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ABSTRACT 
 

The concept of Big Data created to face the massive explosion of data produced from web 2.0, smart 
devices, sensors, social networks platforms like Facebook, Twitter, Instagram, LinkedIn, has increased 
continuously. However, new challenges and opportunities appear due to the growth of data. Nevertheless, 
several prominent organizations and companies have realized that data is valuable and offers competitive 
advantages, great benefits, and relevant knowledge when it gets converted to actionable information they 
can use. However, collecting these massive data is not enough, as we should be able to integrate and 
analyze these data pulled from different heterogeneous sources after loading them to improve analysis 
goals. This research article's primary objective is to adapt the ETL (extraction transformation-loading) 
processes with the potential of Big Data technologies in order to deal with these new challenges from data 
warehousing perspective and knowledge discovery that directly impacts business decision-making systems. 
In this article, a new approach based called SMART-ETL-MR presented on the Map-Reduce paradigm to 
expedite data handling and to build a well-organized data warehouse. Experimental results prove that the 
ETL operation performs successfully with optimal algorithms. 
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1. INTRODUCTION  
 

In the last decade, we have noticed an 
explosion of data volume, due to the increased 
number of connected users to the internet via smart 
devices, social networks, communication systems, 
and heads to multiplied the size of data 300 times 
since 2005 till 2020. these above challenges create 
significant limitations on data warehouse building, 
exportation, processing, and knowledge discovery, 
etc. thus, the concept of Big Data created to face 
this continuous demand.   

The Big Data concept refers to massive, 
unstructured, heterogenous datasets that cannot be 
handled by traditional relational database systems 
to maintain, capture, and manipulate data. Hence 
this explosion of data attains significant challenges 
for multiple domains in terms of decision-making 
systems, data mining, and knowledge discovery 
activities. The Big data concept requires a specific 
approach defined by the three V rules [18] that refer 
to Volume, Variety, and Velocity. Volume 
determines the amount of data generated in 

different platforms, companies, or final users, 
Variety involves the proliferation of heterogeneous 
data, and Velocity defines the frequency of 
generating, capturing, and sharing data. 

To support this immense evolution of data 
and improve analysis purposes, we need to consider 
the essential elements of a data warehouse, called 
Extract-Transform-Load (ETL), typically holding 
up the 80% of the DW projects. The ETL process is 
a set of multiple operations, such as an Extraction 
operation covering all tasks to collect the required 
data. In contrast, Transformation operation consists 
of executing multiple series of procedures to 
transform the extracted data into a standard format, 
finally Loading operation that deals with the 
transformation data and load them into our 
Datawarehouse (DW). However, standard 
operations are not suitable to deal with the massive 
evolution of data anymore, same as the Relational 
Database Management Systems (RDBMS)that are 
not fitting for distributed databases. 

For the above limitation purpose, the ETL 
process needs serious attention to be improved to 
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deal with the massive explosion of data to prepare 
and handle it into the DW. Certain technologies 
have appeared with the emergence of Big data 
fields, focusing on data management such as Map-
Reduce, which can deal with massive amounts of 
data, NoSQL databases [20] that can store 
unstructured data on column-oriented databases or 
document-oriented databases format such as 
MongoDB. 

In this work, we present a new approach 
called SMART-ETL-MR that applies new breeds of 
big data technologies to supports scalability and 
performance into the Extraction and 
Transformation phases of integration processes like 
ETL.  Within this context, the improvement and 
adaptation of ETL starts with data processing itself, 
in which we integrate the parallelism processing 
aspect by using the MapReduce paradigm for 
handling unstructured data to widely minimize 
time-consumption during this stage. In addition, the 
HBase database is considered in our approach as a 
NoSQL column-oriented data store to support 
complex data instead of classical Relational 
database or plat files (CSV, XML, etc.) that cannot 
deal with a massive amount of data. Moreover, The 
primary goal of this research is to readapt modeling 
ETL operations in the formal level of extraction 
and transformation phases and the retaining the 
specificities of the multidimensional structure of 
DW to support online analytical processing and 
business intelligence application by supporting the 
most-used operations for treating and filtering data 
such as Select and Join. 

The remainder of this paper arranged as 
follows: Section II presents the most recent related 
works with their case studies and highlights their 
main limitations. Section III highlights the main 
concepts used in the proposed solution, such as the 
MapReduce paradigm, HBase database, and Data 
warehousing. Section IV presents the functional 
architecture of the conceived smart ETL with 
detailed algorithms for each phase. Section V 
illustrate a case study. Section VI represents an 
analysis and discussion. Finally, section VIII 
concludes our work and suggests some future 
extensions of this topic. 

 
2. RELATED WORKS 

The data warehouses are encapsulated data 
storage systems that allow a company or 
organization to combine data from various 
applications and sources into one single platform, 
more especially designed for decision support 
systems, data mining, and analytics reporting 

activities. The ETL processes gained extensive 
attention over the last ten years to bypass many 
limitations that have improved and provide benefits 
for data warehousing performance. In this section, 
we present some existing studies that deal with data 
integration and consider ETL modelling as an 
efficient solution to achieve data warehousing 
projects. Nevertheless, some challenges remain 
unsolved always or worked around. They were 
mainly related to the proposed algorithms, data 
management, handling the unstructured data, etc.  

In our context of Big Data Warehousing, 
several approaches have been developed as part of 
the analysis of this massive data via the generation 
of OLAP Cube. The authors in [15] present, an 
aggregation operator called C-cube that allows data 
cubes to compute using column-oriented data 
warehouses based on the invisible join principle. 
Also, the work [13] describes how we can benefit 
from cloud computing technologies to build OLAP 
cubes by using Big Table and MapReduce to 
deploy cubes in ad-hoc Data Marts. The 
investigation in [14] refers to the OLAP query 
processing over column-oriented databases using 
the MapReduce framework. However, all the 
previous approaches, including the work presented 
in [12], use HBase as a very performed NoSQL 
database to improve OLAP querying in the Big 
Data Warehouse context, but they do not present 
any consideration of data movement from HBase 
that required an advanced ETL processing to be 
adapted with the 5Vs of big data. 

Previous works have shown the potential 
and the advantages in time consumption during 
extraction, filtering, and storing large sizes of data 
such as P-ETL [16] and ETLMR [19], that they 
employed parallelism strategies with CDC 
functionality while integrating data. At the same 
time, they ignore the multidimensional aspect, 
which is a mandatory structure for further analysis 
operation. Furthermore, some other studies deal 
with functionalities and basic operations processing 
such as Select, Project, etc. using MapReduce 
paradigm in order to adapt classical SQL queries on 
Bigdata contexts as we have seen with Jack Hare 
Framework [17], Hadoop++ [21] and the detailed 
study described in [22] that also ensure the 
achievement of MapReduce with a set of entirely 
known joins strategies. The above-presented 
solutions are beneficial, but only for basic ETL 
processes which are not yet able to face the 
enormous amount of data.  

Within the same context, the below 
paragraphs describe specifically the most recent 
paperwork’s published between 2016 till 2020 and 
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related to ETL approaches and highlighting their 
advantages and limitations. 

The paper [16] proposes a platform called 
parallel-ETL, which is composed of five steps 
(extraction, partitioning, transformation, reducing, 
and loading), and this refers to the proposed ETL 
architecture. The MapReduce job commences when 
data sources entirely loaded via P-ETL in the 
HDFS, and this option was able to accelerate the 
ETL processing by 33%.   

The paper [9] propose a novel approach 
called BigDimETL that start loading data from a 
JSON file into a CSV format, then distribute them 
vertically by making a correspondence between 
XML schema and data loaded, Aldo during 
transformation phase they only covered the 
essential operation of ETL such as Select that used 
to filter data. 

In the same context, the author of paper 
[11] provides multiple parallelization and 
distribution of data based on each part of the ETL 
treatment phase (ETL processes, ETL 
functionalities, ETL elementary functionalities) 
taking into consideration the horizontal and vertical 
distribution.  

The authors of work [6] and 2020[X]was 
enhancing his previous approach and covered the 
cases ignored in his first paperwork like, during the 
extraction phase, they transform JSON files directly 
to HBase and group them to column families after a 
partitioning process. From the other side, the same 
authors cover correctly more advanced ETL 
operations such as Select, project, and join 
operations using a shared key. Also, he creates 
temporary storage called DSA (Data Storage Area) 
to help execute the above operations as quickly as 
possible. 

This article [7] suggests an architecture 
based on three levels representing the workflow of 
extensible ETL that deal with Big data challenges. 
These include the first layer called workflow 
designer how is communicating directly with the 
intermediate extensible layer which is also 
composed of four elements UDFs, Recommender 
component, a cost model, and a Monitoring agent. 
the primary goal of this work consisted of 
executing the load in a parallel manner to enhance 
the performance. 

In article [2] proposes a novel approach 
called D_ELT, in which transformation of data was 
not taken into consideration, while the approach 
consists of using data already loaded on Hadoop 
initially. However, they tried to use a single 
MapReduce algorithm to handle in parallel 
transformation and analysis phases to use the 

analyzed data once transformed immediately. 
Nevertheless, this approach will not be efficient in 
handling massive data as they are transforming data 
before it finishes loading, and this will have a 
negative impact in the case of massive data.  

The paperwork [4] proposed an 
architecture based on cloud, in which the extraction 
and transformation phases executed in demand with 
Spark. This option offers advanced and 
sophisticated algorithms for ETL to use, such as 
aggregation operations and heuristic algorithms that 
share results to the HDFS.   

In brief, we believe that the current 
research works shared some similarities with ours 
since they are interested in building a data 
warehouse based on the ETL process. However, the 
below Table 1 present in detail that most 
approaches deal with basic operations using the 
multidimensional structure, but they did not address 
the Big Data context. Others handled data context 
and neglected the essential ETL operation. Also, 
the partitioning, operations processing of ETL 
ignored from multiple approaches. The below table 
illustrates the most recent papers, and if they cover 
the essential ETL operations. 

Table 1: ETL operation covered in recent papers 

Paper Benefits Limitations 
[9] The parallelism 

aspect was 
integrated using 
MapReduce, which 
was a benefit. 
 
Reduce the 
partitioning 
process using 
direct indexation. 

The approach was 
limited as it treats 
only the Select 
operation. 
 
The Loading phase 
was not detailed. 

[10] The proposed 
approach sounds 
good from a 
performance 
perspective, 
especially during 
Join operation.  
 
The same approach 
can be adapted for 
addition operation 
such as union, and 
aggregation. 

In this paper, the 
author ignores the 
ETL functionalities 
completely. 
 
The author also did 
not provide any 
algorithm related to 
the MapReduce 
process.  

 [6] The author 
proposes an 
innovative that 
execute in parallel 
both 
transformation and 
analysis. 

They are not truly 
designed to support 
the context of Big 
data.  
 
The approach does 
not make any 
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cleanup of data 
before loading, 
which implies that 
many useless data 
will be loaded. 

[1] The author uses the 
advanced features 
provided by on-
demand Spark 
during the 
extraction and 
transformation 
phases. 
 
we have seen an 
approach that 
combines Big data 
technologies with 
traditional 
technologies 

The authors did not 
apply their approach 
to reel cases to 
demonstrate the 
efficiency of the 
solution. 

[2] The authors of this 
paperwork present 
a useful automated 
approach that will 
help developers to 
optimize ETL 
tasks. 
 
 

The authors of the 
work ignore or 
neglect to present the 
phases clearly, and 
leaving it in the 
abstract world only, 
which lead to 
confusion and 
uncertainty 

[3] The MapReduce 
operation 
commences once 
data get loaded on 
the HDFS via the 
P-ETL. Hence, we 
gain time 
consumption 
during load and 
analysis at the 
same time. 

Whenever the 
analysis operation 
gets repeated the 
time consumption 
will be impacted 
negatively (103 
seconds each time) 
 
the absence of 
transformation 
before loading 
causes a problem of 
storage of large 
amounts of data 
which may not be 
valid, because the 
transformation task 
is associated each 
time with an analysis 
task is executed, this 
stored data is read 
repeatedly, which 
leads to unnecessary 
input/output. 

[4],[5] The author treats 
the ETL 
functionalities 
uniquely and 
neglects all 
additional features 
provided by the 
ETL. 

The proposed 
approach based on 
Cloud, and the was 
limited to the use of 
Spark and Amazon 
AWS; hence he 
creates a limitation 
to other users 

In fact, these previous studies are very 
interesting in terms of data warehousing. Although, 
these researches share some similarities with our 
solution presented in this paper, however the 
partitioning and selecting data vertically according 
to a multidimensional structure was not covered, 
also we focused more on reducing side-join 
operations which was not treated before,  while it’s 
one of the most important functionalities used 
during for processing large data sets. 

As a conclusion, the goal of this paper is to 
reduce as much as possible the cost of Data 
warehouse implementation and produce relevant 
information for decision-makers and online 
Business Intelligent applications based on 
MapReduce paradigm that proves as a powerful 
solution for parallel processing of massive data. 
Indeed, the paper provides a functional architecture 
describing the different steps adopted by our 
approach to building a data warehouse from a 
column-oriented NoSQL database like HBase to 
improve OLAP querying in the data warehouse and 
improve the extraction and the transformation 
phases according to the multidimensional structure. 

 
3. BACKGROUND 

In this section, we introduce the main 
concepts used by our solution presented in Figure 1, 
that describes the proposed smart ETL process, 
including the MapReduce paradigm, to build a data 
warehouse from Twitter and Facebook as a case 
study based on the distributed storage HBase [6] as 
a NoSQL Column Oriented database [3]. 

 
3.1 HBase: NoSQL Column Oriented Database 

First, The Column Oriented Database has 
a structure dedicated to accommodating many 
columns (up to several million) for each line. It 
characterized by a variable number of columns that 
can change from one row to another (we can 
consider that a column exists if it contains a value). 
At first blush, the Column-Oriented Database looks 
remarkably like a relational database, but the 
concept is entirely different. 

The model of column-oriented database, as 
illustrated in Figure 1, is composed of a set of 
tables S = {T1, T2, …, Tz}; each table contains in 
its turn a set of rows Tk = {R1, R2, ..., Rn} with k 
∈ [1, z]. Each row can be represented as Ri = (IDi, 
(CFi1, CFi2…, CFim)) with i∈ [1, n], IDi is a row 
id and CFij is a column family j ∈ [1, m] of the row 
Ri. Each column family can contain numerous 
columns that have the same categories of attributes 
which also called Column Qualifier, so a column 
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family CFij={CQ ij1, CQ ij2, …, CQijp} = {(Cij1, 
vij1), (Cij2, vij2), …, (Cijp, vijp)}. 
 

 
 

Fig. 1. Metamodel Of Column-Oriented Stores 
 

In this approach, we have opted for HBase 
as a NoSQL column-oriented database used by the 
two famous social media systems: Facebook and 
twitter, representing the inputs of our system to 
build the targeted Data Warehouse. HBase has 
several advantages, such as it is high performed to 
improve OLAP querying in the Data Warehouse 
context through the multidimensional structure [9]. 
Besides, it characterized by high processing speed; 
In fact, operations such as data reading and 
processing will take a small amount of time as 
compared to traditional relational models. 
Therefore, the previous advantages will contribute 
to ensuring the proper functioning of our smart 
ETL. 
3.2 Data warehouse 

The Business Intelligence (BI) defined as a 
technological process that analyzes data in order to 
extract useful business information exploitable by 
leaders, managers, and other users, enabling them 
to make better decisions. These analytical details 
stored into a specific database named Data 
Warehouse (DW) dedicated to decision support. 

The multidimensional structure of a DW 
defined as a star schema (S) inter-connected 
forming the basic structure named constellation C = 
{S1, S2,…, Sn}. The star schema is composed of 
three major elements: Fact (F) represented as a 
table of analysis subject (such as sale, stock …), 
Dimensions (D) linked to Facts in order to define 
the axes of analysis (such as customer, product, 
geography) and a Star Function (StarFct) that 
associates each Fact Fi∈F to a set of Dimensions. 
Thus, the formal structure of star schema is defined 
as follow: S = {F, D, StarFct} where F = {F1, F2, 
…, Fm} and D ={D1,D2, …, Dp}. 

Each dimension denoted Di∈D with i∈[1, 
p], is defined by Di = {Dn, Dattr}, where Dn is the 
dimension name, and Dattr is a set of dimension 
attributes Dattr={att1,att2,…,attK} that define the 
level of the detail of our analysis. Each Fact 
denoted Fj∈F with j∈[1, m], is defined as Fj = {Fn, 
Fm} where Fn is the fact name and Fm is a set of 
measures related to Dimensions through foreign 

key Fm = {m1, m2, …, mY} where my = {Mn, Mt, 
Mf} with y ∈ [1, Y], Mn is the measure name, Mt is 
the measure type, and Mf is a set of aggregation 
functions such as AVG, MAX, MIN, and others.   
The metamodel in the Figure 2 illustrate the 
multidimensional conceptual structure of a Data 
Warehouse. 

 

 
 

Fig. 2 Metamodel of Multidimensional Structure of DW 
The regular loading of data into a Data 

Warehouse is ensured by ETL (Extract Transform 
Load); the same is a special process dedicated to 
managing all stages of data collection and 
preparation according to three principal phases: 
 Extract: responsible for accessing 

heterogeneous data sources (NoSQL, triple 
stores, ERP...) to retrieve data, and convert it 
into one consolidated data warehouse format 
which is ready for transformation processing. 

 Transform: to ensure better exploitation of 
extracted data, this phase al-lows verifying, 
reformatting, cleaning up, filtering and giving 
special treatment to missing data. Then it 
proceeds to apply the necessary aggregations 
that fuse several data to obtain a single usable 
and exploitable information (average, sum). 

 Load: consist of inserting the data processed in 
the Data Warehouse to put them at the disposal 
of different tools of analysis and presentation 
such as Data Mining, OLAP multi-dimensional 
analysis, geographic analysis, decision-making, 
and others reporting and of course the 
dashboards. 
 

3.3 MapReduce Paradigm 
MapReduce is a programming model for 

parallel and distributed processing of massive data 
sets. It runs in parallel on several large clusters to 
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distribute data and collect the required results. The 
MapReduce program is composed of the following 
three main functions: 
 Map: takes as input a Dataset in order to split 

them into a smaller sub dataset, and then it 
carries out the required treatment on each Sub-
Dataset in parallel. The output of this method is 
presented as a set of {key, value} pairs in 
which the same key can be repeated. The 
signature of the Map function is defined as 
below: 
o Map(key-in,Val-in) = {(key1, value1), 

(key2, value2), …, (key-n, value-n)} 
 Shuffle: defined as the intermediate step 

between Map and Reduce functions. It operates 
on the outputs resulted from the different 
executions of Map function in order to group 
all {key, value} pairs having the same keys and 
return them as a sorted list of each key 
associated with their set of values. The 
signature of the Shuffle function presented as 
follow: 
o Shuffle((key1, value1), …, (key-n, value-

n)) = {(key1, {value1, …, value-p}), …, 
(key-m, {value1, …, value-b})} with [1, 
p] ∪ … ∪ [1, b] = [1, n] and [1, m] ⊂ [1, 
n] 

 Reduce: is the last step in MapReduce process, 
in which we reduce the previously sorted list, 
generated as output from the Shuffle function, 
into a smaller set of values sharing the same 
key as defined in its signature bel-low: 

o Reduce ((key1, {value1, …, value-p}), …, 
(key-m, {value-1, …, value-b})) = {(key-1, 
value-out_1), (key-2, value-out_2), …, (key-
m, value-out_m)} 
 

4. THE PROPOSED APPROACH 

In this section, we describe our significant 
contribution summarized via the functional 
architecture presented in Figure 3. 
 

 

Fig.3 Global Architecture of our Approach 

The above architecture is composed of 
three principal layers; the first one contains the 
column-oriented NoSQL database HBase, which is 
considered a data source of our system, alimented 
from social media (Facebook and Twitter). The 
second layer presents the main interfering actors 
that select useful and pertinent data according to the 
decision purpose to send it to the third layer 
comprising the ETL process that operates with the 
MapReduce paradigm as described in the 
subsection subsequently. 

 
4.1 Extraction phase 

The Extraction phase is the first significant 
step in the ETL process, aiming to prepare, clean, 
and convert selected data from the input sources. In 
our example, we collect input data from the most 
prominent and influential social media systems in 
the world: Twitter and Facebook. They provide us 
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with a vast source of knowledge discovery in 
various domains like decision making, marketing, 
needs creation strategies, and political domain. This 
immense data will be analyzed to select valuable 
analytics data to understand the users’ behavior, 
interests, opinions, needs, and satisfaction, based on 
their tweets, publications, comments, pages 
followed, etc. However, the processing of this 
massive data represents severe concerns and a 
challenging task for professional experts and 
decision-makers to extract valuable analytics they 
need. 

The input data initially formatted as a 
JavaScript Object Notation (JSON) file [8], which 
is a complex structure and cannot be considered as 
the best option to manipulate directly in the ETL 
process. Therefore, our idea consists of operating 
on this JSON file that contains data itself and the 
metadata of our Data Warehouse (DW), then focus 
on preparing the multidimensional schema using a 
parallel processing technique called MapReduce 
(MR) to enhance time consumption and minimize 
the overload of data treatment and integration by 
adding parallelize aspects to ETL processes. 
However, many related works neglect entirely to 
explain the implementation of MapReduce on their 
solutions, not even providing a realistic MR 
paradigm concept, which generates discrepancies in 
their results and presents a leak of information. 
Taking into consideration the above facts, we 
decide to demonstrate our proposed step-by-step 
algorithms, and we start the two key steps, Splitting 
and converting massive data sets into a column-
oriented structure. 

 
 

 Step 1: Splitting procedure 
The splitting procedure presented in 

Algorithm 1 is the first step in the MR paradigm, in 
which we manipulate efficiently the input data 
represented as a tree of simple and complex objects 
in JSON format. We split it horizontally according 
to our DW metadata global structure by grouping 
the parsed JSON objects Oi that match the same 
axes of analysis Dimension (Di), or Fact (F) in one 
sub JSON file. Hence the output of this procedure 
is a list L1 that contains a set of sub JSON files 
built previously and represented as <Key1, Value1> 
in list L1, while Key1 represents their labels that 
corresponds to a specific Dimension (Di) or a Fact 
(F), and Value1 represent the corresponding nested 
elements. 

 
Algorithm 1: Splitting algorithm

1: Input: JSON file, DW XML Metadata 

2: Output: List L1<Key1, Value1> 
3: Begin 
4: M ← ParseXMLMetadata(metadata.xml) 
5: D ← ExtractDimensions(M) 
6: F ← ExtractFacts(M) 
7: J ← ParseJsonFile(Input.json) 
8: ElmObjects ← ExtractElementaryObjects(J) 
9: Foreach ElmObj in ElmObjects Do 
10: Foreach D and F Do 
11: If ((ElmObj in D) OR (ElmObj in F)) Then 
12: Key1 ← getLabel(ElmObj) 
13: Value1← getNestedValue (ElmObj) 
14: End If 
15: End Foreach 
16: End Foreach 
17: Return L1 
18: End Algorithm  

 
 Step 2: Converting procedure 

The conversion procedure triggered once 
the Splitting process finished successfully and 
consisted of converting each specific object-
oriented Oi (sub-JSON files in previous L1 list) 
into a column-oriented table represented as a 
unique Column Family (CF). The Algorithm 2 
illustrates the fact that each job j executes one Map 
function that operates itself on a specific object Oi 
expressed as {Key1, Value1} = {Oi.label, 
Oi.nestedElements}. In fact, the procedure will 
extract the complete set of attributes and values of 
each elementary object Oi and construct the output 
list L2, as mentioned below:  

 
 Key2: receives the different combinations of 

attributes for each object Oi. 
 

 Value2: receives the corresponding key2’s 
values list for each instance of Key2. 

 
In the last part of our Algorithm 2 we 

index the list L2 to define a targeted column-
oriented table (CF-Table) that will receives data 
stored in the L2 list (i.e. each instance of L2 list 
correspond of Di or F representing the Column 
family label CF). 
 

Algorithm 2: Mapping algorithm 
1: Input: Key1(JsonLabel), Value1(Nested 
elements) 
2: Output: list L2<Key2, List Value2 > 
3: Variables: List Children, K, V, ElmtObjects 
4: String k, v, ElmObject, Child 
5: Begin 
6: ElmtObjects ←ExtractElmryJsonObj(value1) 
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7: Foreach ElmObject in ElmtObjects Do  
8: Children ← ElmtObject.getChildren() 
9: Foreach Child in Children Do 
10: k ← Child.getAttribute() 
11: v ←Child.getValue() 
12: K.add(k) 
13: V.add(v) 
14: End Foreach 
15: If K in Key2 Then 
16: getKey2(K).getValue().add(V) 
17: Else 
18: Key2.add(K) 
19: Value2.add(V) 
20: End If 
21: End Foreach 
22: Indexing L2 with Key1  
(corresponds to targeted Di or F) 
23: Return indexed L2 
24: End Algorithm 

 
The last step we have currently consists to 

build the column-oriented tables CF-Tables from 
data produced previously by Map functions 
(L2<Key2, Value2> instances) to populate them 
with the relevant list according to its indexation.  

This process is considered as the principal 
phase in the current step (conversion operation), 
and it is realized via the Reduce functions specified 
in Algorithm 3, based on a set of conversion rules 
mentioned below which summarize the 
correspondence between each object Oi in data (L2) 
and the targeted CF-Tables: 
 Rule 1: Each instance of List L2 will be 

converted to CF label of CF-Table (IndexL2 = 
LabelCF) 

 Rule 2: For each instance of L2: 
 Key2 = CF-Table Columns.  
 Value2= CF-Table Columns Values.  

 
Algorithm 3: Reducing algorithm 

1: Input: list L2<Key2, list Value2> 
2: Output: Column-Oriented table (CF-Table)  
3: Begin 
4: Index ← L2.getIndex() 
5:  CF-Table.setCFLabel(Index) 
6:  Foreach L2 Do 
7: If (CF-Table.getColumns().isEmpty() = 
True) Then 
8: CF-Table.addColumns(Key2) 
9: CF-Table.addCorrespValues(Value2) 
10: Else 
11: DiffColumns ← SelectDiffCol 
                          (Key2, CF-Table.getColumn()) 
12: CF-Table.addCol(DiffColumns) 

13: CF-Table.addValue(Value2).ON(Key2) 
14: End If 
15: End Foreach 
16: Return CF-Table 
17: End Algorithm 

 
4.2 Transformation phase: 

The transformation stage arrives after a 
successful extraction operation. It consists of 
handling the extracted data by applying several 
simple and complex operations such as Select, Join, 
Project and Union. These operations are classified 
as two different operation families, named 'Unary 
operation' that includes Select and Project 
operations. At the same time, the second type called 
the 'Complementary operation' that includes Union 
and Join operations. Both types of above operations 
will process a large amount of data. They will 
waste considerable time and effort with classical 
ETL logic, which motivated us to implement the 
MapReduce paradigm at this stage. The same 
served us remarkably minimizing the processing 
time, thanks to the parallelism aspects that support 
several processors to handle input data as divided 
tasks simultaneously, besides the scalability and 
fault tolerance offered by this paradigm. 

In our approach, we adopt the 
transformation phase to use the Map and Reduce 
functions, which we applied primarily on a Select 
operation as it is the most known, used, and 
common query that allows us to select data as one 
or many columns from Column-oriented structures. 
The Select operation basic syntax is as follows: σ 
(p)CF, where p represents the selection condition or 
predicate, and CF represents the different tuples we 
have in the column families. However, the p can 
also contain a restriction of data if we combine it 
with a Where clause, eventually the result of a 
Select statement will be a set of records from the 
provided CF. 

The Project operation still also the same as 
a Select operation from a technical point of view, 
and it is represented as π(Col1, Col2), where Col1, 
and Col2 are the name of columns to be selected 
from the concerned column families. 

Using ETL was never limited to execute 
Select and Project operations at the transformation 
stage. The requirement is more complicated than 
usual when it comes to aggregate data and apply 
different filters to produce more explicit and 
adaptable reports and insights. This reason has 
motivated us in this article to focus more on Join's 
operation due to its essential use on large datasets. 
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Algorithm 4: Transformation Phase 
1: Input: List L3<CF-Table> 
2: Output: J-Table (Joined table) 
3: Begin 
4: Q ← Parsing Query  
5: list CF-Table ← getProjectedCF(L3) 
6: list RC ← getRequestedColomns(Q) 
7: list JoinConditions ← getJoinCond(Q) 
8: Call MapProjection(CF-Tables,RC) 
9: Call ReduceJoin(projected-Table1, projected-
Table2, JoinConditions) 
10: Return J-Tables 
11: End Algorithm 

 
The Algorithm below is responsible for 

performing the Map function, in which the system 
will take each Column family table (CF-Tables) as 
input, including the list of the requested columns 
(RC) that needs to be selected or projected. Then 
we will glance through each CF-Table searching for 
the RC to construct our final Key/Value List (L4) 
whenever a correspondence between the RC and 
the CF-Table is founded.    

 
Algorithm 5: Mapping Function 

1: Input: CF-Table, List RC 
2: Output: List L4<Key4, List Value4> 
5: Begin 
6: For k ← 1 to RC.size() Do  
7: For  j ← 1 to M Do //M represent the 
number of columns in the CF-table  
8: If (RC[k] = CF-Table[1,j] ) Then 
9: Key4 ← RC[k] 
10: For i ← 1 to N Do //N represents the 
number of lines in each CF-Table 
11: Value4.add(CF-Table[i,j]) 
12: End For 
13: Break  
14: End If 
15: End For 
16: End For 
17: Return L4 
18: End Algorithm 

 
The second part refers to the Algorithm 6 

of Reducing function, in which the system will take 
at least two Lists (L4-1 & L4-2) generated after the 
Map functions and browse all of them searching for 
the Joined condition in common above two Lists 
from the input join conditions parsed previously 
during the Algorithm 5. Then a Merge operation 
will be executed in order to Join the Input Lists 
(L4-1, L4-2) based on the Join condition.  
 

Algorithm 6: Reducing Function 
1: Input: List L4-1, L4-2, JoinConditions 
2: Output: List L5<Key5, List Values5> 
3: Begin 
4: List L4-1-Keys ← L4-1.getKeys() 
5: List L4-2-Keys ← L4-2.getKeys() 
6: JoinCondition ← 
FilterCondition(JoinConditions).ON(L4-1.Keys, 
L4-2.Keys) 
7: L5 ←  
              Merge (L4-1, L4-2).ON(JoinCondition) 
8: Return L5 
9: End Algorithm 

 
5. ILLUSTRATED EXAMPLE  

In the below section, we are presenting an 
example that will help clearly understand our 
approach. We consider integrating Facebook Posts 
into our targeted data warehouse. Each Facebook 
Post is generated as a JSON file and subdivided 
into several sub JSON files (User.Json, Post.json, 
Location.json...etc) using the Splitting function 
presented previously in Algorithm 1.  

Each Map function illustrated in 
Algorithm 2 will operate on a single sub JSON file, 
which is represented as <Key1, Value1> where 
Key1 is the name of the sub JSON file that 
corresponds to a dimension (Di) or fact (F), while 
Value1 represents the content of the sub Json file as 
presented in the Figure 4 (User.json file), and 
Figure 5 (Facebook Post.json).  

 

 

Fig.4 Description of User.json file 
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Fig.5 Description of Post.json file 

Each Json file from the above example 
will be processed using Map function to construct 
L2-1 and L2-2 lists organized as <Key2, list 
Value2> presented in Table 2 and Table 3.  

Table 2: User L2-1<Key2, list Value2> 

Key2 List Value2 

{id, age, 
first_name, 
last_name, 

gender, email} 

{"1",30,"Abdeljalil", "Boumlik", 
"male", 

"boumlik.abdeljalil@gmail.com"} 
{"2",28,"Nassima", "Soussi", 

"female", 
"nassima.soussi@gmail.com"} 

{id, 
first_name, 
last_name, 

gender, email, 
location} 

{"3", 
"Mohamed", "Bahaj", "male", 
"mohamedbahaj@gmail.com", 

"settat"} 

Table 3: Post L2-2<Key2, list Value2> 

Key2 List Value2 

{id_post, 
date_create, 

user_create_i
d, link, 

Post_text, 
Location  

} 

{"1", "20/06/2020", "1", 
"https://web.facebook.com/id_post=1id
=1", "Our new paper related to ETL and 

Big Data","Casablanca"} 

{"2","21/06/2020", "2", 
"https://web.facebook.com/id_post=2id

=2", " New post on Facebook about 
ETL and Big data","Khouribga"} 

{"3","22/06/2020", "3", 
"https://web.facebook.com/id_post=3id
=3", "New chalenge for ETL and Big 

Data","Settat"} 

 
Once the Map functions complete the 

construction process of L2-1 and L2-2…etc., the 
Reduce function will be triggered automatically to 
convert these later into CF-Tables (User CF-Table, 
Post CF-Table) taking into account the 

multidimensional concept. Table 4 shows the 
example of User CF-Table.  

Table 4: User CF-Table 

User-Table 
Id 1 2 3 

Age 30 28  

First_name Abdeljalil Nassima Mohamed 

Last_name Boumlik Soussi Bahaj 

Gender Male Female Male 

E-mail 
boumlik.abd

eljalil@ 
gmail.com 

nassima.so
ussi@ 

gmail.com 

mohamed
bahaj@gm

ail 
.com 

Location   Settat 

 
In the current state, we finish the 

extraction phase by producing the final CF-Tables, 
then we continue with our second processing phase 
which is Transformation phase presented 
previously with Algorithm 4. 

The first step consists to prepare the 
Joined tables with requested columns (RC) based 
on the Map Function presented in Algorithm 5.  

In our case, we used the Select/Project 
operations treated on the Map functions in order to 
retrieve specific attributes related to any Facebook 
Post published by a given User Id. After that, the 
Reduce functions presented in Algorithm 6 will 
take as input the last generated tables (User CF-
Table, Post CF-Table) in order to execute the Join 
operation and retrieve the requested results as per 
Table 5.  

Table 5: Joined table 

id first_name post_id post_text 
date_ 
create 

1 Abdeljalil 1 

Our new 
paper 

related to 
ETL and 
Big Data 

20/06/
2020 

 

6. ANALYSIS AND DISCUSSION  

This paper presents a new approach in the 
context of big data warehousing by applying 
advanced technologies into the ETL process that is 
performed sequence and adds the parallelism aspect 
in all his operations as Extraction and 
Transformation to support scalability and especially 
to minimize time-consumption. However, and 
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based on the comparative studies and critical 
analysis carried out on the most recent approaches 
in Related works section, we have concluded that 
all existing approaches did not cover the 
partitioning and selecting data vertically according 
to a multidimensional structure, besides, they 
neglected the essential ETL operation. 

 In order to overcome the previous 
limitations, we have contributed with the current 
work in the improvement of ETL processing that 
needs serious attention to deal with the massive 
explosion of data to prepare and handle it into the 
DW. In fact, we readapt modeling ETL operations 
in the formal level of extraction and transformation 
phases to support the most used operations for 
treating and filtering data such as Select and Join 
with a specific focus on reducing side-join 
operation which was not treated before, while it’s 
one of the most important functionalities used for 
processing large data sets. Our contribution is very 
helpful for producing relevant information for 
decision-makers and online Business Intelligent 
applications based on the MapReduce paradigm 
considered as a powerful solution for parallel 
processing of massive data. 
 

7. CONCLUSION 

In this paper, we have proposed a smart 
ETL approach for building a Data Warehouse from 
Big Data sources like Twitter and Facebook, also to 
conserve the multidimensional structure of Data 
Warehouse via the vertical partitioning of selected 
data from HBase as a column-oriented database. In 
fact, we have integrated the MapReduce paradigm 
in our ETL process to guarantee parallel processing 
during the extraction phase and also in the 
transformation phase by joining multiple tables in a 
reduce side due to its high importance in processing 
large data sets. Also, we manage to handle the most 
important features of ETL, which are Select, 
Project and Join operations, that are used frequently 
to operate on separated tables and to aggregate their 
data to generate analytic reports and insights.  
              As future work, and regarding the 
transformation phase of our smart ETL, we intend 
to support more operations to deal with complex 
processes such as Aggregation, Union, and 
different types of Join which will be considered as a 
step that may be taken further. Also, consider the 
performance factor that needs to be permanently 
enhanced. We aim also to adapt our solution to take 
into consideration new domains like the internet of 
things (IoT) which deals with data received from 

various devices, also in the medical domain that 
maintains huge data and requires multiple analytics. 
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