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ABSTRACT 
 

There is a growing reliance on technology as the core driver of the 4th industrial revolution.  This trend not 
only delineates Information Technology (IT) as a key topic of global discussion but also makes 
programming the most rapidly growing skills required by employers. Also, on the academic front, it 
challenges the capability of current curricula to produce competent IT graduates armed with the right skill-
set to meet the surging demand for IT professionals. Moreover, addressing this challenge goes beyond 
designing a university curriculum for fields that offer IT courses with a computer programming component 
because unlike other subjects, students often have little to no experience with computer programming 
before arriving at the university. Consequently, teaching and learning computer programming becomes 
more challenging than other subjects, and aside from the direct result in poor students’ academic 
performance, fewer students also master the skill. Generally, the debate on improving student’s academic 
performance has inspired a myriad of investigations into factors with correlative impact. However, while 
literature significantly links student’s academic performance to the impact of cognatic factors, there is still a 
need to investigate the impact of cognition on subjects. Such investigation has the potential to contribute 
toward enhancing curriculum development and inform approaches to teaching and learning. Therefore, in 
this paper, we investigated the effect of cognitive factors on students’ performance in introductory 
programming. Using a case study of undergraduate students at a South African University of Technology, 
our findings show that enhancing cognitive abilities leads to greater performance in introductory 
programming. More so, personal motivation was found to be the core driving force behind developing and 
enhancing cognitive ability. 
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1. INTRODUCTION  
 

The world is moving into the fourth industrial 
revolution - a new developmental period that has 
the prospect to converge the application of 
technology and create a significant and 
multidimensional influence on every field of human 
life [1], [2]. This technological revolution will 
deepen the reliance on everyday operations on 
technology, as technology becomes more and more 
pervasive, leading to a paradigm shift from a 
hardware-centered to software-centered technology 
[2], thereby making digital technology the pivot and 
driver of global innovation. 

Whether for the student, researcher, or 
industrialist, this massive transition, promises 
unlimited prospects in the emergent fields of 
Internet of Things, cloud computing, artificial 
intelligence, and machine learning and big data. 

From a labour market, it means there will be an 
ever-growing global demand for IT skilled and 
hands‐on personnel necessary for steering the 
resultant digital economic, social, and other 
innovative systems in both developed and 
developing countries [3], [4]. The implication is 
that computer programming, which is the core of IT 
skills will become almost indispensable. Therefore, 
it becomes highly imperative for universities that 
offer IT courses to strengthen their capability to 
produce graduates with sound programming skills. 

While the demand for graduates with 
programming skills is on the rise, studies indicate 
that learning programming is more challenging as 
evident the reported poor performance of students 
in programming courses, especially for beginners 
[5]. For instance, it has been alluded in [6] that it is 
often a challenging task for many students attending 
a computer programming course for the first time 



Journal of Theoretical and Applied Information Technology 
15th September 2020. Vol.98. No 17 
© 2005 – ongoing  JATIT & LLS 

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
3608 

 

and that it becomes evident as programming 
courses often have a significant number of students 
who either fail or dropout. Moreover, in South 
Africa, the performance of undergraduate students, 
in general, has been a concern not only to the 
instructors and administrators but the country as a 
whole [7], [8]. This predicament has affected both, 
private and public sectors of the economy.  The 
students are important assets of the country’s 
economy as they transfer skills from the 
Universities to the industry. The government spends 
a lot of money every year to fund universities 
across the country, hence university throughput is 
of paramount importance for the government.  One 
area that has seen a low pass rate is the science 
discipline [9].  The country relies on science and 
technology graduates to take the country forward. 

In this era of digital communications, the 
importance of IT graduates cannot be 
underestimated. There is an increasing demand for 
network engineers, programmers, and other IT-
related specialists, yet within South African 
Universities, the performance of IT students has 
been of concern to many academics even as the 
2017 graduate data shows that the number of 
undergraduate students that completed a Computer 
and Information Science degree grew less by 200 
compared to 2014. This concern has been 
corroborated by the Institute of Information 
Technology Professionals South Africa (IITPSA), 
which claims that the country’s education system is 
not geared to deliver high-end ICT skills at the 
scale needed. 

This challenge understandably stems from the 
concern raised in several studies that most students 
find it difficult to understand introductory 
programming courses, which leads to their poor 
performance in it [10]. Towards understanding this 
challenge, different studies have investigated the 
underlying factors such as cognitive ability, 
personality traits, gender, university integration, 
motivation, family factors, previous programming 
experience, and self-efficacy, mental model and 
school previous academic results [11], [12], [13]. 
These studies report that prior performance, 
mathematics ability, and previous programming 
experience have been frequently reported to have a 
positive effect on academic performance. However, 
with the world-wide average success rates in 
introductory programming courses estimated to be 
67 percent [14], it becomes highly imperative to 
investigate 1) How does cognitive ability impact 
students’ performance in introductory 
programming? 2) Which cognitive factor impacts 

students’ performance in introductory programming 
most? 3) How does cognitive performance factors 
affect students’ performance in introductory 
programming? 

In contributing to answering these questions, 
therefore, we investigated the perception of students 
on the effect of cognitive factors as a predictor of 
their academic performance in introductory 
programming. We illustrate these predictive factors 
through a case study involving two groups of year-2 
Information Technology students at a South African 
University of Technology. The discussion is then 
framed based upon the cognitive learning theory 
(CLT) [15] which theory maintains that “knowledge 
is something that is actively constructed by learners 
based on their existing cognitive structures”. 

In exploring how cognitive factors contribute to 
students’ proficient learning of introductory 
programming, we aim to contribute to the 
enhancement of curriculum development for South 
African Universities of Technologies, and toward 
providing useful insights for crafting intervention 
programs to assist at-risk students. 

In the rest of the paper, we examine the literature 
on solution approaches to poor performance in 
introductory programming. We then explored 
cognitivism as a learning theory and presented our 
case study design and instrument. Next, the findings 
of the study are presented, and the paper is 
summarized and concluded. 

2. LOW PASS RATE IN INTRODUCTORY 
PROGRAMMING: A SOLUTION SPACE 
ANALYSIS  

The phenomenon of low pass rates in 
introductory programming is well supported in the 
literature [14], [16], [17], but while most research 
efforts have been focused on corroborating existing 
claims about the actual pass rate [18], there is still 
scanty evidence on the attempts to explain the 
phenomenon itself. In this section, we attempt to 
categorize the works done on this subject to define 
the context of this study. Based on existing 
literature, we have identified two major solution 
approaches adopted in the literature towards 
addressing the phenomenal problem of low pass 
rate in introductory programming. These are:  
 
2.1 Learning Experience Approach 

Beyond identifying predictive factors in 
introductory programming, these categories of 
studies are focused on ways to enhance students’ 
performance by improving their learning 
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experiences. Essentially, the argument is that it is 
almost impossible to always have all the 
performance predictors to help guide students’ 
recruitment and placement in computer science and 
IT courses. Consequently, authors in [5], 
implemented a sub-goal learning framework for a 
semester-long introductory programming course to 
explore its longitudinal effects on students' 
performance. According to the authors, learning 
sub-goals consistently improved performance. 

In another innovative effort reported in 
[19], an automated assessment system was designed 
to provide target feedback to novice programmers. 
Although the authors admitted the need for further 
research, they noted that the targeted feedback 
messages may help to promote conceptual change 
and facilitate learning programming. Similarly, an 
empirical study that examines the use of 
cyberlearning and gamification has been proposed 
as a strategy to improve students’ learning in 
introductory Computer Programming has also been 
reported [20]. 

 
2.2 Proactive and Preventive Approach 

The implication of low performance in 
programming is not only limited to the direct effect 
on students’ programming skills but extends to 
include costs on delayed graduation. As such, 
research effort has been expended towards 
discovering the factors that may have a significant 
impact on student success in introductory 
programming. Such efforts ultimately aim at 
formulating models to enhance teaching and 
learning and to provide insight into providing 
preventive guidance for students’ placement into 
appropriate courses [17]. 

Studies that aligned with the proactive and 
preventive approach can be further divided into two 
sub-categories – the first investigate the effect of 
personal factors, with the other deal with the effects 
of teaching approaches. 

The first aims at identifying the personal 
factors that can significantly predict students’ 
performance in introductory programming. One of 
such factors investigated is students’ prior 
academic background can predict. For example, 
[17] found a correlation between high performance 
in introductory programming and students with a 
strong mathematics background. Extending on this 
finding, authors in [21], expended the scope of 

students’ academic background to include their 
Grade 12 Mathematics and English scores. 
According to the authors, students that had prior 
programming knowledge and or high scores in 
Mathematics and English Language are likely to 
perform better in introductory programming. 
Therefore, it was emphasized that it is imperative to 
take educational background into account when 
developing course materials. In another work as 
reported in [22], it was maintained that a strong 
self-efficacy as a personal factor has the potential to 
significantly boost a student’s performance in 
introductory programming. 

The other category of studies that deal 
with the effect of teaching approaches sought to 
understand how students’ performance is possibly 
impacted by the kind of teaching approach adopted 
by facilitators. Toward this goal, the “exercises-
only” and “lectures combined with exercises” 
teaching approaches were examined in [23]. The 
study asserts that the “exercise-only” teaching 
approach contributes more significantly toward 
recording high students’ performance in 
introductory programming. In the same vein, the 
authors in [21] introduced an interactive 
programming visualization tutorial tool but reported 
that the tool did not have the desired positive effect 
on students' performance in programming. This 
approach stems from the debate on the value of 
blended learning as an alternative to conventional 
teaching [10]. 

Though there is extensive research on the 
potential effect of cognitive factors on the academic 
success of undergraduates in general, we argue the 
need for a more narrowed perspective as the basis 
for this study. Therefore, this paper aligns with the 
proactive and preventive approach, with emphasis 
on the impact of cognitive factors on students’ 
performance in introductory programming. 

 
3. THEORETICAL UNDERPINNING: 
COGNITIVISM AND ACADEMIC 
PERFORMANCE 

Cognitivism broadly explains how mental 
processes are influenced by both external and 
internal factors to produce learning in an individual. 
As depicted in Fig 1, the theory asserts that the 
mental processes of learning occur between 
stimulus and response.  

 



Journal of Theoretical and Applied Information Technology 
15th September 2020. Vol.98. No 17 
© 2005 – ongoing  JATIT & LLS 

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
3610 

 

 
Figure 1: Cognitive learning framework adapted from [25] 

 
It further stresses that the individual takes in the 
stimulus, processes it in their mind, and then acts 
upon the stimulus, which alludes to the fact that in 
the cognitive learning process, new knowledge is 
built upon prior knowledge. Those processes 
consist of several elements of the individual which 
include attention, observation, perception, 
reasoning, organizing, memory, and forming 
generalizations. These cognitive elements or factors 
represent those characteristics of a person that 
affect the way they learn and perform [24]. 

 
Fundamentally, for effective learning, a 

learner must give thoughtful attention, have a good 
memory of the relevant information, and be able to 
carry out independent reasoning of evaluation. 
Furthermore, to strengthen these cognitive 
functions, both task difficulty and cognitive load 
should be low, and the learner must practice 
whatever is being learned. 

We framed our analysis around the three 
major cognitive factors namely, attention, memory, 
and reasoning, that play a central role in a 
programming task. Also, we extend the framework 
by exploring the contribution of the cognitive 
performance factors of task difficulty, neglecting 
practice, and cognitive load to students’ 
performance in programming (illustrated in Figure 
1). 

4. A CASE STUDY DESIGN AND 
INSTRUMENTATION 

 
This case study was structured in a manner that 

allows the researches to explore the effect of 
cognitive factors on a total of 20 second-year 

students who were selected for the study. We 
categorized the study population into two 
subgroups (subcases) based on the students’ first 
and second semesters average performances in their 
first year. Each subcase was further partitioned into 
two equal focus groups. To ensure confidentiality 
and avoid stigmatization, the basis of the 
categorization was not disclosed and neither of the 
two groups knew about the existence of the other. 
More importantly, we had presumed that 
participants may not be willing to give out honest 
information should they know that the investigation 
equally involves some other students who might 
know them.  

The first subgroup consists of ten students who 
had an average score of less than 50% in their first 
and second semester year one introductory 
programming. The data was officially obtained 
from the department of information and 
communication technology by one of the 
researchers who facilitates the course. Scores 
within that range depict a poor to fair performance. 
This categorization condition is meant to enable the 
researchers to evaluate how cognitive factors may 
relate to their low performance. On the other hand, 
the second subcase comprised of another ten 
students whose average score is 50% or higher. 
Similarly, this score range of identified students of 
good to excellent performance. 

Because this study investigates a real-world 
problem, the methodology is designed to ensure 
flexibility in the process of gaining concrete and in-
depth contextual knowledge through two data 
collection tools – unstructured questionnaires and 
focus group interviews. Qualitative data may be 
broader and richer [26], but it may also suffer the 
deficit of being less precise. Consequently, we used 
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data triangulation and prolonged involvement 
strategies to enhance precision and strengthen the 
validity of the study as outlined by Robson [27] and 
other authors [28]. We achieved data triangulation 
by using more than one tool to collect the same data 
on different occasions, which gives the researchers 
multiple perspectives towards the studied 
population thereby providing a broader picture. 
Also, the study leveraged the benefit of prolonged 
involvement. The long-term relationship that 
already exists between the participants and 
researchers, who are both lecturers in Information 
and Communication Technology Department, 
enabled the investigators to understand how 
participants interpret terms used in the study and 
created an atmosphere of trust that ensured 
participants spent more time providing data. 

Ultimately, the first phase of data collection 
involved the use of unstructured questionnaires to 
allow interviewees to articulate their thought 
unrestricted. We then followed our unstructured 
questionnaire with open-ended focus groups 
interview with the participants about their prior 
programming knowledge, computer literacy, the 
personal challenge in learning programming, 
students’ attitude in class, access to practice tools, 
motivation for studying IT, personal study time, 
study strategies, etc. Some of these questions were 
raised as a follow up on some interesting views that 
we had picked up from the completed 

questionnaires. Adopting the funnel model, the 
researchers first presented the objectives of the 
interview and explained how the data from the 
interview will be used and began by asking open 
questions that later led to specific questions around 
cognitive and cognitive performance factors. 

To ensure quality and engaging interaction and 
ease note-taking, we partitioned the study 
population into four focus groups and interviewed 
each group separately for 15-30 minutes. By 
interviewing each interviewee more than once, we 
aim at gathering data that is both detailed and rich 
in context. The patterns that emerged from these 
interviews comprise the bulk of the data 

Data collected was first transcribed, coded, 
and then qualitatively analyzed. As illustrated in 
Table 1, we designed a two-level coding scheme 
following Runeson’s recommendation [29]: the 
first-level codes were formulated to allow the 
researchers to identify and link text in the interview 
transcripts to the relevant research question that it 
speaks to. Each first-level code was then further 
decomposed into second-level codes that allowed 
each first-level linked text to be linked to a 
particular construct that it addresses. With this 
coding system, we developed a case study 
description of the two subcases. 

. 

Table 1: Coding Scheme 
Code Main code Subcode 

1 RqCF: Cognitive Factors RqCFA: Attention 
RqCFM: Memory  
RqCFR: Reasoning 

2 RqCPF: Cognitive Performance Factors RqCPFT: Task difficulty  

RqCPFN: Neglecting of practice 

RqCPFC: Cognitive load 

3 SSa: Subcase Study 1 Student1_SSa … Student10_SSa 

4 SSb: Subcase Study 2 Student1_SSb … Student10_SSb 

5 RQ RQ1 

RQ2 

RQ3 

 

5. ANALYSIS OF RESULTS 

For each subgroup of the study, we approach 
the analysis and draw inferences through two sets 
of observations characterized by a block of related 
questions that were used to direct the focus of the 
inquiry. So, in the context of learning 
programming, we begin by examining how 
attention, memory, and reasoning as the main 
aspects of cognitive ability can influence by 

personal factors such as prior knowledge and skills, 
amongst others. Another vital component of the 
analysis is the examination of the modulating effect 
of the three cognitive performance factors on 
students’ cognitive ability as demonstrated in their 
performance in introductory programming. was 
observed. 
The overall goal here was to use this set of findings 
as the basis to explore and explain the relationship 
between students’ performance in introductory 
programming and their cognitive abilities and 
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cognitive performance factors. With the insight 
gained from this, we contribute toward the notion 
of a proactive approach toward addressing the 
problem of poor performance in introductory 
programming. 

2.3 Analysis For Subgroup Study 1 

As our result indicate, cognitive factors are the 
major determinants of the participants’ proficiency 
in learning programming and account for the 
quality of their performance. Specifically, 
participants with weak cognitive ability and failed 
to strengthen their cognitive function performed 
poorly in introductory programming. This finding 
confirms previous works about the impact of 
cognitive factors on academic performance [30] in 
general. As earlier explained, the focus of the 
analysis is this subgroup centres on how the 
personal factors emanating from the challenges 
highlighted by the block of interview questions 
below are linked to the cognitive ability (attention, 
memory, and reasoning) and cognitive performance 
factors of participants who scored less than 50% in 
introductory programming. This choice of the 
organization follows the pattern learned from the 
interview transcript and affords and ensured clarity 
in the discussions. 

A) Prior Programming Knowledge, Access to 
Practice Tools/Basic computer Literacy Skills, and 
Perceived Challenge 

 
We reported that all ten students who had an 

average score of less than 50% had no prior 
programming knowledge before they gained 
admission into the university. And nine of the 
participants did not own a personal computer 
throughout their first-year study. Interestingly, all 
the students admitted that the inability to access a 
computer at a convenient time was the major 
challenge to learn programming during their first 
year. One student quoted below vividly illustrated 
the challenge. 

Student1_SSa: I didn’t have a personal computer 
and the computer labs were always crowded and 
my day also occupied with lectures. So for me, 
getting the opportunity to catch a seat at the 
computer lab and have sufficient practice time 
without having to miss other important classes was 
a monster. Although I could understand the 
fundamentals, I was unable to do the actual 
programming. 

As explained by Sean Kang [31], “we 
remember things, because they relate to and can 

easily be integrated into our existing knowledge 
base or it’s something we retrieve, recount or use 
repeatedly over time.” Based on this, it is evident 
that the students’ lack of both programming 
background and practice tools, as highlighted 
above, negatively impacts the cognitive factor of 
‘memory” and the cognitive performance factor of 
‘neglecting practice’. This submission aligns with 
the cognitivist theory assertion that “new 
knowledge is built upon prior knowledge.”. More 
so, we argue that programming requires a great deal 
of memory and practice because it is an advanced 
problem-solving skill that exclusively relies on the 
application of specific concepts and techniques. 
Furthermore, as reported in [32], low-ability 
students perform better in programming when 
given unlimited computer access to practice. 

On computer literacy, only three students 
reported that they had basic computer literacy skills 
before commencing university studies. The rest 
only started learning how to operate a computer at 
the university. In this, we observed that the open-
interview transcripts echo larger students’ skill gaps 
in basic computer literacy and its perceived 
consequence on their introductory programming 
proficiency. Though expressed differently as we 
quote below, they all stressed the same challenge: 

Student9_SSa: If I had a chance to learn basic 
computer skills or programming before my 
enrolment into first-year, maybe I would have 
struggled less. 

Student4_SSa: "Oh gosh, it was not very good for 
me at that time. I remember having to spend more 
time learning how to use the computer than 
programming itself. 

Student10_SSa: It really affected my concentration, 
especially when we were supposed to do stuff 
during a lecture. And the worst is that I often fail to 
pay further attention if I was unable to get the 
previous exercise – it was frustrating. 

All the students acknowledged that the factors 
listed above affected their ability to understand 
concepts in programming. However, when asked to 
rate the factors, programming background and basic 
computer literacy were rated by seven of the ten 
students as the factors that mostly influence poor 
performance in programming.  

With these findings, we learn that the lack of 
basic computer literacy skills can affect the 
cognitive factor of ‘attention’. And according to 
Veerasamy et al [33], in learning to program, 
learners are required amongst other things to think, 
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understand the concepts of programming, and 
applied their problem‐solving skills. This is where 
‘attention’ comes in handy as a key component of 
problem-solving skills. And as reported in [34], 
lack of attention in class is generally is negatively 
correlated to performance. Concerning the 
cognitive performance factors, ‘task difficulty’ and 
‘cognitive load’ were significantly impacted 
because the students’ mental task of learning was 
now doubled: learning to use the computer and 
learning programming. 

B) Class Attitude, Motivation for Study, and 
Personal Study Strategies 

Implicit in this group of questions is how 
students internally influence their cognitive and 
cognitive performance factors.  Here we noticed an 
interesting trend in the data from the questionnaires 
and transcribed open-interview. First, we had 
discovered that in responding to a question on how 
they often felt during programming classes, some 
participants were very direct with such responses as 
quoted: “Easily distracted”, “I hardly concentrate 
during the lecture”. Second, we also noticed during 
the open-interview that several students answered 
“No” to the question of whether they do ask or 
answer questions in the class. Therefore, to help 
understand this trend, we decided to introduce a 
question that would probe their motivation for 
study. 

Interestingly, from this further probe, the 
following vital insights were gained: five out of the 
ten students said they were not originally motivated 
to study IT. Out of these five students, three of 
them explained that they found themselves studying 
the course because it was the only one still open as 
at the time they applied for admission into the 
institution. In contrast, as quoted below, it was 
found that the remaining two students were 
demotivated because they had had a wrong 
perception of the course. According to one of these 
two participants coded as Student7_SSa: 

I had thought IT was just theory and the kind of 
practical that would involve how to use the internet. 
So, in my first programming class, I was like “I’m 
in the wrong place”. That feeling hunted me 
throughout, and it affected my attention in the 
class. 

The finding relates to the fact that motivation is 
a dominant driving force in the pursuit of career 
and other goals because it has a dramatic impact on 
what a person pays attention to [33]. Moreover, 
attention as stated earlier is a critical component of 

cognitive learning. This explains why these 
students had a poor performance in introductory 
programming. That is, their lack of motivation 
reduced their level of attention which in turn, 
weakened their problem-solving ability. 

The aspect of formulating a personal study 
strategy was variously echoed too. While all the 
students who were demotivated seemed to not have 
any precise strategy targeted at learning 
programming, the others maintained that their study 
strategy did not work out as expected. 

Student1_SSa: I wanted to be practicing as often as 
I can but that wasn’t possible because I had no 
personal computer. And whenever I had free time at 
school, the lab computers are either occupied or 
the place is too rowdy. 
Student2_SSa: I had to be staying late at school to 
use the lab when most students would have gone. 
However, I didn’t still get enough practice time as I 
wish. 

Programming requires students to develop 
some degree of creative thinking [34]. However, 
such a skill can be difficult to develop under the 
kind of scenario described in the experiences shared 
above. Instead, from the thoughts echoed about 
personal study strategy, we can infer that the 
circumstances under which the students learned 
programming harmed their cognitive factor of 
‘reasoning’. 

 
2.4 Analysis For Subgroup Study 2 

 
We will see below that cognitive factors and 

cognitive performance factors all played a 
significant role in enhancing students’ performance 
in introductory programming. Ultimately, our 
results reveal a pattern where students with an 
average score of 50% and above are associated with 
the positive impact of cognitive factors and 
cognitive performance factors. 

 
A) Prior Programming Knowledge, Access to 
Practice Tools/Computer Literacy, and Perceived 
Challenge 

 
Of the ten students in this subcase, four 

explained that learning prior programming was not 
extremely difficult or new to them because they had 
completed a short course on IT fundamentals before 
joining the university. Unlike the participants in the 
previous subcase, we witnessed that seven of the 
participants in this subcase had personal computers. 
Surprisingly, even the remaining three participants 
who did not have a personal computer also did not 
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consider introductory programming too difficult to 
learn. Compelled by this unexpected observation, 
more questions were raised to investigate why these 
participants could develop such confidence and had 
performed in programming. However, in our 
conversation, we understood that they had some 
leverage over several other students. 

Student5_SSb: I lived very close to the campus. 
That enabled me to mostly stay back at school after 
lectures till late when most students would have left 
and the lab if almost free. That was how I could 
meet with other good students that we practise and 
solve programming problems together. 

From this finding, we can conjecture a link to 
some factors examined by this study. Staying late to 
use the lab computers, for instance, is a direct 
opposite of the ‘neglecting practice’ cognitive 
performance factor, therefore, it enhanced the 
participants’ ability to learn to program [31]. 
Drawing from previous works, we explain that 
constant practice is highly needed for students to 
progress in their learning of programming, 
especially as novices [35]. Also, the reported 
interaction with other students that are good in 
programming stands to promote independent 
learning and enrich the cognitive factor of 
‘reasoning’ [36] which is the strength that gives a 
programmer the capability to analyze, organize, 
implement, and evaluate the code outcomes. 
Furthermore, repeated practice is a form of 
reinforced learning, which can enhance memory as 
explained by Sean Kang [31]. 

Compared to the perceptions of subcase study 
one, computer literacy was not observed to be a 
major challenge to almost all the participants in this 
subcase.  Although none of them claimed to have 
been very proficient in using the computing before, 
we noticed that their thoughts about how computer 
literacy skills impacted their cognitive abilities 
toward learning programming converged toward 
the importance of having access to practice tools. 
The most explicit view is quoted below. 

Student8_SSb: Not that I was initially good or 
perfect in using the computer and in programming 
itself. But because I had basic programming 
knowledge and also started using a personal laptop 
before I entered school, at least I knew how to do 
all the basic things with a system. So, I could easily 
practise on my own in my room and at the lab, I 
didn’t struggle and was even helping to guide other 
students who were using the computer for the first 
time. 

Coupled with our earlier report that some 
participants of this subcase had prior programming 
knowledge, it can be deduced that the participants’ 
performed well in introductory programming 
because most of them either had prior programming 
knowledge or possessed some level of computer 
literacy skills. In connection with the cognitive 
factors and cognitive performance factors, we 
explain that: having prior programming knowledge 
and possessing basic computer skills helped to 
decrease participants’ cognitive load as reported in 
[37], enhance memory of the course, and promote 
their ability to be attentive in class. Having the time 
to practise also reduces cognitive load and eases the 
mental difficulty of the task of learning 
programming. 

B) Class Attitude, Motivation for Study, and 
Personal Study Strategies 

One distinctive characteristic of those 
participants that performed above average in 
introductory programming was observed in the 
individual attitude. For example, more than half of 
them either ask or attempt to answer questions in 
the class. A particular participant coded as 
Student3_SSb even employed the strategy of 
attempting to answer questions in the class to 
indirectly seek more clarification from the 
facilitator. 

Sometimes when I fail to understand what has been 
explained in the class and the lecturer throws a 
question, I quickly raise my hand to attempt. I know 
that I don’t know the right answer, but I do that 
often so that the lecturer can correct me properly 
or even explain further. 

In connection with that unique attitude, we 
observed that eight out of the ten participants in this 
subcase wanted to study IT right from the onset. 
This finding points to the role of motivation as was 
revealed during the open-ended interview. 

 
Student9_SSb: In the institute where I did a short IT 
course, we were taught about what you can do 
through programming and how valuable a 
programmer can be. That as a programmer I don’t 
need to look for a job. Right from then, I really 
wanted to be a programmer. 

As we have alluded in the subcase one, this 
result highlights the fact that participants who are 
positively motivated are most likely going to be 
attentive in class thereby performing better. 
Another interesting finding is that the characteristic 
attitude of forming a unique or personal study 
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strategy was predominant amongst participants of 
subcase study 1. These positive attitudes which 
include staying late at the lab to get a free 
computer, engaging in self-organized collaborative 
learning, and attempting to answer questions in the 
class as a way to seek more clarification are all 
driven by motivation, and indicatively enhances 
cognitive learning. For example, regular practice, 
and collaborative learning, have a positive effect on 
boosting the three cognitive factors of long-term 
learning memory, reasoning, and attention. 
Cognitive performance factors are equally impacted 
positively by a participant’s motivational state 
because regular practice and collaborative learning 
jointly helped the participant not to underperform 
by neglectfully depriving their brain of practice. 

 
6. SUMMARY AND CONCLUSION 

Based on the cognitivist framework, this 
study’s instrument was designed to elicit responses 
on participants’ prior programming knowledge, 
computer literacy skills, access to practice tools, 
personal motivation, attitudes in class, and 
perceived challenges in learning programming. The 
aim is to investigate how cognitive abilities 
influence participants’ performance in introductory 
programming and how participants can develop or 
enhance their cognitive functions. 

Our findings show that memory, among other 
cognitive factors, has the strongest effect on 
participants’ performance in introductory 
programming, which agrees with previous works on 
the impact of cognitive factors on academic 
performance in general. This agrees with Sean’s 
[31] work which states reported that reinforced 
learning or repeated practice over time produces 
superior long-term learning by promoting the 
memory of learners. 

 
Figure 2: Impact Factor Impact Analysis Model

As illustrated in Figure 2, our findings not only 
answered the research questions but also offers new 
insight on how personal motivation acts as an 
external factor to influence both cognitive factors 
and cognitive performance factors. Therefore, 
unlike existing studies which mostly investigated 
the impact of cognitive ability in general on 
academic performance, this work uniquely 
presented an impact factor relationship model 
(depicted in Figure 2), which shows the 
determinants of performance in programming as a 
combination of individual cognitive factors and the 
and cognitive enhancement factors. 

From this model, we drew the key 
understanding that students’ performance in 
introductory programming is linked to three broad 
and inter-related factors: cognitive abilities, 

cognitive performance factors, and personal 
motivation. Participants with strong cognitive 
abilities that are supported by positive cognitive 
enhancement factors were found to have performed 
better in introductory programming. The current 
literature also strongly linked performance in 
computer programming to self-efficacy, individual-
interest, positive-thinking, and self-motivation [40]. 
Furthermore, this study alludes that in as much as 
cognitive ability might vary with individuals, 
personal motivation is a vital component that 
directly and indirectly contributes to developing or 
enhancing participants’ cognitive ability. This 
postulation resonates with the fact that demotivated 
participants were associated with a lack of attention 
in the class and are characterized by poor 
performance. On the contrary, highly motivated 
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participants were not only found to pay attention in 
class, they equally demonstrated the unique attitude 
of formulating personal study strategies such as 
engagement in self-organized collaborative learning 
and frequent practice. This again is supported by 
the finding that attention and motivation are the 
cornerstones of classroom learning [41]. While the 
former directly help them to develop the cognitive 
ability of reasoning, the latter enabled the 
participants to improve memory because it a 
cognitive function enhancement factor. 
All these sums up to the conclusion that the lack of 
prior programming knowledge, computer literacy 
skills, practice tools, and personal motivation can 
independently impede students’ performance in 
introductory programming. This conclusion 
summarizes result as demonstrated in Figure 2, 
which shows that students with strong cognitive 
factors perform better in introductory 
programming. And that students who engage in 
cognitive enhancements activities can indirectly 
improve their performance in programming by 
strengthening their cognitive abilities.   
This paper, therefore, contributes as follows: first,  
we contribute toward enhancing teaching and 
learning by i) scaling the impact of each cognitive 
ability on the performance of participants in 
introductory programming and ii) illustrating how 
cognitive performance factors can increase or 
decline their cognitive function. This offers useful 
insight into how facilitators can innovatively 
organize and their tasks. Second, by highlighting 
the predominant challenges that impede the 
development of strong cognitive ability, we 
contribute both toward enhancing curriculum 
development and a proactive approach to address 
performance in introductory programming. 
Understanding how these challenges interfere with 
cognition can inform the design of more supportive 
curricula for new students in a manner the offers 
them all the leverage to excel in programming. 

These contributions provide the basis to 
suggest that: information technology and basic 
computer literacy courses should be incorporated 
into pre-university curricula because these two are 
the core of the external elements that drive 
cognitive abilities in the context of learning 
computer programming. 
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