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A B S T R A C T 
 
Context: software effort estimation has been considered as one of the key drivers in software development 
success. A comprehensive understanding of state-of-the-art of software effort estimation techniques is very 
important.   
Objective: the aim of this study is to identify and characterize the existing software effort estimation 
techniques and to points insights of this research field.  
Method: a systematic mapping study on 136 primary studies was conducted to answer six research 
questions.   
Results: the study revealed that most of the existing work have used MMRE, MRE, and PRED for 
measuring the accuracy of effort estimation, where NASA93 and COCOM81 were the most used dataset. 
Furthermore, most of the reviewed studies  attempted to use machine learning methods, whereas  other 
studies proposed hybrid models. With respect to size metrics, most of the reviewed studies used line of 
code ( KLOC/ LOC/SLOC). 
Conclusion: new research should be carried out and oriented towards studying the relationship between the 
various factors that increase or decrease software effort such as, project type, team member’s expertise, 
required software reliability, and software complexity, which can be very useful to enhance effort 
estimation techniques.  
 
Keywords: Software Effort Estimation, cost estimation, Systematic mapping study. 
 
1. INTRODUCTION 
 
        Managing software projects is one of the key 
factors in project success. Barry Boehm(1981) 
pointed out in [1], “Poor management can increase 
software costs more rapidly than any other factor”.  
The major aspect of poor software development 
management, which is typically caused the software  
to fail, is inaccurate effort estimation [2].  
Therefore, software engineers should accurately 
estimate the amount of time and effort needed to 
complete any software project before they start 
planning for developing it. The accurate estimation 
is certainly help managing the software 

development more effectively, which is in turns 
reduce the likelihood of project failure [3].The 
major part of software cost is primarily the costs of 
effort involved. As a result of that, most of software 
cost estimation techniques rely on effort cost which 
calculate cost estimation in terms of a person-
month [4], or in terms of software size. With this 
diversity, a considerable number of software effort 
estimation (SEE) techniques have been proposed in 
the literature. These techniques were divided into 
four categories which are algorithmic models 
(constructive cost model (COCOMO) and 
functional point analysis (FPA)), non-algorithmic 
models (expert judgment, price to win, Analogy 
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based estimation), machine learning techniques 
(neural networks, fuzzy logic)[5], and hybrid 
method[6]. We conduct a Systematic Mapping 
Study (SMS) to understand the state of the art of 
software effort estimation technique. We aim to 
identify and analyze the different estimation 
techniques in the context of software effort 
estimation. Literature reviews aim to provide a 
brief background to the study, highlighting relevant 
work. Moreover, review articles describe a batch of 
articles that they have selected. However, the 
reliability of review articles is low not because they 
are unreliable, but because the writer has chosen 
articles and they might be biased. On the other 
hand, if the systematic mapping study is done 
correctly, it will greatly reduce possible bias. So it 
is will be the most reliable way to rich the body of 
knowledge of effort estimation. On the other hand, 
SMS focuses on providing an overview of a 
domain, identifying research activities on a research 
topic. One of the main differences between a 
literature review and SMS is that literature reviews 
focus on the results and discusses the findings, 
while SMSs have a broader scope to provide an 
overview of the research landscape[7].So in this 
end, we decide to do a systematic mapping study 
rather than a literature review. In this paper, we 
present a mapping study covered the papers that 
were published recently in software effort 
estimation up to January 2019. We performed 
automated searches on four famous scientific 
databases (ScienceDirect, Springer, ACM Digital 
Library, and IEEExplore).  Then, we analyzed and 
classified 136 studies that were published from 
2010 to 2019 based on six criteria namely: 
publication source, publication year, accuracy 
metrics, datasets, size metrics, and effort estimation 
methods. This study will serve as a high-level 
catalog of research in software effort estimation for 
both researchers and practitioners. In our study, we 
used the most two cited guidelines for conducting 
an SMS given by (Barbara Kitchenham [8], and 
Petersen et al[9, 10]. 

This systematic mapping study is structured as 
follows: related work is introduced in Section two. 
The methodology adopted to conduct this mapping 
study is presented in section three.  The research 
results are illustrated in section Four.    Section Five 
presents discussion and implications.  Section Six 
describes threats to validity related to this mapping 
study, while Section Seven concludes this study 
and highlights some future works.  

2. RELATED WORK 
 

       We have found five  systematic mapping  and 
systematic review studies which have investigated 
various facets on   software cost/effort  estimation 
[11], [12], [13], [14], [15]. 
Software effort estimation is not a recent topic, it 
has attracted researchers for more than a decads.  
As a result, the letirature is very rich of  
contributions that amied at enhancing the accuracy 
of SEE. One of the main reasons behinde that is, 
SEE was and still the predominant factor that has a 
direct impact on successul software project 
management. However, some existing studies 
focused on conducting a systimatic mapping study 
related to the topic of this study, which included 
studies publiched in different period of time.  
 
A. Idri, M. Hosni, and A. Abran  in  [11] identified 
24 studies that were published in the 2000–2016 
periods.  Their study aimed to analyze ensemble 
effort estimation (EEE) technique from six 
perspectives: individual models used to create 
ensembles, the accuracy of the ensemble estimate, 
rules for combining individual estimates, 
comparison of the precision of EEE methods with 
individual models, Comparison of precision 
between EEE techniques and methodology were 
used for creating ensemble methods. Authors 
concluded that EEE is more precise than individual 
models. 
 
S. El Koutbi, A. Idri, and A. Abran  in [12] focused 
on dealing with software effort estimation error. 
The authors selected 19 primary studies published 
between 1990 and 2015. They aimed to classify the 
identified primary studies according to research 
strategies, types of contributions, precise criteria, 
datasets, error approaches and methods for 
estimating effort. The results of their work 
indicated that in the past decades, the number of 
studies related to the estimate of software 
development effort error has increased. Despite the 
mapping study reported in [13], which was the most 
selected studies were conference papers, most of 
the studies published on journals. Moreover, 
authors noticed that accuracy metrics such as The 
Mean Magnitude of Relative Error, Median 
magnitude of relative error, and Percentage of the 
Prediction were widely used as performance 
metrics. 

The study reported in 2015 [13] focused on 
summarizing studies on global software 
development cost estimation. A total of 16 primary 
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studies were selected and analyzed by the authors 
and categorized according to publishing source, 
year of publication, type of research, research 
strategy, and type of contribution, cost drivers, cost 
estimation activities and methods, and the 
performance of cost estimation for global software 
development. The reported results have shown that 
the number of studies in cost estimation for global 
software development has increased recently.  The 
study, also, revealed that most of the studies (11 
studies out of 16) were published on conferences. 
Another interesting finding is  
that, the dominant software cost estimate 
contribution types for global software development 
(GSD) studies are models. 
 
Another study published in 2015 [14] conducted a 
mapping study  on analogy-based software effort 
estimation (ASEE) techniques. Unlike [15], this 
study  did not focus on all cost estimation 
techniques , rather it focused only on  analogy-base 
method .  The authors identified 65 studies from 
four scientific databases, which were published in 
the 1992–2012 periods. These selected studies were 
classified into four categories including the source 
of studies, research strategy, type of contribution 
techniques, and the steps of ASEE. Besides, this 
research examined ASEE techniques from different 
points of view such as estimation precision, 
comparative forecast precision, context estimation, 
the effect of methods utilized in combination with 
analogy-based software effort estimation 

techniques. This mapping study revealed that the 
use of fuzzy logic or genetic algorithms with an 
ASEE technique promises to produce more precise 
estimates. 

M. Jorgensen and M. Shepperd  In [15], presented a 
systematic mapping research on  software cost 
estimation that published only in journals. Authors 
have selected 304 software cost estimation studies 
from 76 journals and classified them based on study 
topic, estimation method, research strategy, context 
of the study and the datasets used. They also 
presented some advices for future research on 
software cost estimation, such as expanding the 
domain of the search for relevant studies, use of the 
manual search, and raising awareness of the effect 
of dataset characteristics on the outcomes of 
estimation techniques. 
 
It is clear that, most of the published systematic 
mapping studies share some similarities in the 
classification criteria such as estimation approach, 
dataset used, and accuracy metrics. Our work can 
be seen as an extended and updated to [15]. We 
adopted  a more general search string than that 
presented in [14], which was more specific in 
analogy based estimation. Moreover, unlike [15], 
we  included more recent publications, analyzed 
and classified  136 studies that were published 
recently which were not included in [11], [12], [13], 
[14], [15]. 
 

Table 1: Related work summary 
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3. METHOD 
 
         This mapping study was carried out according to   the guidelines given by Petersen et al[9, 10]. Fig. 1 
shows the process of systematic mapping research that used in this study with the actual number of 
obtained studies. Besides, the figure illustrates the outcomes from each step. As it is common in conducting 
mapping study, the first step is the formulation of research questions. This step is important for defining the 
systematic mapping scope. While, the main task of the second step is to search for studies that are 
potentially related to software effort estimation by applying the search strings on well-known databases. 
The result of this step is a large number of retrieved studies which are screened in third step. In this step 
only relevant studies are included by implementing the exclusion and inclusion criteria. Finally, a 
classification scheme is established using keywords, abstracts and full text that will be used to map the 
primary studies. 
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3.1 Research Questions 

      This study formulates six  research questions which are aligned with the objectives and context of this 
study. These research questions are presented in Table2. 
 

Table 2: Research questions 
 
 
 

 
 
 
 

Main motivation Research Questions ID 
To provide researchers with a list of different 
publishing sources and venues for software 
effort estimation studies. 

Which sources of publishing and venues are 
the primary destinations for studies on 
software effort estimation? 

RQ1 

To investigate how the frequency of effort 
estimation research has changed over time. 

How many effort estimation researches are 
published annually? 
 

RQ2 

To identify the different accuracy metrics that 
used to evaluated software effort estimation 
techniques and to identify the most widely used 
estimation performance criteria. 

What metrics were used to evaluate the 
accuracy of effort estimation techniques? 
In the past, many metrics and number of 
methods in effort estimation have been 
proposed. Unfortunately, most of them involve 
experts' judgment which could affect the 
accuracy of the results. 
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3.2 Search Strategy 
 

     To gather the primary studies relevant to our 
research questions, a search strategy of two stages 
was performed. The focus of the first stage was 
mainly on the determination of the search terms in 
order to formulate the search strings. In order to 
conduct the second step, we first selected four 
online databases based on their availability and 
reputation of publishing a wide range of software 
engineering publications. The selected online 
databases are ScienceDirect, Springer, ACM 
Digital Library, and IEEExplore. 

3.2 .1 Search terms 
Our searchterms have been combined using the AN
D operator to retrieve any studies containing all 
search terms.  The search strings were formulated as 
follows: 
(Software AND cost AND estimation) or (software 
AND effort AND estimation). 
 
3.2.2. Literature resources 
 

        For the search process, 
we conducted an online search on four famous 
databases (IEEExplore, Springer, ScienceDirect, 
and ACM) based on the pre-constructed search 

string, All searches were restricted to studies 
published from January 2010 to January 2019. In 
IEEE, ACM, and ScienceDirect databases we 
include the studies that contain the search string in 
their titles, abstract, or keywords. In Springer, we 
include only the studies that contain the search 
string in their title; this is due to the restriction 
imposed by Springer system. 

3.3 Screening The Studies For Exclusion  And 
Inclusion 

 
       The screening process has three distinct stages 
during and after the search process to select the 
relevant studies.  

First, we just read title and abstract of 5465 studies 
looking for information to exclude studies that do 
not relate to software effort estimation. As a result, 
3979 studies were excluded from the study, and 
1486 studies have left for the second stage. Column 
“stage 1“in Table4, displays the number of studies 
selected from each database. 

 In stage 2, we analyzed the studies, for further data 
beyond the title and abstract. The Criteria for 
exclusion and inclusion were used to exclude 
irrelevant studies, and to include only relevant 

To identify the most used datasets. 
 

Which datasets were used to evaluate software 
effort estimation models? 
Although the set of metrics proposed for  effort 
estimation are indeed useful for the 
characterization of software  effort , 
unfortunately, most of  the definition have 
lacked one or both of the following problems 
 Sound conceptual, theoretical bases 
 Statistically significant experimental 
validation 

RQ4: 

Many of the software metrics practitioners 
claim that the current state of software 
effort estimation methods is not very 
satisfying.  Therefore, the goal of this 
question is to identify effort estimation 
methods in order to recognize the current 
state-of-the-art, identify gaps, and 
limitations in the recent research and to 
highlight the potential upcoming research. 

What are the methods, and techniques used for 
performing software effort estimation? 
 
 
 
 

 

RQ5 

To identify the most used size metrics. What size metrics have been used to estimate 
software effort? 

RQ6 
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studies for our mapping research. The Criteria for 
inclusion and exclusion were presented in Table 3. 
At this point, we also excluded studies that don’t 
provide any contribution to software effort 
estimation. As a result of the second stage, 1042 
more studies were excluded from the 1486 studies in 
the first stage leaving only 444 studies for the third 
phase as presented in Table 4 (column stage 2).  
 In the last stage, duplicated studies were excluded. 
Moreover, in this stage we read the introduction and 

conclusion for each selected study in order to ensure 
that the focus of the study was within the scope of 
effort estimation .However, in some cases, we had to 
read the whole study to ensure their relevancy. 
As a result of the third stage, 308 studies were 
excluded from the 444 studies which were resulted 
from second stage. As a result of carrying out these 
three stages, a total of 136 studies were chosen to 
perform this mapping study as presented in Table 4 
(under stage 3 column). 

Table3: Inclusion and exclusion criteria 
Criteria of inclusion 

- Published studies with the period of January 2010 to January 2019. 
- Published studies that focused on the estimation of software effort or software costs. 
- Peer reviewed journals, conferences and book chapter. 

Criteria for exclusion 
- Studies written in not English language. 
- Studies that were not focused on the estimation of software effort or software costs. 
-Review studies. 

 
Table4: Number of studies before and after filtration phase 

 

Stage3  Stage 2 Stage 1  Results of search Databases  

 query2 query1 query2 query1 query2 query1 

80  102  153  414  566  1,172  2,511  IEEE  

9 26  24  112  101  384  451  ACM   

25  45  41  117  94  354  507  ScienceDirect  

22  22  31  42  40  44  42  Springer  

136  444  1486  5465  The total 

 
3.4 Keywording Of Abstracts 

 
        Keywording is a systematic way to identify 
and classify a set of existing studies and make sure 
that the scheme takes all existing studies into 
account[9]. We use Keywording techniques to 

reduce the effort required to create a classification 
scheme. Keywording techniques are made up of 
two steps .In step 1, we read the abstract of each 
study looking for any statements or keywords that 
represent the context, or the contribution of the 
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study. As a result of that, our understanding of the 
nature and contribution of the studies is 
significantly improved. Also, it helps us to   come 
up with a set of classifications. For some studies 
which their abstract were unclearly written, we had 
to read also the introduction and conclusion 
sections. In the second step, we built the categories 
for our mapping study based on the final set of 
keywords produced from step1. 

3.4 Mapping And Data Extraction 
  

To answer the aforementioned questions,  we 
followed the guidelines provided by Kitchenham 
[8] .We extract the needed information from the 
primary studies  based on the developed form  for 
extracting data  as presented in Table5. The data 
extraction form is organized into three columns, 
which are data items, their values, and our research 
questions. On the other hand, to enhance the 
presentation of our results, we used some 
visualization tools such as scatter plots, charts, and 
bars, etc. 

Table5: Data extraction form 
Data 
Items 

Values Research  
Questions 

Study 
number 

Integer  

Title of 
study 

Study  Name  

Author 
Name 

Set of authors Names   

Publishing 
year 

 Year RQ2 

Country  Name of Country RQ1 
Venue Publishing venue 

name 
RQ1 

Effort 
estimation  

method 
used 

Hybrid, Machine 
Learning, 

algorithmic, Non-
Algorithmic, Meta- 

heuristic, 
Optimization  
COCOMO   

RQ5 

Dataset Name of the datasets RQ4 
Metric 

used for 
accuracy 
evolution 

MMRE, MdMRE, 
PRED 

 (x), etc.   

RQ3 

Metric 
used for 

size 
estimation 

Size metrics : LOC, 
Function Points 

RQ6 

4. RESULTS 
 

        In general, the total number of the included 
studies in this mapping study is 136, which were 
retrieved and distributed differently in databases. 
The distribution of the selected studies is as follow: 
80(58.8%) were selected from IEEExplore, 
9(6.62%) were selected from ACM 25(18.4%) were 
selected from ScienceDirect and 22(16.%) were 
selected from Springer. Fig 2 illustrates the annual 
distribution of the publications included in this 
mapping research.  

 
Fig2: Publication distribution per year 

 
RQ1: Which sources of publishing and venues are 
the main destinations for studies on software effort 
estimation?  
The selected studies were published in different 
venues as shown in table 6. A total of 136 selected 
studies were distributed over four venue types 
including journal, conferences, workshops, and 
symposium. However, journal and conference are 
the popular venue types, which account for 25.7% 
(35 studies out of 136) and 69.9% (95 studies out of 
136) respectively. 
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Table 6:  Number and proportion of the selected 
studies over publication venues  

 

Fig 3 presents the proportion of the selected studies 
over countries. The leading country for publishing 
is India which account for 41% (56 studies out of 
136) .  

 
Fig3. Proportion of the selected studies over 

countries 

RQ2:  How many effort estimation researches are 
published annually? 
Fig4 illustrates the distribution of the selected 
studies over years. Software effort estimation has 
received a noticeable attention from researchers and 
reached its peak at 2016. Same number of studies 
(17 study) were published in 2015 and 2017. From 
2018 the number of published studies is gradually 
decreased. As it can be seen from Fig 4, there are a 
few studies published in 2019. Researchers 
continue their works in this area when we stop 
searching the literature.    

 

Fig4: The annual publication frequency 
 

RQ3: What metrics were used to evaluate the 
accuracy of effort estimation techniques? 
The results of this question are illustrated in Fig5. 
This figure shows the variety of accuracy 
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measurements that were used in the selected 
studies. As it can be seen from Fig 5, more than 
half of the selected studies used MMRE to calculate 
the mean relative error magnitude of the proposed 
work. MRE and PRED are considered as a common 
metrics which were used in 51 and 62 studies 
respectively. MRE is used to measure the absolute 
difference between actual and estimated efforts, 
while PRED is used to calculate the percentage of 
estimation that fall within X% of the real value. 
Unfortunately, the studies S23, S38, S45, S57, S59, 
S62 ,S83,S84,S90,and S113  did not use accuracy 
metrics to evaluate their proposed effort estimation 
methods. It is significant to notice that, the 136 
selected studies used different measurements of 
accuracy. This makes it extremely difficult to 
compare the performance of different techniques. 
However, it is interesting to notice that MMRE 
,PRED (X), and MRE 
are the most frequently used accuracy measure in 
our primary studies. Moreover, another interesting 
notice is that, some metrics where used only in one 
study such as MD, RMS, AF etc., which means 
there were proposed and used in the same study.    

 

 

Fig5: Accuracy measurements that were used in the 
selected studies 

 

RQ4: Which datasets were used to evaluate 
software effort estimation models? 
Figure 6 presents the multiple datasets that were 
used in the selected studies to evaluate the 
efficiency of the propose work that focus on 
software effort estimation. As it can be seen from 
the figure 5, the most used dataset is NASA93 
(25.7%). This dataset includes 93 flight or ground 
system software projects developed for NASA in 
seven different development centers in the 1970s 
and 1980s[16]. Moreover, nearly (22 %) used the 
COCOMO81 dataset, which consists of 63 software 
projects.  We noticed that, 51 of the selected studies 
(37.5%) used more than one datasets. However, 
some studies including S30, S41, S45, S49, S57, 
S70,S80,S100,S113,S127,S128, and S132 did not 
state what dataset being used.  

 

Fig6: The proportion of the found datasets 
 

RQ5:  What are the methods and techniques used 
for performing software effort estimation? 

In order to answer Question 5, we extracted and 
classified data related to the methods that have been 
used to estimate software effort. The result of this 
process is represented in Table 7, which consists of 
six classes namely: hybrid approach (which is a 
combination of two or more techniques), machine 
learning approach, algorithmic approach, non-
algorithmic approach, optimization COCOMO 
model, and Meta-heuristic approach.  

As it can be seen from the table7, almost 48 studies 
out of 136 (35.3%) used machine learning.  On the 
other hand, some researchers preferred to combine 
more than one technique to get more accurate effort 
estimation. This hybrid approach was used by 37 
studies (27.2%), while a proportion of (26.5%) 
were attempted to optimize COCOMO model.    
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Table 7: Effort estimation techniques 

  

  

 

 

 
RQ6:  What size metrics have been used to estimate 
effort? 
Table8 shows that the size measures used in the 136 
primary studies indicate that the lines of code 
(KLOC / LOC / SLOC) are the most frequently 
used size measures in effort estimation. In 7 of the 
studies, the use case was used as size measures, and 
a function point is used in 7 studies. No size 
measurements were shown in 53 studies because 
they focused only on cost drivers.  
 

Percenta
ge (%) 

Numbe
r of 

studies 

Study ID  

E
st

im
at

io
n 

te
ch

n
iq

u
e

27.2% 37 S1, S11, S12, S16, S24, S25, 
S29, S30, S32, S33, S36, 
S40, S42, S47, S52, S53, 
S54,S55, S62, S63,S78 

,S81,S83,S86,S90,S91,S101,
S103,S104,S110,S111,S112,

S115, S121 
,S124,S127,S135 

H
yb

ri
d 

m
od

el
  

35.3% 48 S2, S3, S6, S7, S13, S17, 
S20, S22, S28, S34, S35, 
S44, S51, S56, S59, S66, 
S67, S68, S70,S75,S76 

,S77,S85,S88,S89,S92,S93,S
94,S97,S98,S99,S102,S105,
S107,S108,S109,S114,S116,
S117,S120,S123,S126,S128,
S129,S130,S131,S132,S133 

M
ac

hi
ne

 L
ea

rn
in

g
  

26.5% 36 S4, S5, S8, S9, S10, S18, 
S19, S26, S31, S37, S38, 
S39, S41, S43, S46, S50, 
S58, S61, S69, S71, S72, 

S73, S74,S79, 
S84,S87,S95,S96,S100, 

S106,S118,S119,S122,S125,
S134,S136 

O
pt

im
iz

in
g

 C
O

C
O

M
O

  

3.7% 5 S14, S23, S60,S82,S113 

N
on

-
 

A
lg

or
it

hm
i

c

2.9% 4 S15, S45, S48, S57  

A
lg

or
it

hm
i

c 
m

et
ho

d

4.4% 6 S21, S27, S49, S64, S65,S80 

M
et

a-
 he

ur
is

tic
 al

go
ri

th
m



Journal of Theoretical and Applied Information Technology 
15th September 2020. Vol.98. No 17 
© 2005 – ongoing  JATIT & LLS 

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
3630 

 

Table 8: Size metrics  
5. DISCUSSION AND IMPLICATIONS  

 
       In this systematic mapping study, we reviewed 
136 primary studies focused on the topic of 
software effort estimation, which were published 
between 2010 till Jan 2019.  The results of our 
systematic mapping study have implications for 
researchers who are planning new studies for 
improving the accuracy of software effort 
estimation effectively. In this section, we 
summarize our findings and our recommendations 
for researchers as follows: 
Accuracy metrics: according to the results of this 
study, MMRE, MRE, and PRED (X) are the most 
used accuracy measures in our primary studies that 
confirm the results obtained by the previous 
mapping studies [11], [12], [14] .  Moreover, the 
selected studies used various accuracy metrics to 
evaluate the proposed effort estimation methods.  
This variation makes accuracy comparison between 
different software effort estimation methods very 
difficult.  

Although MMRE and PRED are still widely used 
for effort estimation accuracy measurement which 
is based on magnitude of relative error (MRE), 
basically, they do not measure the real accuracy but 
the distribution. Kitchenham et al. [17] reported 
that MMRE and PRED (25) are, respectively, 
spread measurements and kurtosis of factor Y 
where Y = estimate observation / actual 
observation. Accordingly, Y is known as a measure 
of accuracy, and MMRE and PRED (25) are a 
measure of the properties of the distribution of Y 
[17]. On the other hand, Idri, Ali et al.[18]  Stated 
that PRED (x) is less biased towards 
underestimations than MMRE and usually selects 
the same best methods as the Standardized 
Accuracy (SA), thus PRED (x) can be considered a 
reliable measure of accuracy. 

The Standardized Accuracy (SA) is a new accuracy 
measure proposed by Shepperd and MacDonell 
[19] , which based on the mean absolute residual 
(MAR) . SA measures accuracy as the MAR of 
prediction technique relative to random 

guessing  [19] to make sure that the obtained 

models are performing significantly better than 
random and constant models.  

Therefore, we recommend using the Standardized 
Accuracy (SA) measures that have been extensively 
used recently. For example, Abualkishik and 
Lavazza  [20] highlighted that: relative absolute 
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residuals (MMRE, MAR) can produce somewhat 
different evaluation and thus different interpretation 
for accuracy results. Therefore, they used absolute 
residuals in their evaluation to alleviate this 
problem.  

 
Datasets: The 136 selected studies used various 
historical datasets to evaluate the performance of 
estimation methods. 
The NASA93 dataset, for instance, was published 
in 2006 and is publicly available for research 
purpose. NASA93 was collected from various 
centers in the period between 1971- 1987. In other 
words, it is too antiquated, and it might not be able 
to cope with the modern software development 
practices. In spite of that, NASA93 dataset has been 
used in    (25.7%) studies as a primary dataset for 
evaluating the accuracy of the proposed effort 
estimation methods. Moreover, we found that 
almost none of the studies discussed deeply the 
properties of the dataset or the relationship between 
dataset's attributes and how they affect the software 
effort estimation. Rather, they only address the 
availability of the dataset.  
 

On the other hand, the ISBSG dataset is a large 
public database that contains data from different 
countries, organizations, application types, and 
development types[21]. The ISBSG dataset is large, 
verified, recent, and representative of current 
technologies in compared to other public datasets 
available to researchers, such as NASA93 and 
COCOMO 81 datasets. However, the ISBSG 
dataset has been found only in    (15.4%) of our 
chosen studies as a primary dataset for evaluating 
the accuracy of the proposed effort estimation 
methods. 

Therefore, we recommend that researchers pay 
more attention to understand the relationship 
between (effort multipliers) in the datasets and how 
representative they are for modern software rather 
than focusing on just the availability of the datasets. 
Moreover, we encourage researchers to use the 
most maintained and annually renewed commercial 
dataset such as the ISBSG dataset rather than using 
the old dataset. 
 
Estimation methods: our systematic mapping has 
identified six different approaches to estimate 
software effort. Almost 48 studies out of 136 
(35.3%) used machine learning to get a more 
accurate estimation . Also, we found that 37 studies 
(27.2%) used hybrid methods, which are the 

mixture of two or more approaches such as (meta-
heuristic + machine learning), following by 36 
studies (26.5%) that present various 
techniques/methods for optimizing the COCOMO 
model. It is difficult to determine which method is 
the best for estimating the software development 
effort since they are dissimilar in types and using 
un-comparative techniques. Moreover, the 
validation of the six methods has been using 
different accuracy metrics and datasets.  
According to our sample findings, there is no 
standard technique to estimate software effort. 
However, it seems that recently, machine learning 
method was the most commonly used model by 
researchers. 
 
Consequently, to provide a clear comparison 
between various estimation methods we suggest 
that researcher must study the different estimation 
methods deeply and apply them in real life to 
decide which method is more accurate and suitable 
to accurately estimate the effort of software. Not 
only this, we recommend that each organization 
that wish to use the effort estimation models to 
build their own model based on their own in-house 
data and calibrate the models from time to time to 
adapt to any estimation discrepancies. They are also 
encouraged to test several estimation methods to 
select the best-fits method that best-fit their data 
and their needs.  
Size measures:  according to the results of this 
study, lines of code (KLOC / LOC / SLOC) were 
the most frequently used size measures in effort 
estimation studies.  Indeed, LOC has been criticized 
a lot as inadequate measure due to inherent reasons 
such as subjectivity in coding style, programming 
language maturity, availability at later stages in the 
software development life cycle, and many other 
reasons [22]. To overcome the limitations of SLOC, 
Albrecht[23]proposed a new size measurement 
method called Function Point Analysis (FPA). Most 
of the recent studies have shifted to use Function 
Point since it covers the limitation of LOC. Thus, 
we encourage researchers/ practitioners to use 
function points instead of using LOC to avoid the 
limitations of SLOC.   

6. THREATS TO VALIDITY   
   
       The validity of our mapping study on software 
effort estimation has some threats. .In this section, 
we discuss the main threats and highlight the 
strategies that have been taken to minimize their eff
ects: 
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Above all, exclusion of relevant studies was the 
main threat we faced in our mapping study. To 
avoid this issue, an extensive search is being done 
into four well-known and relevant databases 
(ScienceDirect, Springer, IEEExplore, and ACM 
digital library) by using two search strings listed in 
Table 3 to retrieve as many relevant studies as 
possible. Moreover, we only chose studies that 
match our criteria for inclusion and exclusion. 
Nevertheless, we perceived that the search terms we 
used will not return all relevant studies. So, it is 
impossible to guarantee that we include all the 
relevant studies  . 

Internal validity is another threat which 
could lead to   irrelevant or inaccurate conclusion. 
The primary cause of the threat of the internal 
validity of our mapping study is inaccuracy of data 
extraction, and improper interpretation of the 
information in the selected studies. Extraction data 
from primary studies is a manual process which 
might lead to inaccuracies. To reduce this threat, 
we have used a predefined data extraction form 
which is presented   in Table 4 to decide which 
information must be extracted from the selected 
studies to answer each mapping question.   This 
will help us to classify the extracted data, and draw 
conclusions easily.  However, data extraction bias 
may still occur despite the use of a data extraction 
form. 
Moreover , the software effort estimation 
techniques that we present in table 7 were based on 
the selected studies. Therefore, it might not cover 
all methods if there some techniques presented in 
papers that not satisfied our inclusion criteria. 
 
7. CONCLUSION AND FUTURE WORK 
 
       A systematic mapping study in software effort 
estimation context was presented in this study. This 
study will serve researchers through providing a 
library of software effort estimation studies. We 
summarized and classified primary studies 
according into six criteria namely: publication 
source, publication year, accuracy metrics, datasets, 
size metrics and effort estimation methods.  We 
performed automated searches in four famous 
databases (IEEE, Springer, Direct Science and 
ACM), to identify the primary studies for the 
predefined research questions. 
Our systematic mapping study covered studies 
published between 2010 and Jan 2019. .Overall, we 
identified 136 primary studies. From the mapping 
study that has been carried out, it is possible to 
conclude the major findings as follows:     

 
One of the more significant findings emerge from 
this study is that the interest in using machine 
learning methods has increased in recent years. The 
second major finding was that the most targeted 
publications for software effort estimation are 
conferences. Moreover, the MMRE, MRE, and 
PRED(X) are the most used accuracy measure in 
most primary studies despite all the criticisms for 
these accuracy measures. Therefore, we 
recommend using the Standardized Accuracy (SA) 
or absolute residues instead.  
 
To train and test the proposed effort estimation 
methods, NASA93 dataset is the most used dataset 
by researchers, followed by the COCOMO81 
dataset. In addition, it is important to notice that, 
some studies used more than one dataset to evaluate 
the accuracy of their optimization techniques.   
It is obvious that, new research should be carried 
out and oriented towards studying the relationship 
between the various factors that increase or 
decrease software effort such as, project type, team 
member’s expertise, required software reliability, 
and software complexity, which can be very useful 
to enhance effort estimation techniques.  
In our future research, we plan to conduct a detailed 
SLR based on the findings of this systematic 
mapping. 
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