table sizes of
switches #1, #2, and #3 are 20 and 30 flow entries,
respectively. As shown in the figures, the number
of delayed packets decreases with the increase in
the flow table size. This is owing to the increase in
the number of flow entries that can be stored in the
table with the increase in the flow table size; this
leads to a lower number of flow misses. In addition,
all the packets that have been delayed in switch #1

Journal of Theoretical and Applied Information Technology
30th September 2020. Vol.98. No 18
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3088

are also delayed in switch #2 and switch #3. This
result is obtained because of the flow table sizes
being the same in all three switches.

Figure 14: Delayed packets with 20-20-20 flow entries

Figure 15: Delayed packets with 30-30-30 flow entries

Figure 16 shows the delayed packet ratios of
each algorithm when the flow table sizes are 10, 20,
and 30 for switches #1, #2, and #3, respectively.
As observed from the results, switch #1 had the
most packet delays because switch #1 had the
smallest flow table size.

 Figure 16: Delayed packets with 10-20-30 flow entries

Figure 17 shows the delayed packet ratios of
each algorithm when the flow table sizes are 30, 20,
and 10 for switches #1, #2, and #3, respectively.
Here, switch #3 had the most packet delays as it
had the smallest flow table size.

Figure 17: Delayed packets with 30-20-10 flow entries

Figure 18 shows the delayed packet ratios of
each algorithm when the flow table sizes are 30, 10,
and 30 for switches #1, #2, and #3, respectively.
Here, switch #2 had the most packet delays as it
had the smallest flow table size.

Figure 18: Delayed packets with 30-10-30 flow entries

Figure 19 shows the delayed packet ratios of
each algorithm when the flow table sizes are 10, 30,
and 10 for switches #1, #2, and #3, respectively.
Here, the flow information in the flow table of
switch #1 and that of switch #2 become different as
the flow table size of switch #1 is smaller than that
of switch #2. Therefore, most packet delays are
found either only in switch #2 or in all three
switches.

Journal of Theoretical and Applied Information Technology
30th September 2020. Vol.98. No 18
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3089

Figure 19: Delayed packets with 10-30-10 flow entries

Until now, the packet delay ratios have been
measured using actual Internet traffic patterns in
environments having various flow table sizes. The
experiment results showed the highest packet delay
ratios in the LFU algorithm in all cases. In addition,
compared with the LFU algorithm, the FIFO, LRU,
and SFF algorithms showed that relatively smaller
number of packets have delays owing to flow
misses.

6. CONCLUSIONS

In this study, the research objectives are to
analyze the actual Internet traffic patterns from the
popular Internet services and evaluate the
performances of the flow entry replacement
algorithms that can be used in the SDN
environment using them. The Internet traffic
analysis results showed that most traffic data has
no specific periodicity and has short transmission
times. However, some traffic data are periodically
transmitted in the process of collecting logs to
optimize user environment or to provide
advertisement information. Further, video service
traffic data, such as Youtube and Netflix, showed
different traffic patterns. However, all video
service traffic had the same pattern that increases
the number of packets and shortens the packet
interval as video quality increases.

In this study, the performances of the FIFO, LFU,
LRU, and SFF algorithms, which can be used in
flow entry replacement, were evaluated using
actual traffic data collected from the Internet.
Based on the results, the LFU algorithm displayed
the worst performance owing to the frequent
replacements. The LRU and SFF algorithms
displayed relatively better performances. In [7], it

was proposed that the SFF algorithm performed
better than the LRU algorithm. However, in this
study, the performances of the SFF and LRU were
similar because the flows within the traffic were
mostly uninterrupted and maintained for the entire
transmission time. Since the traffic used in the
experiment was maintained until most of the flows
ended, the SFF algorithm stores these continuously
matched flows as long flows and long flow entries
increased whereas the short flow entries decreased.
As a result, the performance of the SFF algorithm
was similar to that of the LRU algorithm in the flow
entry replacement process.

The limitation of this study is that the collected
data from the Internet are a little limited. In this
work, we collected actual Internet traffic from the
five popular Internet services that are
representative Internet services. However, they
may not capture all features of the Internet traffic.
In order to solve this problem, we plan to collect
more diverse Internet traffic data and analyze the
algorithm performances in a more realistic Internet
environment to develop a better performing flow
entry replacement algorithm.

ACKNOWLEDGMENTS:
This work was supported by Kyonggi University
Research Grant 2019.

REFRENCES:

[1] R. Amin, M. Reisslein, and S. Nadir, “Hybrid

SDN networks: A survey of existing
approaches,” IEEE Communications Surveys &
Tutorials, Vol. 20, No. 4, pp.3259-3306, 2018.

[2] Open Networking Fundation, “Software-Defined
Networking: The new norm for networks,” ONF
White Paper, Vol. 2, No. 11, pp. 2-6, April 2012.

[3] S. Sezer, et al, “Are we ready for SDN?
Implementation challenges for software-defined
networks,” IEEE Communication Magazine,
Vol. 51, No. 7, pp. 36-43, July 2013.

[4] P. Dely, et al, “Openflow for wireless mesh
network,” IEEE Computer Communications and
Networks, pp. 1-6, 2011.

[5] S. Kandula, et al., “The nature of data center
traffic: measurements & analysis,” ACM
SIGCOMM conference on Internet
measurement, pp. 202-208, 2009.

[6] T. Benson, et al., “Network traffic characteristics
of data centers in the wild,” ACM SIGCOMM
conference on Internet measurement, pp. 267-
280, 2010.

Journal of Theoretical and Applied Information Technology
30th September 2020. Vol.98. No 18
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3090

[7] N. Kim, et al., “A new flow entry replacement
scheme considering traffic characteristics in
Software-Defined Networks,” Applied Sciences,
Vol. 10, No. 10, pp. 3590, 2020.

[8] A. Dixit, et al., “Towards an elastic distributed
SDN controller,” ACM SIGCOMM workshop
on Hot topics in software defined networking,
Vol. 43, No. 4, pp. 7-12, 2013.

[9] S. Hassas Yeganeh and Y. Ganjali., “Kandoo: a
framework for efficient and scalable offloading
of control applications,” The 1st workshop on
Hot topics in software defined networks, pp. 19-
24, August 2012.

[10] S. Banerjee and K. Kalapriha, “Tag-in-tag:
Efficient flow table management in SDN
switches,” 10th IEEE International Conference
on Network and Service Management (CNSM),
pp. 109-117, Nov. 2014.

[11] K. Agarwal, et al., “Shadow MACs: Scalable
label-switching for commodity ethernet,” The 3rd
workshop on Hot topics in software defined
networking, pp. 157-162, 2014.

[12] Instagram, https://www.instagram.com/
[Accessed on April 1, 2020]

[13] Facebook, https://www.facebook.com/
[Accessed on April 1, 2020]

[14] Youtube, https://www.youtube.com/ [Accessed
on April 1, 2020]

[15] Netflex, https://www.netflix.com/ [Accessed on
April 1, 2020]

[16] MPEG-DASH, “Information technology -
Dynamic adaptive streaming over HTTP
(DASH) - Part 1: Media presentation description
and segment formats”, ISO/IEC 23009-1:2012,
Apr. 2012.

[17] Mininet, http://mininet.org/ [Accessed on April
1, 2020]

[18] tcpreplay (Replay captured network traffic),
http://tcpreplay.appneta.com/ [Accessed on
April 1, 2020]

