
Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3644

A COMPARISON STUDY OF DOCUMENT CLUSTERING
USING DOC2VEC VERSUS TFIDF COMBINED WITH LSA

FOR SMALL CORPORA

1AMALIA AMALIA, 2OPIM SALIM SITOMPUL, 3ERNA BUDHIARTI NABABAN, 4TEDDY
MANTORO

1Department of Computer Science, Faculty of Computer Science and Information Technology, Universitas
Sumatera Utara, Medan, Indonesia

2,3Department of Information Technology, Faculty of Computer Science and Information Technology,
Universitas Sumatera Utara, Medan, Indonesia

4Department of Computer Science, Universitas Sampoerna, Jakarta, Indonesia

E-mail: 1amalia@usu.ac.id

ABSTRACT

The selection of a suitable word vector representation is one of the essential parameters in document
clustering because it affects the performance of clustering. The excellent word vector representation will
generate a good clustering result, even only using the simple clustering algorithm like K-Means. Doc2Vec,
as one of word vector representations, has been extensively studied in large text datasets and proven
outperforms the performance of traditional word vector representation in document categorization. However,
only a few studies analyze word vector representations of small corpora. As appropriate, learning observation
in a small corpus is also crucial because, in some cases, a large corpus was not always available, particularly
in some low-resources languages like Bahasa Indonesia. Moreover, the clustering of the small datasets also
plays essential roles in pattern recognition and can be an initial step to implement the analysis result in a
more significant corpus. This study is an experimental study that aims to explore more in-depth exploration
to compare document clustering using Doc2Vec versus TFIDF-LSA for small corpora in Bahasa Indonesia.
In this study, the quality of word vector representation is measure by the cluster performance using intrinsic
and extrinsic measurements. The study also considers measuring word representation based on time and
memory consumption. This study also concerns with getting an optimal word vector representation by tuned
appropriate hyper-parameter. The word vector representations were tested to various sizes of the small
corpora using the K-Means algorithm. The result of this study, a TFIDF-LSA gets a better cluster
performance; meanwhile, the Doc2Vec model gets a better time and memory usage efficiency.

Keywords: Clustering, Word Vector Representation, Word Embedding, Clustering Comparison, Small

Corpora

1. INTRODUCTION

Along with the growth of the internet makes the
growth of data text on the internet has explosive as
well. Therefore, automation of document
categorization, such as classification and clustering
is an essential task for nowadays. The drawback of
supervised text categorization like classification is
the necessity of annotated linguistic resources. This
is a challenge for languages that do not have
adequate available annotated linguistic like Bahasa
Indonesia. The task to manually annotate the
linguistic resources from scratch like an annotated
corpus requires many times and human labors.
Therefore, text categorization using a clustering

approach can be the best solution. Document
clustering is an unsupervised machine learning
techniques to automatically group documents into
clusters based on document similarity [1], [2].
Clustering is one of the most important tasks in data
analysis [3]. Clustering does not need pre-defined
labels for each group by human labor. Many
algorithms for document clustering have been
proposed, for instance, K-Means [4], K-Means++
[5], Self Organizing Map [6] et cetera. In addition to
the choice of cluster algorithm, the other essential
aspects of generating good clustering performance
are selecting appropriate word vector representation.
Word vector representation is a feature
representation for data input in textual form. Word

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3645

vector representation, also known as text
representation, in this study, we used these two
terms interchangeably. Text representation is a pre-
processing stage in machine learning for data input
in a textual form so that the data able to further
processed in machine learning. One of the simple
methods in word vector representation is Bag of
Words (BoW). The instances of BoW methods are
one hot encoding and term-frequency inverse-
document-frequency (TFIDF) [7]. The BoW is a
count-based text representation method that treats
documents as a set of distinct atomic words;
therefore, this method cannot preserve the semantic
and syntaxis information. It means that relationships
between words, such as synonyms, are not
incorporated [1]. Another drawback of BoW is
sparsity and generate high dimensional vectors.
Despite many deficiencies, the BoW is still widely
used because of its simplicity and surprising
accuracy. Many previous studies tried to anticipate
the lack of BoW. For instance, a study by [8]
implemented Latent Semantic Analysis (LSA) in
TFIDF to capture semantic and dimension reduction.
Implementation LSA in TF-IDF proven to increase
cluster performance. Another previous study by [9]
added a synonym vocabulary checked in the pre-
processing stage to anticipate the synonym
deficiency in TFIDF representation. Both of these
studies were implemented in small corpora and
gained Purity about 75%.

Beside BoW, another alternative concept of
word vector representation is word embeddings. A
word embedding is a low-dimensional, dense, and
real-valued vector representation [10]. A word
embedding is generated using a prediction-based by
neural network approach based on learning
representation in a large text corpus. This process
generated word vector representation that captures
syntactic and semantic aspects [11]. Therefore,
words that have similarity meaning and close
correlation will have similar word vector
representation as well. Many previous studies in
Natural Language Processing (NLP) stated word
embeddings representation increases NLP task
performance, including document categorization
[11]. Using word embedding certainly added
advantage for the document clustering process,
because the same words in documents with similar
topic tend to have similar word vector
representation. Word embedding models have been
researched in previous studies by [12] [13] and
proven to outperform BoW for various NLP tasks.
The instances of word embedding models are
word2vec for word-level representation and
Doc2Vec for document-level representation. In

document categorization, the Doc2Vec yields higher
classification accuracy than other document
representation methods in various domains, such as
sentiment classification, news categorization, and
forum question duplication [14]. However, most
studies that stated word embedding outperforms
BoW using a large text corpus [15] to implement the
learning process. Compare to the BoW model; word
embedding certainly has the advantage if
implemented in a large dataset, since word
embedding does not consume as much memory as
some classic methods like TFIDF and LSA [15]
make many researchers implemented as much as
data corpus for training. Moreover, the assumption
that more data is better for catch semantic and
syntactic information makes learning representation
trained from a large corpus containing about billions
of tokens. However, it is still unclear how many
documents in the corpus does the embedding model
needs in generating a good word embedding
representation. There are only a few studies analyze
semantic representations of small corpora [15]. It
should be more observation of small corpora,
particularly in some cases, large corpora not be
always available [16], for examples in some low-
resources languages [17] or in domain-specific like
medical corpus [18]. Moreover, the clustering of the
small datasets also plays important roles in pattern
recognition [19], where we can predict the behavior
of the unseen data from data training. This task is
also referred to as the learning process [20].
Observation in the small dataset also can be an initial
step to implement the analysis result to a bigger
corpus. Even though clustering does not need
labeled data for training, but the ground truth label is
still needed to measure the cluster performance
accuracy; therefore, to analyze first in a small corpus
is the right decision.

The research question, is word embeddings
outperform TF-IDF and LSA representation for
small corpora? It is still not clear whether word
embedding outperforms classical models in the
small corpus. A previous study by [21] found LSA
produced better performances than word embedding
models in small to medium size of the training
corpus. However, a previous study by [22]
concluded that the corpus size is not always the main
parameter in generating right word embedding. This
study also revealed that the word2vec model could
extract linguistic information from a small domain-
specific corpus and get a satisfactory result.

Based on these two contrary statements, we want
to explore more in-depth exploration in which text
representation methods are better for small corpora.
Unfortunately, to obtain the best suitable word

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3646

representation is not easy; there is no universally
good representation, the choice of representation
also determined by domain knowledge [20].
However, we can measure the quality of word
representation based on the performance of the
clustering result. If the word vector representation is
right, even the simple clustering algorithm like K-
Means will find the data cluster pattern and generate
a good clustering result [20].
In this study, to explore more in-depth exploration in
which text representation methods are better for
small corpora, we compare two model word vector
representations which are classical model: TF-IDF
combined with LSA versus word embedding model:
Doc2Vec. To simplify, we used the terms TFIDF-
LSA to mention TF-IDF combined with LSA. We
generated a small corpus that contains only 500
articles in Bahasa Indonesia. We also split the corpus
into three smaller sub-corpora that contain 60, 125,
and 250 articles. Further, to find the performance of
clustering, the K-Means algorithm was implemented
for each model. To measure the cluster performance,
we used intrinsic and extrinsic cluster evaluation
measurements. We implemented the Silhouette
Coefficient evaluation for intrinsic measurement.
For extrinsic cluster performance measurement, we
implemented Purity and adjusted random index
(ARI) evaluation. Besides the clustering
performance, in this study, the comparison is also
concern with the clustering processing time and
memory consumption for each model. This study
also concerns to tune various parameter initialization
for each model to get the best model.

Our contribution is the comparison result
based on a quantitative experiment that can consider
other researchers in choosing the suitable word
representation for a small corpus, particularly for
Bahasa Indonesia based on cluster performance,
time, and memory consumption. The small dataset
observation can also reveal the quality of word
representation for low-resources language like
Bahasa Indonesia. As far as our knowledge, there is
still no previous observation to compare word vector
representation in the small corpus for Bahasa
Indonesia.

The rest of this paper is organized as
follows: In Section 2, we described the literature
review. In Section 3, the related works by previous
studies were described. In Section 4, we explain the
methodology of this study, parameter initialization,
and cluster performance measure. The experimental
results are discussed in Section 5. Finally, in Section
6, we conclude the current work with a few future
research directions.

2. LITERATURE REVIEW

Word vector representation for data text in

machine learning is a process to transform input
objects into numbers or vector. In the NLP task such
as classification and clustering, this process is an
essential process because it affects the performance
and result. In this study, we compare two kinds of
feature representations in the document clustering
task, which are TFIDF-LSA and Doc2Vec model.

2.1 TFIDF-LSA

TFIDF [7] is one method to represent text
documents into a vector. TFIDF contains two
calculation which is TF and IDF. TF or term
frequency is the number of times that the term t
occurs in document d. The more frequencies, the
more value of TF. Meanwhile, IDF or inverse
document frequency is a calculation of the number
of document D that contain the term t in a whole
corpus. The formula of TFIDF describes in formula
2.

tfidf(t, d, D) = tf (t, d). idf (t, D) (1)

The TFIDF generates high value for the essential
terms in a document and filters out the common
terms that occur in many documents. The feature
representation in this method comes in feature
matrix with dimensional as many as the total unique
words number in a whole corpus. Some pre-
processing stages are implied to reduce the
dimension of the vector. For instance, to reduce
dimensionality, a threshold cut-off is used to use
only those words with high values. TFIDF is one of
the BoW which treats a word as an atomic unit
without considering the relationship of the word to
others in the corpus. Therefore, this method cannot
handle the meaning representation, such as
synonyms are not incorporated. To account for the
meaning representation, the TFIDF can be combined
with Latent Semantic Analysis (LSA) [23] [24].
LSA is one of the most used methods for word
meaning representation in BoW representation.
Besides handling meaning representation, LSA can
also be used to reduce the dimensionality of TFIDF
matrices. A dimensionality reduction is
implemented by a truncated Singular Value
Decomposition, SVD, which projects every word in
a subspace of a pre-defined number of dimensions.
Once the vectorial representation of words is
obtained, the semantic similarity between two terms
is typically computed by the cosine of the angle
between them [15].

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3647

2.2 Doc2Vec
 Word embedding is a method to transform the

text into a dense vector in real numbers using a
neural network approach. A study by [10] in the form
of a feed-forward neural network language model as
one of the pioneers the word embedding. A study by
[25] proposed a simpler method that produces high-
quality vectors called word2vec. Word embedding
by word2vec begins with the learning process in a
collection of text documents or corpus. The learning
process aims to exploits the statistical properties of
the textual structure in a vectorial space. Words with
similar meanings tend to be located close to each
other in vectorial space. This hypothesis relies on the
idea that words with similar meanings tend to occur
in similar contexts [26]. The learning process has
collected the information about neighbor words
(context words) of each word (target word) in the
corpus.

Further, fully connected feed-forward neural
networks are implemented to predict context words
based on the target word or vice versa. The aim is to
get the optimal prediction based on the information
on the learning corpus stage. Words embedding are
trained using stochastic gradient descent, and the
gradient is obtained via backpropagation. The
weight is adjusted to get the optimal prediction.
Word embeddings are these adjusted weights. Once
the neural network has been trained, the learned
linear transformation in the hidden layer is
considered the word representation [15]. There is
two architecture in word2vec, which are Continuous
bag-of-words (CBOW) and Skip Gram. CBOW
architecture was implemented to predict the target
word based on the context word. Meanwhile, Skip
Gram is an architecture to predict context words
based on the target words. The result of the word
embedding the words with a similar meaning is
mapped to a similar position in the vector space [27].
Word2vec is a tool to provides an efficient
implementation of the continuous bag-of-words and
skip-gram architectures for computing vector
representations of words [28]. This tool learns to
projects words into a latent d-dimensional space with
n-window size. Window size is a parameter to
determine the number of context words. Also, some
researchers try to build model embedding at the
document level to extend the level of feature
representation in some NLP tasks. However, when
using word embedding models to create document-
level representations, the word vectors need to be
aggregated somehow. A general approach to
calculate document embedding is to simply estimate
the word vectors' mean for all terms in the document
[29]. Another method to train the document level is

using the Doc2Vec algorithm. Doc2Vec algorithm is
extended to the word2vec algorithm by (Le &
Mikolov, 2014). Doc2vec was built based on
paragraph vector, an unsupervised algorithm that
learns fixed-length feature representations from
variable-length pieces of texts, such as sentences,
paragraphs, and documents [30].
The primary task of document embedding is to
determine an appropriate distributed representation
for a single document by learning a neural network
with the word's information and its surrounding
words in the document. The vector representation is
trained to predict words in a paragraph. The
Doc2Vec algorithm concatenates the paragraph
vector with several word vectors from a paragraph
and predicts the following word in the given context.
In the Doc2Vec approach, each document has its
own vector values in the same space as for words.
Thus, the distributed representation for both words
and documents are learned simultaneously. There
are two algorithms of Doc2vec, which are the
Distributed Memory Model of Paragraph Vectors
(PV-DM) and the Distributed Bag of Words version
of Paragraph Vector (PV-DBOW). PV-DM is a
document-embedding algorithm that randomly takes
sequence words from a document and tries to predict
a target word from the randomly sampled set the
context words as input. Meanwhile, PV-DBOW is an
algorithm to generate document embedding without
considering word order in documents. There is some
hyper-parameter that needs to be tuned to generate a
good vector for document embedding, such as the
window size, dimension, and minimum words. With
the right parameter, feature representation for the
document will increase document clustering.

2.3 Document Clustering with K-Means
 Clustering is an unsupervised process to groups

a set of objects based on the similarity between the
objects. A good cluster will split the collection of
data objects into k clusters. The data objects that are
similar to one another will be grouped in one cluster,
and the different data objects will be put in a
different cluster. One of the methods to document
clustering is using the K-Means algorithm [20]. K-
means clustering is one of partitioning hard
clustering methods that split a given dataset into a
fixed number (k) of clusters. In K-Means, we have to
set k value (number of clusters) in the first process.
Based on the number of k, the K-Means will choose
k numbers randomly as centroids, which are used as
the beginning points for every cluster, and then
performs iterative (repetitive) calculations to
optimize the positions of the centroids. The process
of centroid adjustment is repeated until the values of

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3648

the centroids stabilize. The final centroids will be
used to produce the final clustering of the input data,
each with a class identity.

2.4 Cluster Evaluation Measure

Cluster evaluation measurement of a clustering
algorithm is essential as the algorithm itself. A
clustering evaluation demands an independent and
reliable measure for assessing and comparing
clustering experiments and results. However, cluster
evaluation not as trivial as classification evaluation.
Evaluating a clustering algorithm's performance is
not just as counting the number of correct clustering
like precision and recall measurement of a
supervised classification algorithm. In clustering, the
good cluster based on an internal and external
criterion. The text document that grouped in the
same cluster or intra-cluster should have high
similarity. On the other hand, documents in different
clusters or inter-cluster should be dissimilar
documents. In cluster evaluation, any evaluation
metric should not take the cluster labels' absolute
values into account. However, the cluster evaluation
is more to define separations of the data similar to
some ground truth set of classes. Members
belonging to the same class are more similar than
members of different classes according to some
similarity metric [31]. There are two kinds of
methods in document clustering, namely intrinsic
and extrinsic measures. Intrinsic or internal
measures of quality such as distortion or log-
likelihood to indicate how well an algorithm
optimized a particular representation. Intrinsic
comparisons are inherently limited by the given
representation in other words dependent on the
feature representations, therefore intrinsic can not
compare between different representations [32].
Intrinsic measures, calculate the cluster separation,
and cohesion. The advantage of this method, it does
not require a ground truth label. The example of this
method is the Silhouette coefficient. The silhouette
coefficient calculates how similar an object to its
own cluster (cohesion) compared to the different
clusters (separation). In other words, the silhouette
coefficient (S) is calculated using the mean intra-
cluster distance (a) and the mean nearest-cluster
distance (b) for each sample in the cluster (C). The
best value of the silhouette coefficient is 1, and the
worst value is -1. The formula of silhouette can be
described in formula 2.

𝑠 ൌ
 ି

୫ୟ୶ ሼ,ሽ
, 𝑖𝑓 |𝐶| 1 (2)

On the other hand, the extrinsic or external measure
is able to compare the clustering result from different

feature representation methods. This method
measures of quality compare a clustering to an
external knowledge source such as ground truth
labels. Examples of extrinsic measures are Purity,
Random Index, and Adjusted Random Index (ARI).
Purity is a simple and transparent evaluation
measure. Purity's formula is to calculate the total
number of the most frequent object class in each
cluster and then divided by the total number of
objects (N). The formula of Purity can be seen in
formula 3. Where M is a set of clusters and D is a
set of classes.

P =
ଵ

ே
∑ max

ௗ∈
|𝑚 ∩ 𝑑|∈ெ (3)

The highest purity score is 1, which means each
document in its cluster, and the worse purity score is
0. Purity cannot be used to calculate the quality of
clustering against the number of clusters.

Random Index is a method to calculate
quality clusters based on the benchmark
classifications. On the other hand, RI is the
percentage of correct decisions made by the
algorithm. The formula of RI described in formula
(4).

RI =
ା

ାାାௗ
 =

ା

൫
మ൯

 (4)

Where, n is a set of elements, a is a number of pairs
of elements in S that are in the same subset in X and
the same subset in Y. Meanwhile, b represents the
number of pairs of S elements in different subsets of
X and different subsets of Y. The value c is several
pairs of elements in S that are in the same subset of
X and different subsets of Y, and d represents the
number of pairs of elements in S that are in different
subsets of X and the same subset of Y. The RI score
between 0 and 1. The drawbacks of RI measurement
are that the RI does not has a constant baseline,
implying that these measures are not comparable
across clustering methods with different numbers of
clusters. The raw RI score is then adjusted for chance
into the ARI score using the following scheme:

ARI = (RI - Expected_RI) / (max(RI) Expected_RI)

(5)

The ARI values between 0 and 1, with 1 representing
identical partitions, and is adjusted for the number of
partitions in X and Y

3. RELATED WORKS

A study by [8] experiments by trying various
pre-processing processes and various clustering

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3649

algorithms to increase clustering accuracy. This
study is an experimental study to observe the
suitable clustering process for Bahasa Indonesia
with a small corpus that contains only 100
documents. The experiments were conducted for
several cluster algorithms, such as K-Means, K-
Means++, and Agglomerative, with various pre-
processing stages. The results of this study indicate
that the K-Means and K-Means++ algorithms are
superior. This study also concludes the TFIDF-LSA
pre-processing produces the best cluster purity for k
= 2, and followed by k = 3 and k = 4. It is shown that
the more clusters to be formed, the cluster purity
value will decrease. The study implemented TFIDF
word vector representation combined with various
reduction percentages with LSA.

Another previous related study by [9]
implemented document clustering using the BoW
representation approach that aims to anticipate the
BoW drawbacks, unable to identify synonym words.
The study proposed an additional pre-processing
stage, which is the dictionary synonym checking
function. The study also implemented LSA to reduce
the dimension of BoW representation. The
experiment process results indicated that the
addition of the synonym checking function could
increase the quality cluster up to 13%.

A study by [14] aims to categorize
documents using a classification approach. This
study also focuses on various document
representation methods such as LSA, Latent
Dirichlet Allocation (LDA), and Doc2Vec. The
study implemented semi-supervised learning (SSL)
to improve classification performance, particularly
in the labeling process. The study used five popular
English corpora such as 20 newsgroup, Reuters,
semEval and OhSumed.
The LSA requires the highest dimension, follow by
LDA and Doc2Vec. The results of this study
Doc2Vec yields the highest classification
performance.

Another previous related research by [1]
evaluated several document clustering and topic
modeling models for the Online Social Network.
The study used a large dataset corpus collected from
social media such as Twitter and Reddit social. This
study implemented word vector representation like
TFIDF, LDA, and word embedding. This research
shows word embedding combined with k-means
clustering delivered the best performance. This study
also concerns observing several hyper-parameter
settings for word embedding, particularly for short
text. This study found that 100 dimensions are
sufficient for short text representation like twitter,
the size of the context window is 5 and the minimum

word count is 1. This study also shows K-Means is
the best algorithm.

A study by [15] proposed a comparison study
to analyze semantic representations of small corpora.
This study compared the LSA representation versus
SkipGram word2vec. The finding of this study LSA
showed better performance than Skip-gram in a
small size training corpus. This study also stated
LSA could capture relevant words associations in the
training corpus, even in a small number of low-
frequency words. The study investigated the
optimality of different methods to achieve reliable
semantic mappings when only medium to small
corpora are available for training.

A study by [21] investigates corpus
specificity and corpus size in a word embedding.
This study investigates the suitable number of words
embedding dimensions. In this study, the
observation was done to a whole corpus and sub-
corpus. The sub-corpus was generated from the
primary corpus that was split into a half size corpus,
a third size corpus, and a quarter size corpus. The
study found word2vec obtained its best performance
when it is trained with the whole corpus. In this
study, the contrary fact also found that the
specialization (removal of out-of-domain
documents) of the training corpus, accompanied by
a decrease of dimensionality, can increase LSA
word- representation. From a cognitive-modeling
point of view, the study points out that LSA
representation acquisitions may not be efficiently
exploiting higher-order co-occurrences and global
relations, whereas word2vec does.

A study by [22] observed the applicability
of word2vec to extracting similar words from small,
domain-specific data. The study found the corpus's
specificity has much more influence on word2vec
results than the corpus size. This study concluded the
specificity of the corpus is more important than the
size of the corpus. word2vec was used to extract
domain-specific related terms from very small
corpora. The study gets satisfactory results with
small data for domain-specific words using a word
embedding approach.

A study by [2] observed document clustering on
a large public domain. This study used various
algorithms and various word vector representation.
This study obtained the Doc2Vec algorithm to get
the best result.

A study by [16] proposed a method to generate
effective word embedding from a limited dataset.
This study expanded the small text corpus by
generated multiple versions for sentences in the
corpus.

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3650

Other previous studies by [17], [18], and [19]
stated observation of a small corpus is important.

According to these previous studies, our study
proposes an experimental study to compare TFIDF-
LSA versus Doc2Vec algorithm in small corpora.
Different from the most previous studies that are
using available popular publicly English corpus, in
our study, the observation language is Bahasa
Indonesia. We generated the corpus from Bahasa
Indonesia newspapers. Our study also focuses on
tuning the hyper-parameter for each word vector
representation to get the optimal result. We also
concern in some criterion cluster performance using
various cluster evaluations. We observed the quality
of intra-cluster and inter-cluster using the silhouette
coefficient.

4. METHODOLOGY
The methodology of this study described in Figure.
1

 Figure 1. Methodology

4.1 Data Preparation
4.1.1 Generate a Corpus
The first step of data preparation is to prepare a
corpus. In this study, a corpus is a set of documents.
We used a partial corpus of the works by [33]. The
corpus was generated from Indonesian online
newspapers. However, the corpus by [33] is already
transformed into one big file in txt format.
Meanwhile, we need the corpus that contains various
topics in separate files. Therefore, we took the
original form after the crawling process, which is
still in JSON format. Each JSON file results from the
crawling process from many articles in one topic
from one newspaper. There are seven newspapers
and five topics which are economics, politics, law,
health, and technology. Each JSON file contains
some metadata like URL, author, date, title, and
articles content. In this study, we only took articles
content. The number of articles in these JSON files
reaches thousands of articles. The purpose of this
study is to compare word vector representation in
small corpora; therefore, we collected 500 articles.
The corpus with 500 articles can be assumed as a
small corpus compared to billions of articles in a big
corpus from previous studies.

4.1.2 Generate Sub-Corpora

The purpose of this study is to compare the
cluster performance of two words vector
representation in small corpora. Therefore, in
addition to process the whole corpus with 500
documents, we also split this corpus into another 3
sub-corpora. To ease the corpus identification, we
named the corpus with corpus-500, corpus-250,
corpus-125, and Corpus-60. The detail of each
corpus can be seen in Table 1.

Table 1: The Corpus Information

Corpus Number

of
articles

Total
number
of words

Total
number
of unique
words

Corpus-500 500 110521

9629

Corpus-250 250 57773 6615

Corpus-125 125 46559

5770

Corpus-60 60 14346 2639

Word Vector Representation &
Parameter Initialization

K-Means Clustering
Implementation

Hyper-parameter Optimization

Data Visualization

Cluster Evaluation

Pre- Processing

Generate Ground Truth
Labels

Generate Corpus

Generate Sub-Corpora

Data Preparation

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3651

4.1.3 Determine Ground Truth Labels
In this study, determine ground truth labels is a

process to annotate each document with an
appropriate news category. Some of the evaluation
cluster algorithms, such as Purity and ARI, need
ground truth labels to calculate the cluster
performance. We determined the ground truth labels
for each document based on the category determined
by the newspapers. To ease ground truth labels
determination, we collected the exact same amount
number for each category for each corpus. For
example, corpus-500 contains 100 Health articles,
100 law articles, 100 economics articles, 100
technology articles, and 100 sports articles.

4.1.4 Pre-Processing

Pre-processing is a step to transform raw data
into an understandable and efficient format. In this
stage, we implemented tokenization, data cleaning,
stopwords removal, and stemming. Tokenization is
a process to split documents in a corpus into word by
word. Data cleaning is a process to remove unwanted
symbols like HTML tags and unwanted symbols.
Stopwords removal is the step to exclude
unimportant words from a language. This study
analyzes Bahasa Indonesia; therefore, we
implemented a stopword list for Bahasa Indonesia by
Tala [34]. Stemming is a process to get the root base
of the words. In this study, we implemented a
stemming algorithm for Bahasa Indonesia by
studying [35].

4.2 Word Vector representation and Initialize
parameter

This stage is a process to transform the
cleaning corpus into an observed word vector
representation, which is TFIDF-LSA and Doc2Vec.
To get an optimal word vector representation, we
have to choose a set of optimal hyper-parameters for
a learning algorithm. There are some parameters to
be tuned for each text representation. For instance,
one of the parameters that affect TF-IDF quality is n
number initialization in n-grams. An n-gram is a
contiguous sequence of n items, and n is the
parameter to set the maximum number of words in
text sequence that be converted into a token,
meanwhile, the instances of hyper-parameters of
Doc2Vec model including the choice of Doc2Vec
algorithm, window size, dimensions, and minimum
word count and the number of epoch iteration.

4.3 K-Means Clustering

Each model from the previous stage hereafter
implemented by the K-Means algorithm. In this
study, we implemented the K-means algorithm in the

Scikit-learn library [36] in python. Since in this
study, we focus on word representation, not in the
clustering algorithm, so we used default values
provided by the Scikit-learn python package for all
experiments. We used 300 iterations and n-init = 10.
We set clusters number as 5; this number is
consistent as news categories number in a training
corpus.

4.4 Hyper-parameters Optimization

Despite many parameters to be tuned that can
be implemented for each word vector representation
and for each corpus, in this study, the hyper-
parameters' initialization is tuned only in corpus-60.
With consideration, corpus-60 is the smallest corpus
size. Therefore, training time will be shorter. For
each tuning of hyper-parameters, the best model is
taken that generates the best Purity, silhouette, and
ARI score. This model is then a representative of
word vector representation.

4.4.1 Tuning Hyper-parameters of TFIDF-LSA

model
For TFIDF-LSA, we tested variations of n

(range 1-3) in n-grams and implemented them with
the K-means algorithm. The result can be seen in
Table 2.

Table 2: The Result of TFIDF-LSA Model

Model Silhouette Purity ARI
TFIDF-LSA (n = 1 /
unigram)

0.51

0.5

0.45

TFIDF-LSA (n = 2 /
bigram)

0.52

0.5

0.518

TFIDF-LSA (3-gram) 0.46

0.48

0.49

Based on the result in Table 2, we can conclude that
the optimal hyper-parameters of TF-IDF combined
with LSA is the bigram model or n = 2.

4.4.2 Tuning Hyper-parameters of Doc2Vec

Model

For the Doc2vec model, we tested various
parameters to look for the best performance. We
implemented 2 algorithms of Doc2Vec, which are
PV-Dbow and PV-DM. We tested context window
sizes for each algorithm ranging to values 5, 8, and
15 and dimension with values 50, 100, and 300. We
set epoch number = 300 and min-count = 5. For
another hyper-parameters initialization with default
values provided by Gensim. The result can be seen
in Table 3.
Based on Table 3, the best performance of Doc2Vec
model is with implemented parameters: algorithm
PV-DBOW, dimensions or vector size = 300,

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3652

context window size = 8, epoch = 300 and window
size = 5.

Further, the best model for each word representation
in the hyper-parameters optimization stage will be
tested using the corpus's different size. To ease the
identification, we named the process with different
codes. The feature representation for TFIDF-LSA
with different corpus is coded as TF1 – TF4. The
feature representation for Doc2Vec with different
corpus is coded as DV1 – DV4.

TF1 = 2 grams, TFIDF-LSA, corpus-60
TF2 = 2 grams, TFIDF-LSA, corpus-125
TF3 = 2 grams, TFIDF-LSA, corpus-250
TF4 = 2 grams, TFIDF-LSA, corpus-500

PV1 = algorithm pv-dbow, vector size = 300,
min_count = 5, epoch = 300 and window size = 8,
Corpus-60

PV2 = algorithm pv-dbow, vector size = 300,
min_count = 5, epoch = 300 and window size = 8,
Corpus-125

PV3 = algorithm pv-dbow, vector size = 300,
min_count = 5, epoch = 300 and window size = 8,
Corpus-250

PV4 = algorithm pv-dbow, vector size = 300,
min_count = 5, epoch = 300 and window size =
8, Corpus-500

 The experiment results for various processes for
TFIDF-LSA can be seen in Table 4. Meanwhile,
the result for Doc2Vec can be seen in Table 5.

Table 4: Evaluation Cluster for TF-IDF combined with
LSA

Model Silho
uette

Purity ARI Time
Proc (in
second)

Memory
Usage
(in MiB)

TF1 0.52 0.50 0.51 0.6 243.17
TF2 0.49 0.51 0.56 0.6 248.82
TF3 0.43 0.54 0.61 0.8 269.14
TF4 0.51 0.51 0.59 1.13 357

Table 5: Evaluation Cluster for Doc2Vec

Model Silho

uette
Purity ARI Time

proc(in a
second)

Memory
Usage
(in MiB)

PVI 0.60 0.37 0.012 0.4 238.09
PV2 0.63 0.39 0.090 0.46 239.68
PV3 0.57 0.32 0.014 0.46 244.54
PV4 0.58 0.29 0.019 0.5 249

4.5 Data Visualization

Data visualization is an essential parameter to
describe the clustering pattern. To adjust with the
limitation of human eyes, we can only see 2
dimensions; therefore, we have to reduce the word
vector representation into x and y layer. The original
TFIDF representation will generate a sparse matrix
that has dimensions as much as total words in the
corpus. However, in this study, we
implemented LSA to get meaning representation,
and this implementation is also impacted by the
reduction dimension of the TFIDF-LSA model. For
the Doc2Vec model, the word vector representation
dimension is 300. In this study, we implemented the
Principal Component Analysis (PCA) to reduce the
model's dimension. PCA is also can emphasize

T
able 3. H

yper-param
eters of D

oc2V
ec M

odel

P
V

-D
B

oW

P
V

-D
M

W
S

 =
 5

W
S

 =
 8

W
S

 =
15

W
S

 =
 5

W
S

 =
 8

W
S

 =
15

D
im

ension =

50

P
urity

0.37
0.35

0.37
0.37

0.37
0.32

S
ilhoutte

0.56
0.56

0.56
0.59

0.52
0.55

A
R

I
0.024

0.025
0.020

0.010
0.04

 -0.01

D
im

ension =

100

P
urity

0.35
0.35

0.35
0.37

0.33
0.30

S
ilhouette

0.56
0.54

0.55
0.56

0.55
0.56

A
R

I
0.025

0.02
0.02

0.03
0.012

-0.02

D
im

ension =

300

P
urity

0.33
0.37

0.33
0.33

0.32
0.32

S
ilhouette

0.59
0.60

0.61
0.61

0.52
0.56

A
R

I
-0.0004

0.012
0.003

0.004
0.020

-0.006

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3653

variation and bring out a strong pattern in the corpus.
Cluster result visualization for each model can be
seen in Figure 2. There are many aspects to
determine the quality of the cluster. Based on table 4
and Table 5, for cluster performance, each model has
3 kinds of cluster evaluation scores, which are
silhouette, Purity, and ARI.

4.6 Cluster Evaluation
4.6.1 Performance Cluster Evaluation
Intrinsic Evaluation
The silhouette coefficient score is one of an intrinsic
measurement to indicate how well an algorithm
optimized a particular representation. The TF-IDF
model for every size of the corpus gained about 0.5
silhouette score. Meanwhile, Doc2Vec got about 0.6

TF-1

DV-1

TF-2

DV-2

TF-3

DV-3

TF-4 DV-4

Figure 2. Data Visualization for Each Model of Word Vector Representation

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3654

silhouette score. Even Though we cannot compare
intrinsic evaluation between different
representations, we can see both models, TFIDF and
Doc2Vec model, only gained half silhouette score
for the number of clusters = 5; meanwhile, the
maximum purity score is 1. Still using k = 5, we
calculated the silhouette score for each model. The
result tends to obtain the same value for various
corpus sizes. This result indicates the clustering
algorithm not optimal to cluster the object into 5
clusters. This intrinsic measurement calculates the
score based only on word vector representation and
does not need other external information; therefore,
the experiments can be done to a various number of
k. The result of the Silhouette score for various k
using the Doc2Vec model can be seen in Figure 3
and for the TFIDF-LSA model in Figure 4. Based on
this experiment,
we found the highest Silhouette score was obtained
for k 2, 3, and 4. This fact made us re-examine the
documents in the corpus. We found some categories
are so similar to each other. For instance, in our
corpus, the Economics category is too similar to the
Politics category and Laws category.

These categories have many same words so that the
boundaries between clusters are not so obvious.
Because K-means clustering is a hard cluster, if we
initialize the k number bigger than the optimal k
obtained by intrinsic measurement, then the quality
cluster's intrinsic score will not be optimal. The
findings show the quality of clusters not only
influenced by the corpus size but also by the quality
of the corpus. It needs deeper observation for further
research that focuses on the quality of data corpus,
such as the comparison of small corpora in domain-
specific and general corpora. We assumes the
performance of cluster can be improved if various
size of corpus and various small corpora in domain-
specific is implemented in this study.

Figure 3. Silhouette Score for Doc2Vec Representation

Figure 4. Silhouette Score for TFIDF-LSA Representation

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

Corpus‐500 Corpus‐250 Corpus‐125 Corpus‐60

Figure 4. Silhouette Score for TFIDF-LSA Representation

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

Corpus‐500 Corpus‐250 Corpus‐125 Corpus‐60

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3655

Extrinsic Evaluation

In this study, the extrinsic measurement of cluster
performance is Purity and ARI. An extrinsic
measurement need ground truth labels as
references to indicate how well the clusters For
both extrinsic evaluations, TFIDF-LSA gets a
better purity and ARI score than the Doc2Vec
model. ARI measurement focuses on the
capability of the K-Means algorithm to separate

the elements belonging to different classes. Based
on the ARI score, the TFIDF-LSA representation
is better in separating elements that not belong to
the same class as the Doc2Vec model. Based on
Table 4 and Table 5, the comparison of extrinsic
cluster performance evaluation is shown in Figure
5. BesideThe performance of DocVec dep

Time and Memory Consumption Evaluation
In addition to cluster performance, the other
consideration is the efficiency of cluster
processing. Based on the experiment in this
study, the time and memory consumption
measurements are showed in Figure 6. Doc2Vec
needs less time and needs less memory in the
clustering process to compare to the TFIDF-LSA
model.

It means the Doc2Vec model is better in time and
memory usage efficiency than the TFIDF-LSA
model. In the TFIDF-LSA model, time and
memory usage are increasing along with corpus
size increases. Meanwhile, in the Doc2Vec
model, time and memory usage tend to be stable
even though the corpus size increases.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Corpus‐60 Corpus‐125 Corpus‐250 Corpus‐500

TFIDF‐LSA Doc2Vec

0.00

100.00

200.00

300.00

400.00

Corpus‐60 Corpus‐125Corpus‐250Corpus‐500

TFIDF‐LSA Doc2Vec

0.000

0.200

0.400

0.600

0.800

Corpus‐60 Corpus‐125Corpus‐250Corpus‐500

TF‐IDF‐LSA Doc2Vec

Figure 5. Cluster Performance Comparison

0.000

0.100

0.200

0.300

0.400

0.500

0.600

Corpus‐60 Corpus‐125Corpus‐250Corpus‐500

TFIDF‐LSA Doc2Vec

Purity Score Comparison
ARI Score Comparison

Figure 6. Time and Memory Consumption Comparison

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3656

5. CONCLUSION

The study's purpose is to observe the suitable
word vector representation in text clustering for
small corpora. In this study, the comparison based
on cluster performance, time, and memory
consumption. For the cluster performance, which
is based on extrinsic measurement, the TDIDF-
LSA gets better performance than the Doc2Vec
model. It means the TFIDF-LSA representation is
better in separating elements that not belong to the
same class as the Doc2Vec model for all the
observed corpora. On the contrary, Doc2Vec is
better than TFIDF-LSA in time and memory
consumption. The usage of time and memory in
the TFIDF-LSA model is increasing, along with
corpus size increases. Meanwhile, in the Doc2Vec
model, time and memory usage tend to be stable
even though the corpus size increases. As further
work, the same experiments should be done in a
bigger corpus size but is still classified as a small
corpus to find out in what points the Doc2Vecs
tend to get better performance than TFIDF-LSA.
Moreover, it needs deeper observation for further
research that focuses on the quality of data corpus.

ACKNOWLEDGMENT

The authors gratefully acknowledge that the
present research is supported by Lembaga
Penelitian Universitas Sumatera Utara. The
support is under the research grant TALENTA
USU of the Year 2020.

REFERENCES:

[1] S. A. Curiskis, B. Drake, T. R. Osborn, and

P. J. Kennedy, “An evaluation of document
clustering and topic modelling in two online
social networks: Twitter and Reddit,” Inf.
Process. Manag., vol. 57, no. 2, p. 102034,
Mar. 2020.

[2] F. ois Role, S. Morbieu, and M. Nadif,
“Unsupervised evaluation of text co-
clustering algorithms using neural word
embeddings,” in International Conference
on Information and Knowledge
Management, Proceedings, 2018, pp. 1827–
1830.

[3] E. Rendón, I. Abundez, A. Arizmendi, and
E. M. Quiroz, “Internal versus External
cluster validation indexes,” Int. J. Comput.
Commun., vol. 5, no. 1, pp. 27--34, 2011.

[4] S. ; Khaled; Ranka and V. Singh, “An
efficient k-means clustering algorithm,”
1997.

[5] D. Arthur and S. Vassilvitskii, “K-means++:
The advantages of careful seeding,” in
Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, 2007.

[6] T. Kohonen, “The Self-Organizing Map,”
Proc. IEEE, 1990.

[7] Joachims Thorsten, “A Probabilistic
Analysis of Rocchio Algorithm with TFIDF
for Text Categorization,” 1996.

[8] A. Amalia, M. S. Lydia, S. D. Fadilla, and
M. Huda, “Perbandingan Metode Klaster
dan Preprocessing Untuk Dokumen
Berbahasa Indonesia,” J. Rekayasa Elektr.,
vol. 14, no. 1, pp. 35–42, Apr. 2018.

[9] A. Amalia, M. S. Lydia, S. D. Fadilla, M.
Huda, and D. Gunawan, “Document
Clustering Optimization with Synonym
Dictionary Check Function Case Study :
Documents in Bahasa Indonesia,” in 2017
International Conference on Electrical
Engineering and Informatics (ICELTICs),
2017, pp. 286–291.

[10] Y. Bengio et al., “A Neural Probabilistic
Language Model,” 2003.

[11] Q. Li, S. Shah, X. Liu, and A. Nourbakhsh,
“Data Sets: Word Embeddings Learned
from Tweets and General Data,” 2017.

[12] R. Collobert, J. Weston, L. Bottou, M.
Karlen, K. Kavukcuoglu, and P. Kuksa,
“Natural Language Processing (Almost)
from Scratch,” J. Mach. Learn. Res., vol. 12,
pp. 2493–2537, 2011.

[13] T. Mikolov, W.-T. Yih, and G. Zweig,
“Linguistic Regularities in Continuous
Space Word Representations,” in
Proceedings of the 2013 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human
Language Technologies, 2013, pp. 746–
751.

[14] D. Kim, D. Seo, S. Cho, and P. Kang,
“Multi-co-training for document
classification using various document
representations: TF–IDF, LDA, and
Doc2Vec,” Inf. Sci. (Ny)., vol. 477, pp. 15–
29, Mar. 2019.

[15] E. Altszyler, S. Ribeiro, M. Sigman, and D.
Fernández Slezak, “Comparative study of
LSA vs Word2vec embeddings in small
corpora: a case study in dreams database,”
Conscious. Cogn., vol. 56, pp. 178–187,
Oct. 2017.

[16] A. Silva and C. Amarathunga, “On Learning
Word Embeddings From Linguistically
Augmented Text Corpora,” in Proceedings

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3657

of the 13th International Conference on
Computational Semantics, 2019, pp. 52–58.

[17] C. Jiang, C. J. Hsieh, H. F. Yu, and K. W.
Chang, “Learning word embeddings for
low-resource languages by PU learning,” in
NAACL HLT 2018 - 2018 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human
Language Technologies - Proceedings of
the Conference, 2018, vol. 1, pp. 1024–
1034.

[18] Y. Gu, G. Leroy, S. Pettygrove, M. K.
Galindo, and M. Kurzius-Spencer,
“Optimizing Corpus Creation for Training
Word Embedding in Low Resource
Domains: A Case Study in Autism Spectrum
Disorder (ASD),” AMIA ... Annu. Symp.
proceedings. AMIA Symp., vol. 2018, pp.
508–517, 2018.

[19] P. Tao, J. Minghua, and H. Ming, “A
dynamic clustering algorithm based on
small data set,” in Proceedings of the 2009
6th International Conference on Computer
Graphics, Imaging and Visualization: New
Advances and Trends, CGIV2009, 2009, pp.
410–413.

[20] A. K. Jain, “Data clustering: 50 years
beyond K-means,” Pattern Recognit. Lett.,
vol. 31, no. 8, pp. 651–666, 2010.

[21] E. Altszyler, M. Sigman, and D. Fernández
Slezak, “Corpus Specificity in LSA and
Word2vec: The Role of Out-of-Domain
Documents,” pp. 1–10, Jun. 2019.

[22] E. Dusserre, “Bigger does not mean better!
We prefer specificity,” in 12th international
conference on computer semantics (IWCS),
2017, pp. 1–6.

[23] T. K. Landauer, P. W. Foltz, and D. Laham,
“An introduction to latent semantic
analysis,” Discourse Process., vol. 25, no.
2–3, pp. 259–284, Jan. 1998.

[24] N. E. Evangelopoulos, “Latent semantic
analysis,” Wiley Interdiscip. Rev. Cogn.
Sci., vol. 4, no. 6, pp. 683–692, 2013.

[25] T. Mikolov, I. Sutskever, K. Chen, … G. C.-
A. in neural, and U. 2013, “Distributed
Representations ofWords and Phrases and
their Compositionality,” CrossRef List.
Deleted DOIs, vol. 1, 2013.

[26] M. Sahlgren, “The distributional hypothesis
*,” Ital. J. Disabil. Stud. , vol. 20, pp. 33–
53, 2008.

[27] T. Mikolov, K. Chen, G. Corrado, and J.
Dean, “Efficient Estimation of Word
Representations in Vector Space,” pp. 1–12,
2013.

[28] Google, “Google Code Archive - Long-term
storage for Google Code Project Hosting.,”
Code.Google.com. pp. 1–6, 2013.

[29] J. Manotumruksa, C. Macdonald, and I.
Ounis, “A deep recurrent collaborative
filtering framework for venue
recommendation,” in International
Conference on Information and Knowledge
Management, Proceedings, 2017.

[30] Q. Le and T. Mikolov, “Distributed
Representations of Sentences and
Documents,” in International Conference
on Machine Learning, 2014.

[31] “2.3. Clustering — scikit-learn 0.22.2
documentation,” 2020. [Online]. Available:
https://scikit-
learn.org/stable/modules/clustering.html#cl
ustering-performance-evaluation.
[Accessed: 10-May-2020].

[32] C. M. De Vries, S. Geva, and A. Trotman,
“Document Clustering Evaluation:
Divergence from a Random Baseline,”
2012.

[33] A. Amalia, O. Salim Sitompul, E. Budhiarti
Nababan, M. Silvi Lydia, and N.
Rahmatunnisa, “BAHASA INDONESIA
TEXT CORPUS GENERATION USING
WEB CORPORA APPROACHES,” J.
Theor. Appl. Inf. Technol., vol. 31, p. 24,
2019.

[34] F. Z. Tala, “A Study of Stemming Effects on
Information Retrieval in Bahasa Indonesia,”
M.Sc. Thesis, Append. D, vol. pp, pp. 39–46,
2003.

[35] M. Adriani, J. Asian, B. Nazief, and H. E.
Williams, “Stemming Indonesian : A Confi
x-Stripping Approach,” ACM Trans. Asian
Lang. Inf. Process., vol. 6, no. 4, pp. 1–33,
2007.

[36] J. Montiel, J. Read, A. Bifet, and B. Kegl,
“Scikit-Multiflow: A Multi-output
Streaming Framework,” J. Mach. Learn.
Res., vol. 19, pp. 1–5, 2018.

