
Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3658

COMPARATIVE ANALYSIS OF DEPTH-FIRST SEARCH
ALGORITHM AND GREEDY ALGORITHM AT NEAREST

ATM SEARCH IN PADANG SIDEMPUAN CITY

DIAN RACHMAWATI1*, SYAHRIL EFENDI1, ADI SYAHPUTRA SITUMORANG1

1Departemen Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi,

Universitas Sumatera Utara

Jl. Universitas No. 9-A, Kampus USU, Medan 20155, Indonesia
*E-mail: dian.rachmawati@usu.ac.id

ABSTRACT

The Automated Teller Machine (ATM) is needed when users need immediate banking transactions. But
sometimes ATM has some problems such as ATMs are being broken, money deposited in ATM depleted,
the number of people who queued at ATM, etc. At that time, people needed an alternative ATM located
nearby. To make the process of ATM search easier, than it takes a system that serves to find the nearest ATM
from the ATM location that the user is visiting. Padang Sidempuan City has many ATMs in various places.
This research will make the nearest ATM search system in Padang Sidempuan city. In this system, there is a
menu to search by selecting the starting point and ATM of the bank that you want to go and will produce the
nearest ATM and the line from the starting point to the ATM. To support the closest ATM search in this
system, the deep first search algorithm and the greedy algorithm applied to this system. Then, the performance
of both algorithms will be compared based on process time and distance. After implementation and
comparison, it is known that the complexity of the depth-first search algorithm is the same as the complexity
of the algorithm greedy, (N2). Attesting with a sample of 10 starting points and 1 ATM destination, the depth-
first search algorithm has an average running time of 239.9675 milliseconds, and the average distance is
3033.555 meters, while a greedy algorithm has an average running time of 274.8501 milliseconds and the
average distance is 2035.2568 meters. So it concludes that the depth-first search algorithm is more efficient
in running time than the greedy algorithm. But in generating shorter distances, the greedy algorithm is better
than the depth-first search algorithm.

Keywords: Depth First Search, Greedy, ATM, Shortest Path, Algorithm

1. INTRODUCTION

The Automated Teller Machine (ATM) is
needed when users need immediate banking
transactions. But sometimes ATM has some
problems such as ATMs are being broken, money
deposited in ATM depleted, the number of people
who queued at ATM, etc. At that time, people needed
an alternative ATM location nearby [4].

Padang Sidempuan city is one of the biggest
cities in North Sumatera. In this city, technological
developments have begun to grow. In this city, there
are already many ATMs at various locations.

In the process of finding the nearest ATM, to
simplify the process, we need the shortest path
system in finding the nearest ATM.

The shortest path is a method of solving the
problem of finding the shortest path from location A
to location B using a directed and weighted graph.
The weight is the value of the distance between one
point to another point. According to Andrew
Goldberg, Microsoft Research Researcher Silicon
Valley, said there are many reasons why researchers
try to find the problem in the shortest way. "The
shortest path is an optimization problem that is
relevant for a variety of applications, such as
network routing, games, circuit design, and
mapping." In applying the shortest path, we need
several algorithms to solve it, including the depth-
first search algorithm and the greedy algorithm [17].

The depth-first search algorithm is an algorithm
that is used to search for a point in a graph. The
depth-first search algorithm will expand the root

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3659

from the starting point and trace from the first root to
the inside until the destination point is found. If the
destination point is not found, the search will be
returned from the previous point.

The greedy algorithm is a search for a path
from the starting point to the destination point by
expanding the root of the starting point. The greedy
algorithm will select the root that selects the smallest
distance to continue the search without considering
the consequences of the search for the future.

The advantage of DFS is that DFS consumes
very little memory space. DFS will reach on the
destination node in fewer time periods than BFS if it
crosses on the correct path. DFS can find a solution
without checking many searches because we might
get the desired solution in the first step.The biggest
benefit of having Greedy algorithm over others is
that it is easy to implement and very efficient in most
cases.
 Based on the background that has been
explained, then the research was conducted to
determine the comparison of the performance of the
depth-first search algorithm and the greedy
algorithm with a case study of finding the nearest
ATM in Padang Sidimpuan city.

2. SHORTEST PATH

 The shortest path is the search for optimum
routes between nodes in the graph [8]. In search of
the shortest path, the problem faced is to find the
path which is traversed to obtain the most optimum
path from one point to another point [7]. There are
several kinds of shortest path problems, that is :

1. The shortest path between two points
2. The shortest path between all points pairs
3. The shortest path from a particular point to

all other points
4. The shortest path between two points

passing through specific points

 The shortest path is one of the problems that
can be solved using a graph. If given a weighted
graph, the shortest problem is how to find a path in
the graph that minimizes the number of side weights
forming the path [9].
 Shortest path completion can be done using
algorithms such as a depth-first algorithm, breadth-
first algorithm, hill-climbing algorithm, greedy
algorithm, Dijkstra, A* and many more algorithms
that can be used [13][18].
3. GRAPH

 A graph is a set of connected nodes through a
path (edge) [14]. A graph consists of two sets,
namely set V, which contains a set of vertices
(nodes) that cannot be empty, and the set E
containing the edge (path) set [15]. The graph is
divided into four parts, that is:

1. Directed and Weighted Graph
Each side has a direction and weight (value)
between one vertex and another vertex.

2. Directed and Not Weighted Graph
Each side only has a direction between one
vertex with another vertex, no weight
(value)

3. Not Directed and Weighted Graph
Each side does not have a direction but
weights one vertex with another vertex

4. Not Directed and Not Weighted Graph
Each side has no direction and has no weight
between one vertex with another vertex.

4. ALGORITHM

 An algorithm is a collection of logical steps in
problem-solving that are arranged systematically
[10]. Specifically, an algorithm is a unique method
that is appropriate and consists of a series of steps
that are structured and written consistently, which
will be to solve a problem with the help of a
computer [2].

 According to Donald E. Knuth, the
characteristics of the algorithm that is :

1. The algorithm has start and end process. In
other words, the algorithm has a restricted
step.

2. Each step in the algorithm is defined
precisely and unambiguous (double
meaning)

3. The algorithm has an input or initial
conditions to be processed.

4. The algorithm has an output or terminal
condition as a result of the process.

5. The algorithm must be valid so that it can
produce output in logical time.

5. DEPTH FIRST SEARCH ALGORITHM

 Depth First Search is a search that runs by
expanding he first root child of the graph and goes
deeper and deeper until the destination node is
found, or until find a knot that doesn’t have any more
children [3][16]. Then, research will return to the
node that has not been traced [6]. In a non-recursive

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3660

implementation, all expanded nodes are added to
LIFO (Last In First Out) stack [11].
 Following is an example of the DFS algorithm
in searching for a point in a graph. For example,
given a graph, the starting point is A, and the
destination point is G. Determine the path from A to
G.

Figure 1. Example of DFS algorithm in searching
for a point in a graph

 In figure 1, the relationship between trajectories is
not bidirectional. All tracks only run from top to
bottom. A has a path to B, C, and D, but B, C, and
do not have a path to A. Each circular circle in the
graph above is the vertex. The Node A is the parent
of nodes B, C, and D, while nodes B, C, and D are
child nodes A and so on down. The following is the
completion of the graph above :

 We will use two info lists to save the steps
we take, namely Open and Close. Open is
the node to be checked, while Close is the
node that has been verified. Because this is
the first step, Close is still empty, and Open
will contain the initial node, which is A.
Open : {A}
Close : { }

 Check whether node A has children. If so,
add the child to Open, and add A to Close
because it’s already checked.
Open : {B,C,D}
Close : {A}

 Open now contains three nodes. For depth-
first search, always search for the first node
of Open. Because B is not a goal, check
whether node B has children. If yes, add the
child to Open replacing node B which was
added to Close
Open : {E,C,D}
Close : {A,B}

 Because E is not a goal, check wether node
E has children. If yes, add the child to Open

replacing node E, which was added to
Close.
Open : {H,I,C,D}
Close : {A,B,E}

 Because H is not a goal, check whether
node H has children. If not, delete H from
Open and add H to Close.
Open : {I,C,D}
Close : {A,B,E,H}

 Now we check node I. Because I is not a
goal and has no children, delete I from
Open and add I to Close.
Open : {C,D}
Close : {A,B,E,H}

 Now we check node C. Because C is not a
goal, check whether node C has children. If
so, add the child to Open replacing node C
that was added to Close.
Open : {F,G,D}
Close : {A,B,E,H,C}

 Because F is not a goal and has no children,
delete F from Open and add F to Close.
Open : {G,D}
Close : {A,B,E,H,C,F}

 Now we check node G. Because G is the
goal, then we stop until this step. Delete G
from Open and add G to Close. The final
Open and Close are as follows :
Open : {D}
Close : {A,B,E,H,C,F,G}

The final path to take the depth-first search
algorithm is the last value of Close, which is A, B,
E, H, C, F, G.

6. GREEDY ALGORITHM

 The greedy algorithm is an algorithm that
solves problems step by step. The greedy algorithm
is one algorithm that is often used in solving
optimization problems. The greedy algorithm has the
principle of 'take what you can get now,' the
intention is to make the best choice at this time
without regard to making these choices in the future
[1]. The workings of the greedy algorithm are as
follows :

1. Visit a point on the graph.
2. Remove all possible points to be visited

from the current position. Calculate the
distance between each point to the current
point

3. Mark the current point as the point visited.

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3661

4. Take the point that has the smallest
distance, and make that point the current
point

5. If the current point is the destination point,
then the search is complete. If the current
point is not a destination point, repeat the
search from step 2

Following is an example of the greedy

algorithm in searching for the nearest path.
Determine the route from point A to G.

Figure 2. The greedy algorithm in searching for the

nearest path

 In Figure 2, the relationship between points is
only one direction, so from A, it can go to B, but B
can’t go to A, etc. The following is the completion
of the graph above :

 Take point A, take out the points that can
be visited from A, that is points B and C.
Calculate the distance from A to B and A to
C.
AB = 4
AC = 6
Because A to B is the smallest distance,
then B becomes the current point. Mark A
as visited. Is B the goal? Not. Continue
searching.

 Take point B, take out the points that can be
visited from point B, that is points D and E.
Calculate the distance from B to D and B to
E.
BD = 3
BE = 2
Because B to E is the smallest distance, E is
the current point. Mark B as visited. Is Ethe
goal? Not. Continue searching.

 Take point E, take out the points that can be
visited from point E, that is points G.
Calculate the distance from E to G.
EG = 3
Because there is only one branch from point
E, which is G, then G becomes the current
point. Is G the goal? Yes. Search complete.

 The path obtained by the greedy algorithm is
A-B-E-G with a total distance of 4+2+3=9. The
search results can be seen in figure 3.

Figure 3. The search results

7. ALGORITHM COMPLEXITY

 The complexity of the algorithm consists of 2
types, namely time complexity and space complexity
[5].

1. Time Complexity (T(n)), measured by the
number of computational stages needed to
run the algorithm as a function of
incoming size n. The complexity of time is
divided into three types, that is :
a. Tmax(n) that is time complexity for the

worst case. The need for maximum
time.

b. Tmin(n) that is time complexity for the
best case. The need for the minimum
time.

c. Tavg(n) that is time complexity for the
average case. Need for time on
average.

2. Space Complexity (S(n)), measured from
memory used by the data structure
contained in the algorithm as a function of
the incoming size n.

8. ISHIKAWA DIAGRAM

 Ishikawa diagram is a diagram that shows the
causes of a problem to be solved. Ishikawa diagrams
are also called fish diagrams (fishbone) because they
are like fish bones. Ishikawa’s diagram was
introduced in 1968 by Kaoru Ishikawa. The use of
Ishikawa is generally to prevent impacts and expand
the quality of an event (the causes of a problem).
Ishikawa diagram of the system to be built can be
seen in figure 4.

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3662

. Figure 4. Ishikawa Diagram

9. GENERAL ARCHITECTURE

 The general architecture is a representation of
a structure that describes the process or flow of a
system to be built. The general architecture of the
system to be made can be seen in figure 5.

Figure 5. The General Architecture

1. First, the user runs the system.
2. Then the user selects a starting point and

destination point
3. After that, the user chooses the algorithm to

be used
4. Then the system will search for a route from

the starting point to the destination point
with depth-first search algorithm or greedy
algorithm, depending on user choice

5. After that, the system will output the results
of the search in the form of a path from the
starting point to the destination point and
running time

10. FLOWCHART

Figure 6. System Flowchart

Figure 7. Depth First Search Flowchart

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3663

Figure 8. Greedy Algorithm Flowchart

11. IMPLEMENTATION OF DEPTH FIRST

SEARCH AND GREEDY ALGORITHM

 The start page is the page that the system first
displays when the user runs the system. This page
will run immediately without any user input. The
start page will run a progress bar, and when the
progress bar is full, the system will display the main
page [12]. The start page display can be seen in
figure 9.

Figure 9. Start Page

 The main page is the page where users input
ATM searches. On this page, the user selects the
starting point and destination ATM and the
algorithm to be used. Then the user presses the
START button. Then the system will search
according to the algorithm chosen by the user. On
this page, the system will also display search results
in the form of a route, distance, and running time.
The main page display can be seen in figure 10.

Figure 10. Main Page

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3664

Figure 11. Main Page for Looking location

12. COMPARISON OF DFS AND GREEDY

ALGORITHM

 In the research, the parameters used for comparing
DFS and Greedy algorithms are the distances in
meters, running time application in milliseconds,
and the complexity of the algorithm (big theta). The
results of the two algorithms can be seen in the table
1, 2 and 3.

Table 1. Results of Depth First Search

Algorithm

Table 2. Results of the Greedy Algorithm

Table 3. Comparison results

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3665

13. DEPTH FIRST SEARCH ALGORITHM
COMPLEXITY

Based on the calculation of the complexity in the
table, column C is the process of what happened,
column # represents the number of operations
executed, and column C# is the result of
multiplication between column C and column #.
From the calculation of complexity in the table,
obtained complexity (T(n)) as follows :

T(n) = 4C1 + 4C2 + 4C3 + 2C4 + 2C5 + C7 + C11
+ C12 + C13 + C14 + 8nC1 + 5nC2 + 7nC3
+ 3nC5 + nC6 + 2nC7 + 3nC8 + 2nC9 +
nC10 + nC12 + 3n2C1 + 2n2C2 + 2n2C3 +
n2C5 + n2C7 + 2n2C8

T(n) = (4C1 + 4C2 + 4C3 + 2C4 + 2C5 + C7 + C11
+ C12 + C13 + C14) n0 + (8C1 + 5C2 +
7C3 + 3C5 + C6 + 2C7 + 3C8 + 2C9 +
C10 + C12) n1 + (3C1 + 2C2 + 2C3 + C5
+ C7 + 2C8) n2

T(n) = 𝜃(n2)
In the calculation of complexity based on the
table, the depth-first search algorithm
complexity value is 𝜃(n2).

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3666

14. GREEDY ALGORITHM COMPLEXITY

Based on the calculation of complexity in the table,
column C represents what process occurred, column
represents the number of operations executed, and
column C# is the result of multiplication between
column C and column #. From the calculation of
complexity in the table, obtained complexity (T(n))
as follows :

T(n) = 4C1 + 2C2 + 2C3 + 2C4 + C6 + 2C9 + C11

+ C13 + C14 + C15 + 9nC1 + 4nC2 + 3nC3

+ nC5 + 2nC6 + 3nC7 + 2nC8 + 2nC9 +

nC10 + nC12 + 3n2C1 + 2n2C2 + 2n2C3 +

2n2C6 + 2n2C7 + n2C9

T(n) = (4C1 + 2C2 + 2C3 + 2C4 + C6 + 2C9 + C11

+ C13 + C14 + C15) n0 + (9C1 + 4C2 +

5C3 + C5 + 2C6 + 3C7 + 2C8 + 2C9 +

C10 + C12) n1 + (3C1 + 2C2 + 3C3 + 2C6

+ 2C7 + C9) n2

T(n) = 𝜃(n2)

In the calculation of complexity based on the table,
the complexity of the greedy algorithm is 𝜃(n2).

15. CONCLUSION

 The path obtained with the depth-first search
algorithm is not necessarily the most optimum path
because the depth-first search algorithm searches for
points through the first root child and so on until the
destination is found. If the destination point is in the
first branch, then the path obtained can be the
optimum path. If the destination point is not in the
first child branch, the path obtained can be the
optimum path, and may not be the optimum path.
 The path obtained by the greedy algorithm is
not necessarily the most optimum path because the
greedy algorithm looks for points through children
with the lowest distance value without considering
the total distance going forward. But the path found
is near the optimum path. If the destination point is
at the root of the branch with the smallest distance,
then the path obtained can be an optimum path. If the
destination point is not in the branch of the root of
the shortest distance, the path obtained can be the
optimum path, and may not the optimum path.
 The depth-first search algorithm and the
greedy algorithm have the same complexity value,
which is 𝜃(n2). On testing with ten starting points
towards the ATM of Bank Syariah Mandiri, obtained
an average distance with a depth-first search
algorithm of 3033,555 meters. In contrast, with the
greedy algorithm, the average is 2035.2568 meters.
Then the greedy algorithm is more effective than the
depth-first search algorithm, although the average
running time with the depth-first search algorithm is
faster than the greedy algorithm, which is 239.9675
ms versus 274.8501 ms. ATM Bank points
destination obtained varies depending on the starting
point and the algorithm used. Fewer ATM points are
selected, the smaller the value of running time
algorithm used.

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3667

REFERENCES

[1] Ali, Nur Aima. 2017. Penerapan Algoritma

Genetika dan Perbandingannya dengan
Algoritma Greedy dalam Penyelesaian
Knapsack Problem. Skripsi. Fakultas
Sains dan Teknologi. Universitas Islam
Negeri Alauddin: Makassar.

[2] Anasta, Bayu Angga. 2018. Analisis
Perbandingan Algoritma Run-Length
Encoding dan Algoritma Fibonacci Code
dalam Kompresi Citra. Skripsi. Fakultas
Ilmu Komputer dan Teknologi Informasi.
Universitas Sumatera Utara: Medan.

[3] Bismantoko, Demas Haryo, Sriyanto dan
Wiwik Budiman. (2015). Sistem
Informasi Transportasi Umum
Terintegrasi di Kota Semarang
Menggunakan Algoritma Depth first
search (DFS). Jurnal Teknik Industri,
x(x), 1-9.Boneh, Dan, and Ramarathnam
Venkatesan. “Breaking RSA may not be
equivalent to factoring.” Advances in
Cryptology—EUROCRYPT'98 (1998):
59-71.

[4] Erika, Orien Rindy, Didik Kurniawan, dan
Febi Eka Febriansyah. (2016). Aplikasi
Pencarian Letak ATM Berbasis Android
dengan GIS di Kota Bandar Lampung.
Jurnal Komputasi, 4(1), 27-35.

[5] Gautama, Elliana. (2017, 30 Juni).
Kompleksitas Algoritma. Diakses 2
November 2018, dari
https://dosen.perbanas.id/kompleksitas-
algoritma/

[6] Prasetiyo, Budi, dan Maulidia Rahmah
Hidayah. (2014). Pennggunaan Metode
Depth First Search (DFS) dan Breadth
First Search pada Strategi game Kamen
Rider Decade Versi 0.3. Scientific
Journal of Informatics, 1(2), 161-167.

[7] Jiang, Tuping, Gang Ren, and Xing Zhao.
(2013). Evacuation Route Optimization
Based on Tabu Search Algorithm and
Hill-Climbing Algorithm. Procedia
Social and Behavioral Sciences, 96, 865-
872.

[8] Lestari, Sasti. 2018. Perbandingan Algoritma
Floyd-Warshall dan Bellman-Ford dalam
Pencarian Jarak Terpendek Antar ATM
di Kota Tebing Tinggi. Skripsi. Fakultas
Ilmu Komputer dan Teknologi Informasi.
Universitas Sumatera Utara: Medan.

[9] Lubis, Henny Syahriza. 2009. Perbandingan
Algoritma Greedy dan Djikstra untuk
Menentukan Lintasan Terpendek. Skripsi.
Fakultas Matematika dan Ilmu
Pengetahuan Alam. Universitas Sumatera
Utara: Medan.

[10] Munir, Rinaldi. 2014. Matematika Diskrit.
Bandung: Informatika Bandung.

[11] Pribadi, Feddy Setio dan Anggraini
Mulwinda. (2011). Pencarian Rute
Terpendek dengan Menggunakan
Algoritma Depth First, Breadth First, dan
Hill Climbing (Studi Comparative).
Jurnal Sains dan Teknologi, 9(1), 1-10.

[12] Priyantoro, Aris, dan Khabib Mustofa.
(2014). Pengembangan Aplikasi
Pencarian Rute Terbaik Pada Sistem
Operasi Android (Studi Kasus Rute Trans
Jogja). Berkala MIPA, 24(1), 72-88.

[13] Verma, Madhusi, and K.K. Shukla. (2013). A
Greedy Algorithm for Fuzzy Shortest
Path Problem using Quasi-Gaussian
Fuzzy Weights. International Journal of
Fuzzy System Applications, 3(2), 55-70.

[14] Saputra, Ilham. 2018. Implementasi
Algoritma Simple Hill Climbing dan
Algoritma Djikstra untuk Mencari Jarak
Terpendek. Skripsi. Fakultas Ilmu
Komputer dan Teknologi Informasi.
Universitas Sumatera Utara: Medan.

[15] Belalawe, Benyamin Jago, M. Suyanto, dan
Amir Fatah Sofyan. (2012). Penentuan
Jalur Wisata Terpendek Menggunakan
Metode Forward Chaining (Studi Kasus
Dinas Pariwisata Kota Kupang). Jurnal
Informatika, C, 9-16.

[16] Deng, Xinguo, et al. (2010). Combining
Breadth-First with Depth-First Search
Algorithms for VLSI Wire Routing.
International Cpnference on Advanced
Computer Theory and Engineering, 6,
482-486.

[17] B. V. Cherkassky, A.V. Goldberg, and T.
Radzik. Shortest paths algorithms: theory
and experimental evaluation.
Mathematical Programming, 73:129-174,
1996.

[18] Dian Rachmawati and Lysander Gustin 2020
J. Phys.: Conf. Ser. 1566 012061

