
Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3449

SMART-ETL-MR: NOVEL ETL FRAMEWORK FOR
BUILDING DATA WAREHOUSE FROM BIG

DATA SOURCE USING MAPREDUCE

1ABDELJALIL BOUMLIK, 2NASSIMA SOUSSI, 3MOHAMED BAHAJ
1 & 3 University Hassan 1, Faculty of Sciences and Technology,

Department of mathematics and computer science, Morocco
2 National School of Applied Sciences, Sultan Moulay Slimane University, Khouribga, Morocco

E-mails: 1boumlik.abdeljalil@gmail.com, 2nassima.soussi@gmail.com, 3mohamedbahaj@gmail.com

ABSTRACT

The concept of Big Data created to face the massive explosion of data produced from web 2.0, smart
devices, sensors, social networks platforms like Facebook, Twitter, Instagram, LinkedIn, has increased
continuously. However, new challenges and opportunities appear due to the growth of data. Nevertheless,
several prominent organizations and companies have realized that data is valuable and offers competitive
advantages, great benefits, and relevant knowledge when it gets converted to actionable information they
can use. However, collecting these massive data is not enough, as we should be able to integrate and
analyze these data pulled from different heterogeneous sources after loading them to improve analysis
goals. This research article's primary objective is to adapt the ETL (extraction transformation-loading)
processes with the potential of Big Data technologies in order to deal with these new challenges from data
warehousing perspective and knowledge discovery that directly impacts business decision-making systems.
In this article, a new approach based called SMART-ETL-MR presented on the Map-Reduce paradigm to
expedite data handling and to build a well-organized data warehouse. Experimental results prove that the
ETL operation performs successfully with optimal algorithms.

Keywords: Big Data, ETL, HBase, Map Reduce, Data Warehouse, Facebook

1. INTRODUCTION

In the last decade, we have noticed an
explosion of data volume, due to the increased
number of connected users to the internet via smart
devices, social networks, communication systems,
and heads to multiplied the size of data 300 times
since 2005 till 2020. these above challenges create
significant limitations on data warehouse building,
exportation, processing, and knowledge discovery,
etc. thus, the concept of Big Data created to face
this continuous demand.

The Big Data concept refers to massive,
unstructured, heterogenous datasets that cannot be
handled by traditional relational database systems
to maintain, capture, and manipulate data. Hence
this explosion of data attains significant challenges
for multiple domains in terms of decision-making
systems, data mining, and knowledge discovery
activities. The Big data concept requires a specific
approach defined by the three V rules [18] that refer
to Volume, Variety, and Velocity. Volume
determines the amount of data generated in

different platforms, companies, or final users,
Variety involves the proliferation of heterogeneous
data, and Velocity defines the frequency of
generating, capturing, and sharing data.

To support this immense evolution of data
and improve analysis purposes, we need to consider
the essential elements of a data warehouse, called
Extract-Transform-Load (ETL), typically holding
up the 80% of the DW projects. The ETL process is
a set of multiple operations, such as an Extraction
operation covering all tasks to collect the required
data. In contrast, Transformation operation consists
of executing multiple series of procedures to
transform the extracted data into a standard format,
finally Loading operation that deals with the
transformation data and load them into our
Datawarehouse (DW). However, standard
operations are not suitable to deal with the massive
evolution of data anymore, same as the Relational
Database Management Systems (RDBMS)that are
not fitting for distributed databases.

For the above limitation purpose, the ETL
process needs serious attention to be improved to

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3450

deal with the massive explosion of data to prepare
and handle it into the DW. Certain technologies
have appeared with the emergence of Big data
fields, focusing on data management such as Map-
Reduce, which can deal with massive amounts of
data, NoSQL databases [20] that can store
unstructured data on column-oriented databases or
document-oriented databases format such as
MongoDB.

In this work, we present a new approach
called SMART-ETL-MR that applies new breeds of
big data technologies to supports scalability and
performance into the Extraction and
Transformation phases of integration processes like
ETL. Within this context, the improvement and
adaptation of ETL starts with data processing itself,
in which we integrate the parallelism processing
aspect by using the MapReduce paradigm for
handling unstructured data to widely minimize
time-consumption during this stage. In addition, the
HBase database is considered in our approach as a
NoSQL column-oriented data store to support
complex data instead of classical Relational
database or plat files (CSV, XML, etc.) that cannot
deal with a massive amount of data. Moreover, The
primary goal of this research is to readapt modeling
ETL operations in the formal level of extraction
and transformation phases and the retaining the
specificities of the multidimensional structure of
DW to support online analytical processing and
business intelligence application by supporting the
most-used operations for treating and filtering data
such as Select and Join.

The remainder of this paper arranged as
follows: Section II presents the most recent related
works with their case studies and highlights their
main limitations. Section III highlights the main
concepts used in the proposed solution, such as the
MapReduce paradigm, HBase database, and Data
warehousing. Section IV presents the functional
architecture of the conceived smart ETL with
detailed algorithms for each phase. Section V
illustrate a case study. Section VI represents an
analysis and discussion. Finally, section VIII
concludes our work and suggests some future
extensions of this topic.

2. RELATED WORKS

The data warehouses are encapsulated data
storage systems that allow a company or
organization to combine data from various
applications and sources into one single platform,
more especially designed for decision support
systems, data mining, and analytics reporting

activities. The ETL processes gained extensive
attention over the last ten years to bypass many
limitations that have improved and provide benefits
for data warehousing performance. In this section,
we present some existing studies that deal with data
integration and consider ETL modelling as an
efficient solution to achieve data warehousing
projects. Nevertheless, some challenges remain
unsolved always or worked around. They were
mainly related to the proposed algorithms, data
management, handling the unstructured data, etc.

In our context of Big Data Warehousing,
several approaches have been developed as part of
the analysis of this massive data via the generation
of OLAP Cube. The authors in [15] present, an
aggregation operator called C-cube that allows data
cubes to compute using column-oriented data
warehouses based on the invisible join principle.
Also, the work [13] describes how we can benefit
from cloud computing technologies to build OLAP
cubes by using Big Table and MapReduce to
deploy cubes in ad-hoc Data Marts. The
investigation in [14] refers to the OLAP query
processing over column-oriented databases using
the MapReduce framework. However, all the
previous approaches, including the work presented
in [12], use HBase as a very performed NoSQL
database to improve OLAP querying in the Big
Data Warehouse context, but they do not present
any consideration of data movement from HBase
that required an advanced ETL processing to be
adapted with the 5Vs of big data.

Previous works have shown the potential
and the advantages in time consumption during
extraction, filtering, and storing large sizes of data
such as P-ETL [16] and ETLMR [19], that they
employed parallelism strategies with CDC
functionality while integrating data. At the same
time, they ignore the multidimensional aspect,
which is a mandatory structure for further analysis
operation. Furthermore, some other studies deal
with functionalities and basic operations processing
such as Select, Project, etc. using MapReduce
paradigm in order to adapt classical SQL queries on
Bigdata contexts as we have seen with Jack Hare
Framework [17], Hadoop++ [21] and the detailed
study described in [22] that also ensure the
achievement of MapReduce with a set of entirely
known joins strategies. The above-presented
solutions are beneficial, but only for basic ETL
processes which are not yet able to face the
enormous amount of data.

Within the same context, the below
paragraphs describe specifically the most recent
paperwork’s published between 2016 till 2020 and

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3451

related to ETL approaches and highlighting their
advantages and limitations.

The paper [16] proposes a platform called
parallel-ETL, which is composed of five steps
(extraction, partitioning, transformation, reducing,
and loading), and this refers to the proposed ETL
architecture. The MapReduce job commences when
data sources entirely loaded via P-ETL in the
HDFS, and this option was able to accelerate the
ETL processing by 33%.

The paper [9] propose a novel approach
called BigDimETL that start loading data from a
JSON file into a CSV format, then distribute them
vertically by making a correspondence between
XML schema and data loaded, Aldo during
transformation phase they only covered the
essential operation of ETL such as Select that used
to filter data.

In the same context, the author of paper
[11] provides multiple parallelization and
distribution of data based on each part of the ETL
treatment phase (ETL processes, ETL
functionalities, ETL elementary functionalities)
taking into consideration the horizontal and vertical
distribution.

The authors of work [6] and 2020[X]was
enhancing his previous approach and covered the
cases ignored in his first paperwork like, during the
extraction phase, they transform JSON files directly
to HBase and group them to column families after a
partitioning process. From the other side, the same
authors cover correctly more advanced ETL
operations such as Select, project, and join
operations using a shared key. Also, he creates
temporary storage called DSA (Data Storage Area)
to help execute the above operations as quickly as
possible.

This article [7] suggests an architecture
based on three levels representing the workflow of
extensible ETL that deal with Big data challenges.
These include the first layer called workflow
designer how is communicating directly with the
intermediate extensible layer which is also
composed of four elements UDFs, Recommender
component, a cost model, and a Monitoring agent.
the primary goal of this work consisted of
executing the load in a parallel manner to enhance
the performance.

In article [2] proposes a novel approach
called D_ELT, in which transformation of data was
not taken into consideration, while the approach
consists of using data already loaded on Hadoop
initially. However, they tried to use a single
MapReduce algorithm to handle in parallel
transformation and analysis phases to use the

analyzed data once transformed immediately.
Nevertheless, this approach will not be efficient in
handling massive data as they are transforming data
before it finishes loading, and this will have a
negative impact in the case of massive data.

The paperwork [4] proposed an
architecture based on cloud, in which the extraction
and transformation phases executed in demand with
Spark. This option offers advanced and
sophisticated algorithms for ETL to use, such as
aggregation operations and heuristic algorithms that
share results to the HDFS.

In brief, we believe that the current
research works shared some similarities with ours
since they are interested in building a data
warehouse based on the ETL process. However, the
below Table 1 present in detail that most
approaches deal with basic operations using the
multidimensional structure, but they did not address
the Big Data context. Others handled data context
and neglected the essential ETL operation. Also,
the partitioning, operations processing of ETL
ignored from multiple approaches. The below table
illustrates the most recent papers, and if they cover
the essential ETL operations.

Table 1: ETL operation covered in recent papers

Paper Benefits Limitations
[9] The parallelism

aspect was
integrated using
MapReduce, which
was a benefit.

Reduce the
partitioning
process using
direct indexation.

The approach was
limited as it treats
only the Select
operation.

The Loading phase
was not detailed.

[10] The proposed
approach sounds
good from a
performance
perspective,
especially during
Join operation.

The same approach
can be adapted for
addition operation
such as union, and
aggregation.

In this paper, the
author ignores the
ETL functionalities
completely.

The author also did
not provide any
algorithm related to
the MapReduce
process.

 [6] The author
proposes an
innovative that
execute in parallel
both
transformation and
analysis.

They are not truly
designed to support
the context of Big
data.

The approach does
not make any

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3452

cleanup of data
before loading,
which implies that
many useless data
will be loaded.

[1] The author uses the
advanced features
provided by on-
demand Spark
during the
extraction and
transformation
phases.

we have seen an
approach that
combines Big data
technologies with
traditional
technologies

The authors did not
apply their approach
to reel cases to
demonstrate the
efficiency of the
solution.

[2] The authors of this
paperwork present
a useful automated
approach that will
help developers to
optimize ETL
tasks.

The authors of the
work ignore or
neglect to present the
phases clearly, and
leaving it in the
abstract world only,
which lead to
confusion and
uncertainty

[3] The MapReduce
operation
commences once
data get loaded on
the HDFS via the
P-ETL. Hence, we
gain time
consumption
during load and
analysis at the
same time.

Whenever the
analysis operation
gets repeated the
time consumption
will be impacted
negatively (103
seconds each time)

the absence of
transformation
before loading
causes a problem of
storage of large
amounts of data
which may not be
valid, because the
transformation task
is associated each
time with an analysis
task is executed, this
stored data is read
repeatedly, which
leads to unnecessary
input/output.

[4],[5] The author treats
the ETL
functionalities
uniquely and
neglects all
additional features
provided by the
ETL.

The proposed
approach based on
Cloud, and the was
limited to the use of
Spark and Amazon
AWS; hence he
creates a limitation
to other users

In fact, these previous studies are very
interesting in terms of data warehousing. Although,
these researches share some similarities with our
solution presented in this paper, however the
partitioning and selecting data vertically according
to a multidimensional structure was not covered,
also we focused more on reducing side-join
operations which was not treated before, while it’s
one of the most important functionalities used
during for processing large data sets.

As a conclusion, the goal of this paper is to
reduce as much as possible the cost of Data
warehouse implementation and produce relevant
information for decision-makers and online
Business Intelligent applications based on
MapReduce paradigm that proves as a powerful
solution for parallel processing of massive data.
Indeed, the paper provides a functional architecture
describing the different steps adopted by our
approach to building a data warehouse from a
column-oriented NoSQL database like HBase to
improve OLAP querying in the data warehouse and
improve the extraction and the transformation
phases according to the multidimensional structure.

3. BACKGROUND

In this section, we introduce the main
concepts used by our solution presented in Figure 1,
that describes the proposed smart ETL process,
including the MapReduce paradigm, to build a data
warehouse from Twitter and Facebook as a case
study based on the distributed storage HBase [6] as
a NoSQL Column Oriented database [3].

3.1 HBase: NoSQL Column Oriented Database

First, The Column Oriented Database has
a structure dedicated to accommodating many
columns (up to several million) for each line. It
characterized by a variable number of columns that
can change from one row to another (we can
consider that a column exists if it contains a value).
At first blush, the Column-Oriented Database looks
remarkably like a relational database, but the
concept is entirely different.

The model of column-oriented database, as
illustrated in Figure 1, is composed of a set of
tables S = {T1, T2, …, Tz}; each table contains in
its turn a set of rows Tk = {R1, R2, ..., Rn} with k
∈ [1, z]. Each row can be represented as Ri = (IDi,
(CFi1, CFi2…, CFim)) with i∈ [1, n], IDi is a row
id and CFij is a column family j ∈ [1, m] of the row
Ri. Each column family can contain numerous
columns that have the same categories of attributes
which also called Column Qualifier, so a column

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3453

family CFij={CQ ij1, CQ ij2, …, CQijp} = {(Cij1,
vij1), (Cij2, vij2), …, (Cijp, vijp)}.

Fig. 1. Metamodel Of Column-Oriented Stores

In this approach, we have opted for HBase
as a NoSQL column-oriented database used by the
two famous social media systems: Facebook and
twitter, representing the inputs of our system to
build the targeted Data Warehouse. HBase has
several advantages, such as it is high performed to
improve OLAP querying in the Data Warehouse
context through the multidimensional structure [9].
Besides, it characterized by high processing speed;
In fact, operations such as data reading and
processing will take a small amount of time as
compared to traditional relational models.
Therefore, the previous advantages will contribute
to ensuring the proper functioning of our smart
ETL.
3.2 Data warehouse

The Business Intelligence (BI) defined as a
technological process that analyzes data in order to
extract useful business information exploitable by
leaders, managers, and other users, enabling them
to make better decisions. These analytical details
stored into a specific database named Data
Warehouse (DW) dedicated to decision support.

The multidimensional structure of a DW
defined as a star schema (S) inter-connected
forming the basic structure named constellation C =
{S1, S2,…, Sn}. The star schema is composed of
three major elements: Fact (F) represented as a
table of analysis subject (such as sale, stock …),
Dimensions (D) linked to Facts in order to define
the axes of analysis (such as customer, product,
geography) and a Star Function (StarFct) that
associates each Fact Fi∈F to a set of Dimensions.
Thus, the formal structure of star schema is defined
as follow: S = {F, D, StarFct} where F = {F1, F2,
…, Fm} and D ={D1,D2, …, Dp}.

Each dimension denoted Di∈D with i∈[1,
p], is defined by Di = {Dn, Dattr}, where Dn is the
dimension name, and Dattr is a set of dimension
attributes Dattr={att1,att2,…,attK} that define the
level of the detail of our analysis. Each Fact
denoted Fj∈F with j∈[1, m], is defined as Fj = {Fn,
Fm} where Fn is the fact name and Fm is a set of
measures related to Dimensions through foreign

key Fm = {m1, m2, …, mY} where my = {Mn, Mt,
Mf} with y ∈ [1, Y], Mn is the measure name, Mt is
the measure type, and Mf is a set of aggregation
functions such as AVG, MAX, MIN, and others.
The metamodel in the Figure 2 illustrate the
multidimensional conceptual structure of a Data
Warehouse.

Fig. 2 Metamodel of Multidimensional Structure of DW
The regular loading of data into a Data

Warehouse is ensured by ETL (Extract Transform
Load); the same is a special process dedicated to
managing all stages of data collection and
preparation according to three principal phases:
 Extract: responsible for accessing

heterogeneous data sources (NoSQL, triple
stores, ERP...) to retrieve data, and convert it
into one consolidated data warehouse format
which is ready for transformation processing.

 Transform: to ensure better exploitation of
extracted data, this phase al-lows verifying,
reformatting, cleaning up, filtering and giving
special treatment to missing data. Then it
proceeds to apply the necessary aggregations
that fuse several data to obtain a single usable
and exploitable information (average, sum).

 Load: consist of inserting the data processed in
the Data Warehouse to put them at the disposal
of different tools of analysis and presentation
such as Data Mining, OLAP multi-dimensional
analysis, geographic analysis, decision-making,
and others reporting and of course the
dashboards.

3.3 MapReduce Paradigm
MapReduce is a programming model for

parallel and distributed processing of massive data
sets. It runs in parallel on several large clusters to

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3454

distribute data and collect the required results. The
MapReduce program is composed of the following
three main functions:
 Map: takes as input a Dataset in order to split

them into a smaller sub dataset, and then it
carries out the required treatment on each Sub-
Dataset in parallel. The output of this method is
presented as a set of {key, value} pairs in
which the same key can be repeated. The
signature of the Map function is defined as
below:
o Map(key-in,Val-in) = {(key1, value1),

(key2, value2), …, (key-n, value-n)}
 Shuffle: defined as the intermediate step

between Map and Reduce functions. It operates
on the outputs resulted from the different
executions of Map function in order to group
all {key, value} pairs having the same keys and
return them as a sorted list of each key
associated with their set of values. The
signature of the Shuffle function presented as
follow:
o Shuffle((key1, value1), …, (key-n, value-

n)) = {(key1, {value1, …, value-p}), …,
(key-m, {value1, …, value-b})} with [1,
p] ∪ … ∪ [1, b] = [1, n] and [1, m] ⊂ [1,
n]

 Reduce: is the last step in MapReduce process,
in which we reduce the previously sorted list,
generated as output from the Shuffle function,
into a smaller set of values sharing the same
key as defined in its signature bel-low:

o Reduce ((key1, {value1, …, value-p}), …,
(key-m, {value-1, …, value-b})) = {(key-1,
value-out_1), (key-2, value-out_2), …, (key-
m, value-out_m)}

4. THE PROPOSED APPROACH

In this section, we describe our significant
contribution summarized via the functional
architecture presented in Figure 3.

Fig.3 Global Architecture of our Approach

The above architecture is composed of
three principal layers; the first one contains the
column-oriented NoSQL database HBase, which is
considered a data source of our system, alimented
from social media (Facebook and Twitter). The
second layer presents the main interfering actors
that select useful and pertinent data according to the
decision purpose to send it to the third layer
comprising the ETL process that operates with the
MapReduce paradigm as described in the
subsection subsequently.

4.1 Extraction phase

The Extraction phase is the first significant
step in the ETL process, aiming to prepare, clean,
and convert selected data from the input sources. In
our example, we collect input data from the most
prominent and influential social media systems in
the world: Twitter and Facebook. They provide us

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3455

with a vast source of knowledge discovery in
various domains like decision making, marketing,
needs creation strategies, and political domain. This
immense data will be analyzed to select valuable
analytics data to understand the users’ behavior,
interests, opinions, needs, and satisfaction, based on
their tweets, publications, comments, pages
followed, etc. However, the processing of this
massive data represents severe concerns and a
challenging task for professional experts and
decision-makers to extract valuable analytics they
need.

The input data initially formatted as a
JavaScript Object Notation (JSON) file [8], which
is a complex structure and cannot be considered as
the best option to manipulate directly in the ETL
process. Therefore, our idea consists of operating
on this JSON file that contains data itself and the
metadata of our Data Warehouse (DW), then focus
on preparing the multidimensional schema using a
parallel processing technique called MapReduce
(MR) to enhance time consumption and minimize
the overload of data treatment and integration by
adding parallelize aspects to ETL processes.
However, many related works neglect entirely to
explain the implementation of MapReduce on their
solutions, not even providing a realistic MR
paradigm concept, which generates discrepancies in
their results and presents a leak of information.
Taking into consideration the above facts, we
decide to demonstrate our proposed step-by-step
algorithms, and we start the two key steps, Splitting
and converting massive data sets into a column-
oriented structure.

 Step 1: Splitting procedure
The splitting procedure presented in

Algorithm 1 is the first step in the MR paradigm, in
which we manipulate efficiently the input data
represented as a tree of simple and complex objects
in JSON format. We split it horizontally according
to our DW metadata global structure by grouping
the parsed JSON objects Oi that match the same
axes of analysis Dimension (Di), or Fact (F) in one
sub JSON file. Hence the output of this procedure
is a list L1 that contains a set of sub JSON files
built previously and represented as <Key1, Value1>
in list L1, while Key1 represents their labels that
corresponds to a specific Dimension (Di) or a Fact
(F), and Value1 represent the corresponding nested
elements.

Algorithm 1: Splitting algorithm

1: Input: JSON file, DW XML Metadata

2: Output: List L1<Key1, Value1>
3: Begin
4: M ← ParseXMLMetadata(metadata.xml)
5: D ← ExtractDimensions(M)
6: F ← ExtractFacts(M)
7: J ← ParseJsonFile(Input.json)
8: ElmObjects ← ExtractElementaryObjects(J)
9: Foreach ElmObj in ElmObjects Do
10: Foreach D and F Do
11: If ((ElmObj in D) OR (ElmObj in F)) Then
12: Key1 ← getLabel(ElmObj)
13: Value1← getNestedValue (ElmObj)
14: End If
15: End Foreach
16: End Foreach
17: Return L1
18: End Algorithm

 Step 2: Converting procedure

The conversion procedure triggered once
the Splitting process finished successfully and
consisted of converting each specific object-
oriented Oi (sub-JSON files in previous L1 list)
into a column-oriented table represented as a
unique Column Family (CF). The Algorithm 2
illustrates the fact that each job j executes one Map
function that operates itself on a specific object Oi
expressed as {Key1, Value1} = {Oi.label,
Oi.nestedElements}. In fact, the procedure will
extract the complete set of attributes and values of
each elementary object Oi and construct the output
list L2, as mentioned below:

 Key2: receives the different combinations of

attributes for each object Oi.

 Value2: receives the corresponding key2’s
values list for each instance of Key2.

In the last part of our Algorithm 2 we

index the list L2 to define a targeted column-
oriented table (CF-Table) that will receives data
stored in the L2 list (i.e. each instance of L2 list
correspond of Di or F representing the Column
family label CF).

Algorithm 2: Mapping algorithm
1: Input: Key1(JsonLabel), Value1(Nested
elements)
2: Output: list L2<Key2, List Value2 >
3: Variables: List Children, K, V, ElmtObjects
4: String k, v, ElmObject, Child
5: Begin
6: ElmtObjects ←ExtractElmryJsonObj(value1)

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3456

7: Foreach ElmObject in ElmtObjects Do
8: Children ← ElmtObject.getChildren()
9: Foreach Child in Children Do
10: k ← Child.getAttribute()
11: v ←Child.getValue()
12: K.add(k)
13: V.add(v)
14: End Foreach
15: If K in Key2 Then
16: getKey2(K).getValue().add(V)
17: Else
18: Key2.add(K)
19: Value2.add(V)
20: End If
21: End Foreach
22: Indexing L2 with Key1
(corresponds to targeted Di or F)
23: Return indexed L2
24: End Algorithm

The last step we have currently consists to

build the column-oriented tables CF-Tables from
data produced previously by Map functions
(L2<Key2, Value2> instances) to populate them
with the relevant list according to its indexation.

This process is considered as the principal
phase in the current step (conversion operation),
and it is realized via the Reduce functions specified
in Algorithm 3, based on a set of conversion rules
mentioned below which summarize the
correspondence between each object Oi in data (L2)
and the targeted CF-Tables:
 Rule 1: Each instance of List L2 will be

converted to CF label of CF-Table (IndexL2 =
LabelCF)

 Rule 2: For each instance of L2:
 Key2 = CF-Table Columns.
 Value2= CF-Table Columns Values.

Algorithm 3: Reducing algorithm

1: Input: list L2<Key2, list Value2>
2: Output: Column-Oriented table (CF-Table)
3: Begin
4: Index ← L2.getIndex()
5: CF-Table.setCFLabel(Index)
6: Foreach L2 Do
7: If (CF-Table.getColumns().isEmpty() =
True) Then
8: CF-Table.addColumns(Key2)
9: CF-Table.addCorrespValues(Value2)
10: Else
11: DiffColumns ← SelectDiffCol
 (Key2, CF-Table.getColumn())
12: CF-Table.addCol(DiffColumns)

13: CF-Table.addValue(Value2).ON(Key2)
14: End If
15: End Foreach
16: Return CF-Table
17: End Algorithm

4.2 Transformation phase:

The transformation stage arrives after a
successful extraction operation. It consists of
handling the extracted data by applying several
simple and complex operations such as Select, Join,
Project and Union. These operations are classified
as two different operation families, named 'Unary
operation' that includes Select and Project
operations. At the same time, the second type called
the 'Complementary operation' that includes Union
and Join operations. Both types of above operations
will process a large amount of data. They will
waste considerable time and effort with classical
ETL logic, which motivated us to implement the
MapReduce paradigm at this stage. The same
served us remarkably minimizing the processing
time, thanks to the parallelism aspects that support
several processors to handle input data as divided
tasks simultaneously, besides the scalability and
fault tolerance offered by this paradigm.

In our approach, we adopt the
transformation phase to use the Map and Reduce
functions, which we applied primarily on a Select
operation as it is the most known, used, and
common query that allows us to select data as one
or many columns from Column-oriented structures.
The Select operation basic syntax is as follows: σ
(p)CF, where p represents the selection condition or
predicate, and CF represents the different tuples we
have in the column families. However, the p can
also contain a restriction of data if we combine it
with a Where clause, eventually the result of a
Select statement will be a set of records from the
provided CF.

The Project operation still also the same as
a Select operation from a technical point of view,
and it is represented as π(Col1, Col2), where Col1,
and Col2 are the name of columns to be selected
from the concerned column families.

Using ETL was never limited to execute
Select and Project operations at the transformation
stage. The requirement is more complicated than
usual when it comes to aggregate data and apply
different filters to produce more explicit and
adaptable reports and insights. This reason has
motivated us in this article to focus more on Join's
operation due to its essential use on large datasets.

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3457

Algorithm 4: Transformation Phase
1: Input: List L3<CF-Table>
2: Output: J-Table (Joined table)
3: Begin
4: Q ← Parsing Query
5: list CF-Table ← getProjectedCF(L3)
6: list RC ← getRequestedColomns(Q)
7: list JoinConditions ← getJoinCond(Q)
8: Call MapProjection(CF-Tables,RC)
9: Call ReduceJoin(projected-Table1, projected-
Table2, JoinConditions)
10: Return J-Tables
11: End Algorithm

The Algorithm below is responsible for

performing the Map function, in which the system
will take each Column family table (CF-Tables) as
input, including the list of the requested columns
(RC) that needs to be selected or projected. Then
we will glance through each CF-Table searching for
the RC to construct our final Key/Value List (L4)
whenever a correspondence between the RC and
the CF-Table is founded.

Algorithm 5: Mapping Function

1: Input: CF-Table, List RC
2: Output: List L4<Key4, List Value4>
5: Begin
6: For k ← 1 to RC.size() Do
7: For j ← 1 to M Do //M represent the
number of columns in the CF-table
8: If (RC[k] = CF-Table[1,j]) Then
9: Key4 ← RC[k]
10: For i ← 1 to N Do //N represents the
number of lines in each CF-Table
11: Value4.add(CF-Table[i,j])
12: End For
13: Break
14: End If
15: End For
16: End For
17: Return L4
18: End Algorithm

The second part refers to the Algorithm 6

of Reducing function, in which the system will take
at least two Lists (L4-1 & L4-2) generated after the
Map functions and browse all of them searching for
the Joined condition in common above two Lists
from the input join conditions parsed previously
during the Algorithm 5. Then a Merge operation
will be executed in order to Join the Input Lists
(L4-1, L4-2) based on the Join condition.

Algorithm 6: Reducing Function
1: Input: List L4-1, L4-2, JoinConditions
2: Output: List L5<Key5, List Values5>
3: Begin
4: List L4-1-Keys ← L4-1.getKeys()
5: List L4-2-Keys ← L4-2.getKeys()
6: JoinCondition ←
FilterCondition(JoinConditions).ON(L4-1.Keys,
L4-2.Keys)
7: L5 ←
 Merge (L4-1, L4-2).ON(JoinCondition)
8: Return L5
9: End Algorithm

5. ILLUSTRATED EXAMPLE

In the below section, we are presenting an
example that will help clearly understand our
approach. We consider integrating Facebook Posts
into our targeted data warehouse. Each Facebook
Post is generated as a JSON file and subdivided
into several sub JSON files (User.Json, Post.json,
Location.json...etc) using the Splitting function
presented previously in Algorithm 1.

Each Map function illustrated in
Algorithm 2 will operate on a single sub JSON file,
which is represented as <Key1, Value1> where
Key1 is the name of the sub JSON file that
corresponds to a dimension (Di) or fact (F), while
Value1 represents the content of the sub Json file as
presented in the Figure 4 (User.json file), and
Figure 5 (Facebook Post.json).

Fig.4 Description of User.json file

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3458

Fig.5 Description of Post.json file

Each Json file from the above example
will be processed using Map function to construct
L2-1 and L2-2 lists organized as <Key2, list
Value2> presented in Table 2 and Table 3.

Table 2: User L2-1<Key2, list Value2>

Key2 List Value2

{id, age,
first_name,
last_name,

gender, email}

{"1",30,"Abdeljalil", "Boumlik",
"male",

"boumlik.abdeljalil@gmail.com"}
{"2",28,"Nassima", "Soussi",

"female",
"nassima.soussi@gmail.com"}

{id,
first_name,
last_name,

gender, email,
location}

{"3",
"Mohamed", "Bahaj", "male",
"mohamedbahaj@gmail.com",

"settat"}

Table 3: Post L2-2<Key2, list Value2>

Key2 List Value2

{id_post,
date_create,

user_create_i
d, link,

Post_text,
Location

}

{"1", "20/06/2020", "1",
"https://web.facebook.com/id_post=1id
=1", "Our new paper related to ETL and

Big Data","Casablanca"}

{"2","21/06/2020", "2",
"https://web.facebook.com/id_post=2id

=2", " New post on Facebook about
ETL and Big data","Khouribga"}

{"3","22/06/2020", "3",
"https://web.facebook.com/id_post=3id
=3", "New chalenge for ETL and Big

Data","Settat"}

Once the Map functions complete the

construction process of L2-1 and L2-2…etc., the
Reduce function will be triggered automatically to
convert these later into CF-Tables (User CF-Table,
Post CF-Table) taking into account the

multidimensional concept. Table 4 shows the
example of User CF-Table.

Table 4: User CF-Table

User-Table
Id 1 2 3

Age 30 28

First_name Abdeljalil Nassima Mohamed

Last_name Boumlik Soussi Bahaj

Gender Male Female Male

E-mail
boumlik.abd

eljalil@
gmail.com

nassima.so
ussi@

gmail.com

mohamed
bahaj@gm

ail
.com

Location Settat

In the current state, we finish the

extraction phase by producing the final CF-Tables,
then we continue with our second processing phase
which is Transformation phase presented
previously with Algorithm 4.

The first step consists to prepare the
Joined tables with requested columns (RC) based
on the Map Function presented in Algorithm 5.

In our case, we used the Select/Project
operations treated on the Map functions in order to
retrieve specific attributes related to any Facebook
Post published by a given User Id. After that, the
Reduce functions presented in Algorithm 6 will
take as input the last generated tables (User CF-
Table, Post CF-Table) in order to execute the Join
operation and retrieve the requested results as per
Table 5.

Table 5: Joined table

id first_name post_id post_text
date_
create

1 Abdeljalil 1

Our new
paper

related to
ETL and
Big Data

20/06/
2020

6. ANALYSIS AND DISCUSSION

This paper presents a new approach in the
context of big data warehousing by applying
advanced technologies into the ETL process that is
performed sequence and adds the parallelism aspect
in all his operations as Extraction and
Transformation to support scalability and especially
to minimize time-consumption. However, and

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3459

based on the comparative studies and critical
analysis carried out on the most recent approaches
in Related works section, we have concluded that
all existing approaches did not cover the
partitioning and selecting data vertically according
to a multidimensional structure, besides, they
neglected the essential ETL operation.

 In order to overcome the previous
limitations, we have contributed with the current
work in the improvement of ETL processing that
needs serious attention to deal with the massive
explosion of data to prepare and handle it into the
DW. In fact, we readapt modeling ETL operations
in the formal level of extraction and transformation
phases to support the most used operations for
treating and filtering data such as Select and Join
with a specific focus on reducing side-join
operation which was not treated before, while it’s
one of the most important functionalities used for
processing large data sets. Our contribution is very
helpful for producing relevant information for
decision-makers and online Business Intelligent
applications based on the MapReduce paradigm
considered as a powerful solution for parallel
processing of massive data.

7. CONCLUSION

In this paper, we have proposed a smart
ETL approach for building a Data Warehouse from
Big Data sources like Twitter and Facebook, also to
conserve the multidimensional structure of Data
Warehouse via the vertical partitioning of selected
data from HBase as a column-oriented database. In
fact, we have integrated the MapReduce paradigm
in our ETL process to guarantee parallel processing
during the extraction phase and also in the
transformation phase by joining multiple tables in a
reduce side due to its high importance in processing
large data sets. Also, we manage to handle the most
important features of ETL, which are Select,
Project and Join operations, that are used frequently
to operate on separated tables and to aggregate their
data to generate analytic reports and insights.
 As future work, and regarding the
transformation phase of our smart ETL, we intend
to support more operations to deal with complex
processes such as Aggregation, Union, and
different types of Join which will be considered as a
step that may be taken further. Also, consider the
performance factor that needs to be permanently
enhanced. We aim also to adapt our solution to take
into consideration new domains like the internet of
things (IoT) which deals with data received from

various devices, also in the medical domain that
maintains huge data and requires multiple analytics.

REFRENCES:
[1] Mallek, H., Ghozzi, F., & Gargouri, F. (2020).

Towards Extract-Transform-Load Operations in
a Big Data context.

[2] Jo, J., & Lee, K.-W. (2019). MapReduce-Based
D_ELT Framework to Address the Challenges
of Geospatial Big Data.

[3] Saleem, Y., Crespi, N., Rehmani, M. H., &
Copeland, R. (2019). Internet of Things-aided
Smart Grid: Technologies, Architectures,
Applications, Prototypes, and Future Research
Directions.

[4] Zdravevski, E., Lameski, P., Dimitrievski, A.,
Grzegorowski, M., & Apanowicz, C. (2019).
Cluster-size optimization within a cloud-based
ETL framework for Big Data.

[5] R Baker, P MacHarrie, H Phung, J Hansford, J
Reddy, S Causey, J Sobanski, S Walsh, R
Niemann, D Beall -2019-Amazon Web Services
(AWS) Cloud Platform for Satellite Data
Processing

[6] Mallek, H., Ghozzi, F., Teste, O., & Gargouri,
F. (2018). BigDimETL with NoSQL Database.

[7] SMF Ali - DOLAP, 2018. Next-generation ETL
Framework to Address the Challenges Posed by
Big Data.

[8] Boumlik, A., Soussi, N., & Bahaj, M. (2018).
Automatic Data Modeling Transformation
Approach Of Nosql Document And Column
Stores To Rdf. Journal Of Theoretical &
Applied Information Technology, 96(15).

[9] Mallek, H., Ghozzi, F., Teste, O., & Gargouri,
F. (2017). BigDimETL: ETL for
Multidimensional Big Data.

[10] Glushkova, D., Jovanovic, P., & Abelló, A.
(2017). Mapreduce performance model for
Hadoop 2.x. Information Systems

[11] Bala, M., Boussaid, O., & Alimazighi, Z.
2017). A Fine‐Grained Distribution Approach
for ETL Processes in Big Data Environments

[12] Boussahoua, M., Boussaid, O., & Bentayeb, F.
(2017, August). Logical schema for data
warehouse on column-oriented NoSQL
databases. In International Conference on
Database and Expert Systems Applications (pp.
247-256). Springer, Cham.

[12] Dehdouh, K. (2016, September). Building
OLAP cubes from columnar NoSQL data
warehouses. In International Conference on

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3460

Model and Data Engineering (pp. 166-179).
Springer, Cham.

[14] Scabora, L. C., Brito, J. J., Ciferri, R. R., &
Ciferri, C. D. D. A. (2016, April). Physical data
warehouse design on NoSQL databases. In
Proceedings of the 18th International
Conference on Enterprise Information Systems
(pp. 111-118). SCITEPRESS-Science and
Technology Publications, Lda.

[15] Dehdouh, K., Bentayeb, F., Boussaid, O., &
Kabachi, N. (2014, September). Towards an
OLAP environment for column-oriented data
warehouses. In International Conference on
Data Warehousing and Knowledge Discovery
(pp. 221-232). Springer, Cham.

[16] Bala, M., Boussaid, O., & Alimazighi, Z. (2014,
November). P-ETL: Parallel-ETL based on the
MapReduce paradigm. In 2014 IEEE/ACS 11th
International Conference on Computer Systems
and Applications (AICCSA) (pp. 42-49). IEEE.

[17] Chung, W. C., Lin, H. P., Chen, S. C., Jiang, M.
F., & Chung, Y. C. (2014). JackHare: a
framework for SQL to NoSQL translation using
MapReduce. Automated Software Engineering,
21(4), 489-508.

[18] Mohanty, S., Jagadeesh, M., & Srivatsa, H.
(2013). Big data imperatives: Enterprise ‘Big
Data’warehouse, ‘BI’implementations and
analytics.

[19] Liu, X., Thomsen, C., & Pedersen, T. B. (2013).
ETLMR: a highly scalable dimensional ETL
framework based on mapreduce. In
Transactions on Large-Scale Data-and
Knowledge-Centered Systems VIII (pp. 1-31).
Springer, Berlin, Heidelberg.

[20] Han, J., Haihong, E., Le, G., & Du, J. (2011,
October). Survey on NoSQL database. In 2011
6th international conference on pervasive
computing and applications (pp. 363-366).
IEEE.

[21] Dittrich, J., Quiané-Ruiz, J. A., Jindal, A.,
Kargin, Y., Setty, V., & Schad, J. (2010).
Hadoop++: Making a yellow elephant run like a
cheetah (without it even noticing). Proceedings
of the VLDB Endowment, 3(1-2), 515-529.

[22] Blanas, S., Patel, J. M., Ercegovac, V., Rao, J.,
Shekita, E. J., & Tian, Y. (2010, June). A
comparison of join algorithms for log
processing in mapreduce. In Proceedings of the
2010 ACM SIGMOD International Conference
on Management of data (pp. 975-986). ACM.

