
Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3607

THE EFFECT OF COGNITIVE FACTORS IN DETERMINING
STUDENT’S SUCCESS IN COMPUTER PROGRAMMING

MURIMO BETHEL MUTANGA

Department of Information and Communication Technology, Mangosuthu University of Technology,

Umlazi, Durban, South Africa

mutangamb@mut.ac.za

ABSTRACT

There is a growing reliance on technology as the core driver of the 4th industrial revolution. This trend not
only delineates Information Technology (IT) as a key topic of global discussion but also makes
programming the most rapidly growing skills required by employers. Also, on the academic front, it
challenges the capability of current curricula to produce competent IT graduates armed with the right skill-
set to meet the surging demand for IT professionals. Moreover, addressing this challenge goes beyond
designing a university curriculum for fields that offer IT courses with a computer programming component
because unlike other subjects, students often have little to no experience with computer programming
before arriving at the university. Consequently, teaching and learning computer programming becomes
more challenging than other subjects, and aside from the direct result in poor students’ academic
performance, fewer students also master the skill. Generally, the debate on improving student’s academic
performance has inspired a myriad of investigations into factors with correlative impact. However, while
literature significantly links student’s academic performance to the impact of cognatic factors, there is still a
need to investigate the impact of cognition on subjects. Such investigation has the potential to contribute
toward enhancing curriculum development and inform approaches to teaching and learning. Therefore, in
this paper, we investigated the effect of cognitive factors on students’ performance in introductory
programming. Using a case study of undergraduate students at a South African University of Technology,
our findings show that enhancing cognitive abilities leads to greater performance in introductory
programming. More so, personal motivation was found to be the core driving force behind developing and
enhancing cognitive ability.

Keywords: Cognitive factors, Cognitive performance, Programming, Curriculum, Learning

1. INTRODUCTION

The world is moving into the fourth industrial
revolution - a new developmental period that has
the prospect to converge the application of
technology and create a significant and
multidimensional influence on every field of human
life [1], [2]. This technological revolution will
deepen the reliance on everyday operations on
technology, as technology becomes more and more
pervasive, leading to a paradigm shift from a
hardware-centered to software-centered technology
[2], thereby making digital technology the pivot and
driver of global innovation.

Whether for the student, researcher, or
industrialist, this massive transition, promises
unlimited prospects in the emergent fields of
Internet of Things, cloud computing, artificial
intelligence, and machine learning and big data.

From a labour market, it means there will be an
ever-growing global demand for IT skilled and
hands‐on personnel necessary for steering the
resultant digital economic, social, and other
innovative systems in both developed and
developing countries [3], [4]. The implication is
that computer programming, which is the core of IT
skills will become almost indispensable. Therefore,
it becomes highly imperative for universities that
offer IT courses to strengthen their capability to
produce graduates with sound programming skills.

While the demand for graduates with
programming skills is on the rise, studies indicate
that learning programming is more challenging as
evident the reported poor performance of students
in programming courses, especially for beginners
[5]. For instance, it has been alluded in [6] that it is
often a challenging task for many students attending
a computer programming course for the first time

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3608

and that it becomes evident as programming
courses often have a significant number of students
who either fail or dropout. Moreover, in South
Africa, the performance of undergraduate students,
in general, has been a concern not only to the
instructors and administrators but the country as a
whole [7], [8]. This predicament has affected both,
private and public sectors of the economy. The
students are important assets of the country’s
economy as they transfer skills from the
Universities to the industry. The government spends
a lot of money every year to fund universities
across the country, hence university throughput is
of paramount importance for the government. One
area that has seen a low pass rate is the science
discipline [9]. The country relies on science and
technology graduates to take the country forward.

In this era of digital communications, the
importance of IT graduates cannot be
underestimated. There is an increasing demand for
network engineers, programmers, and other IT-
related specialists, yet within South African
Universities, the performance of IT students has
been of concern to many academics even as the
2017 graduate data shows that the number of
undergraduate students that completed a Computer
and Information Science degree grew less by 200
compared to 2014. This concern has been
corroborated by the Institute of Information
Technology Professionals South Africa (IITPSA),
which claims that the country’s education system is
not geared to deliver high-end ICT skills at the
scale needed.

This challenge understandably stems from the
concern raised in several studies that most students
find it difficult to understand introductory
programming courses, which leads to their poor
performance in it [10]. Towards understanding this
challenge, different studies have investigated the
underlying factors such as cognitive ability,
personality traits, gender, university integration,
motivation, family factors, previous programming
experience, and self-efficacy, mental model and
school previous academic results [11], [12], [13].
These studies report that prior performance,
mathematics ability, and previous programming
experience have been frequently reported to have a
positive effect on academic performance. However,
with the world-wide average success rates in
introductory programming courses estimated to be
67 percent [14], it becomes highly imperative to
investigate 1) How does cognitive ability impact
students’ performance in introductory
programming? 2) Which cognitive factor impacts

students’ performance in introductory programming
most? 3) How does cognitive performance factors
affect students’ performance in introductory
programming?

In contributing to answering these questions,
therefore, we investigated the perception of students
on the effect of cognitive factors as a predictor of
their academic performance in introductory
programming. We illustrate these predictive factors
through a case study involving two groups of year-2
Information Technology students at a South African
University of Technology. The discussion is then
framed based upon the cognitive learning theory
(CLT) [15] which theory maintains that “knowledge
is something that is actively constructed by learners
based on their existing cognitive structures”.

In exploring how cognitive factors contribute to
students’ proficient learning of introductory
programming, we aim to contribute to the
enhancement of curriculum development for South
African Universities of Technologies, and toward
providing useful insights for crafting intervention
programs to assist at-risk students.

In the rest of the paper, we examine the literature
on solution approaches to poor performance in
introductory programming. We then explored
cognitivism as a learning theory and presented our
case study design and instrument. Next, the findings
of the study are presented, and the paper is
summarized and concluded.

2. LOW PASS RATE IN INTRODUCTORY
PROGRAMMING: A SOLUTION SPACE
ANALYSIS

The phenomenon of low pass rates in
introductory programming is well supported in the
literature [14], [16], [17], but while most research
efforts have been focused on corroborating existing
claims about the actual pass rate [18], there is still
scanty evidence on the attempts to explain the
phenomenon itself. In this section, we attempt to
categorize the works done on this subject to define
the context of this study. Based on existing
literature, we have identified two major solution
approaches adopted in the literature towards
addressing the phenomenal problem of low pass
rate in introductory programming. These are:

2.1 Learning Experience Approach

Beyond identifying predictive factors in
introductory programming, these categories of
studies are focused on ways to enhance students’
performance by improving their learning

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3609

experiences. Essentially, the argument is that it is
almost impossible to always have all the
performance predictors to help guide students’
recruitment and placement in computer science and
IT courses. Consequently, authors in [5],
implemented a sub-goal learning framework for a
semester-long introductory programming course to
explore its longitudinal effects on students'
performance. According to the authors, learning
sub-goals consistently improved performance.

In another innovative effort reported in
[19], an automated assessment system was designed
to provide target feedback to novice programmers.
Although the authors admitted the need for further
research, they noted that the targeted feedback
messages may help to promote conceptual change
and facilitate learning programming. Similarly, an
empirical study that examines the use of
cyberlearning and gamification has been proposed
as a strategy to improve students’ learning in
introductory Computer Programming has also been
reported [20].

2.2 Proactive and Preventive Approach

The implication of low performance in
programming is not only limited to the direct effect
on students’ programming skills but extends to
include costs on delayed graduation. As such,
research effort has been expended towards
discovering the factors that may have a significant
impact on student success in introductory
programming. Such efforts ultimately aim at
formulating models to enhance teaching and
learning and to provide insight into providing
preventive guidance for students’ placement into
appropriate courses [17].

Studies that aligned with the proactive and
preventive approach can be further divided into two
sub-categories – the first investigate the effect of
personal factors, with the other deal with the effects
of teaching approaches.

The first aims at identifying the personal
factors that can significantly predict students’
performance in introductory programming. One of
such factors investigated is students’ prior
academic background can predict. For example,
[17] found a correlation between high performance
in introductory programming and students with a
strong mathematics background. Extending on this
finding, authors in [21], expended the scope of

students’ academic background to include their
Grade 12 Mathematics and English scores.
According to the authors, students that had prior
programming knowledge and or high scores in
Mathematics and English Language are likely to
perform better in introductory programming.
Therefore, it was emphasized that it is imperative to
take educational background into account when
developing course materials. In another work as
reported in [22], it was maintained that a strong
self-efficacy as a personal factor has the potential to
significantly boost a student’s performance in
introductory programming.

The other category of studies that deal
with the effect of teaching approaches sought to
understand how students’ performance is possibly
impacted by the kind of teaching approach adopted
by facilitators. Toward this goal, the “exercises-
only” and “lectures combined with exercises”
teaching approaches were examined in [23]. The
study asserts that the “exercise-only” teaching
approach contributes more significantly toward
recording high students’ performance in
introductory programming. In the same vein, the
authors in [21] introduced an interactive
programming visualization tutorial tool but reported
that the tool did not have the desired positive effect
on students' performance in programming. This
approach stems from the debate on the value of
blended learning as an alternative to conventional
teaching [10].

Though there is extensive research on the
potential effect of cognitive factors on the academic
success of undergraduates in general, we argue the
need for a more narrowed perspective as the basis
for this study. Therefore, this paper aligns with the
proactive and preventive approach, with emphasis
on the impact of cognitive factors on students’
performance in introductory programming.

3. THEORETICAL UNDERPINNING:
COGNITIVISM AND ACADEMIC
PERFORMANCE

Cognitivism broadly explains how mental
processes are influenced by both external and
internal factors to produce learning in an individual.
As depicted in Fig 1, the theory asserts that the
mental processes of learning occur between
stimulus and response.

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3610

Figure 1: Cognitive learning framework adapted from [25]

It further stresses that the individual takes in the
stimulus, processes it in their mind, and then acts
upon the stimulus, which alludes to the fact that in
the cognitive learning process, new knowledge is
built upon prior knowledge. Those processes
consist of several elements of the individual which
include attention, observation, perception,
reasoning, organizing, memory, and forming
generalizations. These cognitive elements or factors
represent those characteristics of a person that
affect the way they learn and perform [24].

Fundamentally, for effective learning, a

learner must give thoughtful attention, have a good
memory of the relevant information, and be able to
carry out independent reasoning of evaluation.
Furthermore, to strengthen these cognitive
functions, both task difficulty and cognitive load
should be low, and the learner must practice
whatever is being learned.

We framed our analysis around the three
major cognitive factors namely, attention, memory,
and reasoning, that play a central role in a
programming task. Also, we extend the framework
by exploring the contribution of the cognitive
performance factors of task difficulty, neglecting
practice, and cognitive load to students’
performance in programming (illustrated in Figure
1).

4. A CASE STUDY DESIGN AND
INSTRUMENTATION

This case study was structured in a manner that

allows the researches to explore the effect of
cognitive factors on a total of 20 second-year

students who were selected for the study. We
categorized the study population into two
subgroups (subcases) based on the students’ first
and second semesters average performances in their
first year. Each subcase was further partitioned into
two equal focus groups. To ensure confidentiality
and avoid stigmatization, the basis of the
categorization was not disclosed and neither of the
two groups knew about the existence of the other.
More importantly, we had presumed that
participants may not be willing to give out honest
information should they know that the investigation
equally involves some other students who might
know them.

The first subgroup consists of ten students who
had an average score of less than 50% in their first
and second semester year one introductory
programming. The data was officially obtained
from the department of information and
communication technology by one of the
researchers who facilitates the course. Scores
within that range depict a poor to fair performance.
This categorization condition is meant to enable the
researchers to evaluate how cognitive factors may
relate to their low performance. On the other hand,
the second subcase comprised of another ten
students whose average score is 50% or higher.
Similarly, this score range of identified students of
good to excellent performance.

Because this study investigates a real-world
problem, the methodology is designed to ensure
flexibility in the process of gaining concrete and in-
depth contextual knowledge through two data
collection tools – unstructured questionnaires and
focus group interviews. Qualitative data may be
broader and richer [26], but it may also suffer the
deficit of being less precise. Consequently, we used

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3611

data triangulation and prolonged involvement
strategies to enhance precision and strengthen the
validity of the study as outlined by Robson [27] and
other authors [28]. We achieved data triangulation
by using more than one tool to collect the same data
on different occasions, which gives the researchers
multiple perspectives towards the studied
population thereby providing a broader picture.
Also, the study leveraged the benefit of prolonged
involvement. The long-term relationship that
already exists between the participants and
researchers, who are both lecturers in Information
and Communication Technology Department,
enabled the investigators to understand how
participants interpret terms used in the study and
created an atmosphere of trust that ensured
participants spent more time providing data.

Ultimately, the first phase of data collection
involved the use of unstructured questionnaires to
allow interviewees to articulate their thought
unrestricted. We then followed our unstructured
questionnaire with open-ended focus groups
interview with the participants about their prior
programming knowledge, computer literacy, the
personal challenge in learning programming,
students’ attitude in class, access to practice tools,
motivation for studying IT, personal study time,
study strategies, etc. Some of these questions were
raised as a follow up on some interesting views that
we had picked up from the completed

questionnaires. Adopting the funnel model, the
researchers first presented the objectives of the
interview and explained how the data from the
interview will be used and began by asking open
questions that later led to specific questions around
cognitive and cognitive performance factors.

To ensure quality and engaging interaction and
ease note-taking, we partitioned the study
population into four focus groups and interviewed
each group separately for 15-30 minutes. By
interviewing each interviewee more than once, we
aim at gathering data that is both detailed and rich
in context. The patterns that emerged from these
interviews comprise the bulk of the data

Data collected was first transcribed, coded,
and then qualitatively analyzed. As illustrated in
Table 1, we designed a two-level coding scheme
following Runeson’s recommendation [29]: the
first-level codes were formulated to allow the
researchers to identify and link text in the interview
transcripts to the relevant research question that it
speaks to. Each first-level code was then further
decomposed into second-level codes that allowed
each first-level linked text to be linked to a
particular construct that it addresses. With this
coding system, we developed a case study
description of the two subcases.

.

Table 1: Coding Scheme
Code Main code Subcode

1 RqCF: Cognitive Factors RqCFA: Attention
RqCFM: Memory
RqCFR: Reasoning

2 RqCPF: Cognitive Performance Factors RqCPFT: Task difficulty

RqCPFN: Neglecting of practice

RqCPFC: Cognitive load

3 SSa: Subcase Study 1 Student1_SSa … Student10_SSa

4 SSb: Subcase Study 2 Student1_SSb … Student10_SSb

5 RQ RQ1

RQ2

RQ3

5. ANALYSIS OF RESULTS

For each subgroup of the study, we approach
the analysis and draw inferences through two sets
of observations characterized by a block of related
questions that were used to direct the focus of the
inquiry. So, in the context of learning
programming, we begin by examining how
attention, memory, and reasoning as the main
aspects of cognitive ability can influence by

personal factors such as prior knowledge and skills,
amongst others. Another vital component of the
analysis is the examination of the modulating effect
of the three cognitive performance factors on
students’ cognitive ability as demonstrated in their
performance in introductory programming. was
observed.
The overall goal here was to use this set of findings
as the basis to explore and explain the relationship
between students’ performance in introductory
programming and their cognitive abilities and

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3612

cognitive performance factors. With the insight
gained from this, we contribute toward the notion
of a proactive approach toward addressing the
problem of poor performance in introductory
programming.

2.3 Analysis For Subgroup Study 1

As our result indicate, cognitive factors are the
major determinants of the participants’ proficiency
in learning programming and account for the
quality of their performance. Specifically,
participants with weak cognitive ability and failed
to strengthen their cognitive function performed
poorly in introductory programming. This finding
confirms previous works about the impact of
cognitive factors on academic performance [30] in
general. As earlier explained, the focus of the
analysis is this subgroup centres on how the
personal factors emanating from the challenges
highlighted by the block of interview questions
below are linked to the cognitive ability (attention,
memory, and reasoning) and cognitive performance
factors of participants who scored less than 50% in
introductory programming. This choice of the
organization follows the pattern learned from the
interview transcript and affords and ensured clarity
in the discussions.

A) Prior Programming Knowledge, Access to
Practice Tools/Basic computer Literacy Skills, and
Perceived Challenge

We reported that all ten students who had an

average score of less than 50% had no prior
programming knowledge before they gained
admission into the university. And nine of the
participants did not own a personal computer
throughout their first-year study. Interestingly, all
the students admitted that the inability to access a
computer at a convenient time was the major
challenge to learn programming during their first
year. One student quoted below vividly illustrated
the challenge.

Student1_SSa: I didn’t have a personal computer
and the computer labs were always crowded and
my day also occupied with lectures. So for me,
getting the opportunity to catch a seat at the
computer lab and have sufficient practice time
without having to miss other important classes was
a monster. Although I could understand the
fundamentals, I was unable to do the actual
programming.

As explained by Sean Kang [31], “we
remember things, because they relate to and can

easily be integrated into our existing knowledge
base or it’s something we retrieve, recount or use
repeatedly over time.” Based on this, it is evident
that the students’ lack of both programming
background and practice tools, as highlighted
above, negatively impacts the cognitive factor of
‘memory” and the cognitive performance factor of
‘neglecting practice’. This submission aligns with
the cognitivist theory assertion that “new
knowledge is built upon prior knowledge.”. More
so, we argue that programming requires a great deal
of memory and practice because it is an advanced
problem-solving skill that exclusively relies on the
application of specific concepts and techniques.
Furthermore, as reported in [32], low-ability
students perform better in programming when
given unlimited computer access to practice.

On computer literacy, only three students
reported that they had basic computer literacy skills
before commencing university studies. The rest
only started learning how to operate a computer at
the university. In this, we observed that the open-
interview transcripts echo larger students’ skill gaps
in basic computer literacy and its perceived
consequence on their introductory programming
proficiency. Though expressed differently as we
quote below, they all stressed the same challenge:

Student9_SSa: If I had a chance to learn basic
computer skills or programming before my
enrolment into first-year, maybe I would have
struggled less.

Student4_SSa: "Oh gosh, it was not very good for
me at that time. I remember having to spend more
time learning how to use the computer than
programming itself.

Student10_SSa: It really affected my concentration,
especially when we were supposed to do stuff
during a lecture. And the worst is that I often fail to
pay further attention if I was unable to get the
previous exercise – it was frustrating.

All the students acknowledged that the factors
listed above affected their ability to understand
concepts in programming. However, when asked to
rate the factors, programming background and basic
computer literacy were rated by seven of the ten
students as the factors that mostly influence poor
performance in programming.

With these findings, we learn that the lack of
basic computer literacy skills can affect the
cognitive factor of ‘attention’. And according to
Veerasamy et al [33], in learning to program,
learners are required amongst other things to think,

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3613

understand the concepts of programming, and
applied their problem‐solving skills. This is where
‘attention’ comes in handy as a key component of
problem-solving skills. And as reported in [34],
lack of attention in class is generally is negatively
correlated to performance. Concerning the
cognitive performance factors, ‘task difficulty’ and
‘cognitive load’ were significantly impacted
because the students’ mental task of learning was
now doubled: learning to use the computer and
learning programming.

B) Class Attitude, Motivation for Study, and
Personal Study Strategies

Implicit in this group of questions is how
students internally influence their cognitive and
cognitive performance factors. Here we noticed an
interesting trend in the data from the questionnaires
and transcribed open-interview. First, we had
discovered that in responding to a question on how
they often felt during programming classes, some
participants were very direct with such responses as
quoted: “Easily distracted”, “I hardly concentrate
during the lecture”. Second, we also noticed during
the open-interview that several students answered
“No” to the question of whether they do ask or
answer questions in the class. Therefore, to help
understand this trend, we decided to introduce a
question that would probe their motivation for
study.

Interestingly, from this further probe, the
following vital insights were gained: five out of the
ten students said they were not originally motivated
to study IT. Out of these five students, three of
them explained that they found themselves studying
the course because it was the only one still open as
at the time they applied for admission into the
institution. In contrast, as quoted below, it was
found that the remaining two students were
demotivated because they had had a wrong
perception of the course. According to one of these
two participants coded as Student7_SSa:

I had thought IT was just theory and the kind of
practical that would involve how to use the internet.
So, in my first programming class, I was like “I’m
in the wrong place”. That feeling hunted me
throughout, and it affected my attention in the
class.

The finding relates to the fact that motivation is
a dominant driving force in the pursuit of career
and other goals because it has a dramatic impact on
what a person pays attention to [33]. Moreover,
attention as stated earlier is a critical component of

cognitive learning. This explains why these
students had a poor performance in introductory
programming. That is, their lack of motivation
reduced their level of attention which in turn,
weakened their problem-solving ability.

The aspect of formulating a personal study
strategy was variously echoed too. While all the
students who were demotivated seemed to not have
any precise strategy targeted at learning
programming, the others maintained that their study
strategy did not work out as expected.

Student1_SSa: I wanted to be practicing as often as
I can but that wasn’t possible because I had no
personal computer. And whenever I had free time at
school, the lab computers are either occupied or
the place is too rowdy.
Student2_SSa: I had to be staying late at school to
use the lab when most students would have gone.
However, I didn’t still get enough practice time as I
wish.

Programming requires students to develop
some degree of creative thinking [34]. However,
such a skill can be difficult to develop under the
kind of scenario described in the experiences shared
above. Instead, from the thoughts echoed about
personal study strategy, we can infer that the
circumstances under which the students learned
programming harmed their cognitive factor of
‘reasoning’.

2.4 Analysis For Subgroup Study 2

We will see below that cognitive factors and

cognitive performance factors all played a
significant role in enhancing students’ performance
in introductory programming. Ultimately, our
results reveal a pattern where students with an
average score of 50% and above are associated with
the positive impact of cognitive factors and
cognitive performance factors.

A) Prior Programming Knowledge, Access to
Practice Tools/Computer Literacy, and Perceived
Challenge

Of the ten students in this subcase, four

explained that learning prior programming was not
extremely difficult or new to them because they had
completed a short course on IT fundamentals before
joining the university. Unlike the participants in the
previous subcase, we witnessed that seven of the
participants in this subcase had personal computers.
Surprisingly, even the remaining three participants
who did not have a personal computer also did not

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3614

consider introductory programming too difficult to
learn. Compelled by this unexpected observation,
more questions were raised to investigate why these
participants could develop such confidence and had
performed in programming. However, in our
conversation, we understood that they had some
leverage over several other students.

Student5_SSb: I lived very close to the campus.
That enabled me to mostly stay back at school after
lectures till late when most students would have left
and the lab if almost free. That was how I could
meet with other good students that we practise and
solve programming problems together.

From this finding, we can conjecture a link to
some factors examined by this study. Staying late to
use the lab computers, for instance, is a direct
opposite of the ‘neglecting practice’ cognitive
performance factor, therefore, it enhanced the
participants’ ability to learn to program [31].
Drawing from previous works, we explain that
constant practice is highly needed for students to
progress in their learning of programming,
especially as novices [35]. Also, the reported
interaction with other students that are good in
programming stands to promote independent
learning and enrich the cognitive factor of
‘reasoning’ [36] which is the strength that gives a
programmer the capability to analyze, organize,
implement, and evaluate the code outcomes.
Furthermore, repeated practice is a form of
reinforced learning, which can enhance memory as
explained by Sean Kang [31].

Compared to the perceptions of subcase study
one, computer literacy was not observed to be a
major challenge to almost all the participants in this
subcase. Although none of them claimed to have
been very proficient in using the computing before,
we noticed that their thoughts about how computer
literacy skills impacted their cognitive abilities
toward learning programming converged toward
the importance of having access to practice tools.
The most explicit view is quoted below.

Student8_SSb: Not that I was initially good or
perfect in using the computer and in programming
itself. But because I had basic programming
knowledge and also started using a personal laptop
before I entered school, at least I knew how to do
all the basic things with a system. So, I could easily
practise on my own in my room and at the lab, I
didn’t struggle and was even helping to guide other
students who were using the computer for the first
time.

Coupled with our earlier report that some
participants of this subcase had prior programming
knowledge, it can be deduced that the participants’
performed well in introductory programming
because most of them either had prior programming
knowledge or possessed some level of computer
literacy skills. In connection with the cognitive
factors and cognitive performance factors, we
explain that: having prior programming knowledge
and possessing basic computer skills helped to
decrease participants’ cognitive load as reported in
[37], enhance memory of the course, and promote
their ability to be attentive in class. Having the time
to practise also reduces cognitive load and eases the
mental difficulty of the task of learning
programming.

B) Class Attitude, Motivation for Study, and
Personal Study Strategies

One distinctive characteristic of those
participants that performed above average in
introductory programming was observed in the
individual attitude. For example, more than half of
them either ask or attempt to answer questions in
the class. A particular participant coded as
Student3_SSb even employed the strategy of
attempting to answer questions in the class to
indirectly seek more clarification from the
facilitator.

Sometimes when I fail to understand what has been
explained in the class and the lecturer throws a
question, I quickly raise my hand to attempt. I know
that I don’t know the right answer, but I do that
often so that the lecturer can correct me properly
or even explain further.

In connection with that unique attitude, we
observed that eight out of the ten participants in this
subcase wanted to study IT right from the onset.
This finding points to the role of motivation as was
revealed during the open-ended interview.

Student9_SSb: In the institute where I did a short IT
course, we were taught about what you can do
through programming and how valuable a
programmer can be. That as a programmer I don’t
need to look for a job. Right from then, I really
wanted to be a programmer.

As we have alluded in the subcase one, this
result highlights the fact that participants who are
positively motivated are most likely going to be
attentive in class thereby performing better.
Another interesting finding is that the characteristic
attitude of forming a unique or personal study

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3615

strategy was predominant amongst participants of
subcase study 1. These positive attitudes which
include staying late at the lab to get a free
computer, engaging in self-organized collaborative
learning, and attempting to answer questions in the
class as a way to seek more clarification are all
driven by motivation, and indicatively enhances
cognitive learning. For example, regular practice,
and collaborative learning, have a positive effect on
boosting the three cognitive factors of long-term
learning memory, reasoning, and attention.
Cognitive performance factors are equally impacted
positively by a participant’s motivational state
because regular practice and collaborative learning
jointly helped the participant not to underperform
by neglectfully depriving their brain of practice.

6. SUMMARY AND CONCLUSION

Based on the cognitivist framework, this
study’s instrument was designed to elicit responses
on participants’ prior programming knowledge,
computer literacy skills, access to practice tools,
personal motivation, attitudes in class, and
perceived challenges in learning programming. The
aim is to investigate how cognitive abilities
influence participants’ performance in introductory
programming and how participants can develop or
enhance their cognitive functions.

Our findings show that memory, among other
cognitive factors, has the strongest effect on
participants’ performance in introductory
programming, which agrees with previous works on
the impact of cognitive factors on academic
performance in general. This agrees with Sean’s
[31] work which states reported that reinforced
learning or repeated practice over time produces
superior long-term learning by promoting the
memory of learners.

Figure 2: Impact Factor Impact Analysis Model

As illustrated in Figure 2, our findings not only
answered the research questions but also offers new
insight on how personal motivation acts as an
external factor to influence both cognitive factors
and cognitive performance factors. Therefore,
unlike existing studies which mostly investigated
the impact of cognitive ability in general on
academic performance, this work uniquely
presented an impact factor relationship model
(depicted in Figure 2), which shows the
determinants of performance in programming as a
combination of individual cognitive factors and the
and cognitive enhancement factors.

From this model, we drew the key
understanding that students’ performance in
introductory programming is linked to three broad
and inter-related factors: cognitive abilities,

cognitive performance factors, and personal
motivation. Participants with strong cognitive
abilities that are supported by positive cognitive
enhancement factors were found to have performed
better in introductory programming. The current
literature also strongly linked performance in
computer programming to self-efficacy, individual-
interest, positive-thinking, and self-motivation [40].
Furthermore, this study alludes that in as much as
cognitive ability might vary with individuals,
personal motivation is a vital component that
directly and indirectly contributes to developing or
enhancing participants’ cognitive ability. This
postulation resonates with the fact that demotivated
participants were associated with a lack of attention
in the class and are characterized by poor
performance. On the contrary, highly motivated

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3616

participants were not only found to pay attention in
class, they equally demonstrated the unique attitude
of formulating personal study strategies such as
engagement in self-organized collaborative learning
and frequent practice. This again is supported by
the finding that attention and motivation are the
cornerstones of classroom learning [41]. While the
former directly help them to develop the cognitive
ability of reasoning, the latter enabled the
participants to improve memory because it a
cognitive function enhancement factor.
All these sums up to the conclusion that the lack of
prior programming knowledge, computer literacy
skills, practice tools, and personal motivation can
independently impede students’ performance in
introductory programming. This conclusion
summarizes result as demonstrated in Figure 2,
which shows that students with strong cognitive
factors perform better in introductory
programming. And that students who engage in
cognitive enhancements activities can indirectly
improve their performance in programming by
strengthening their cognitive abilities.
This paper, therefore, contributes as follows: first,
we contribute toward enhancing teaching and
learning by i) scaling the impact of each cognitive
ability on the performance of participants in
introductory programming and ii) illustrating how
cognitive performance factors can increase or
decline their cognitive function. This offers useful
insight into how facilitators can innovatively
organize and their tasks. Second, by highlighting
the predominant challenges that impede the
development of strong cognitive ability, we
contribute both toward enhancing curriculum
development and a proactive approach to address
performance in introductory programming.
Understanding how these challenges interfere with
cognition can inform the design of more supportive
curricula for new students in a manner the offers
them all the leverage to excel in programming.

These contributions provide the basis to
suggest that: information technology and basic
computer literacy courses should be incorporated
into pre-university curricula because these two are
the core of the external elements that drive
cognitive abilities in the context of learning
computer programming.

REFRENCES:
[1] S. Höme, J. Grützner, T. Hadlich, … C. D.,

and U. 2015, “Semantic industry:
challenges for computerized information
processing in Industrie 4.0.
Automatisierung Stechnik,” degruyter.com,

vol. 63, no. 2, pp. 74–86, 2015.
[2] G. Li, Y. Hou, and A. Wu, “Fourth

Industrial Revolution: technological
drivers, impacts and coping methods,”
Chinese Geogr. Sci., vol. 27, no. 4, pp.
626–637, Aug. 2017.

[3] E. Sutherland, “The Fourth Industrial
Revolution–The Case of South Africa,”
Politikon, vol. 47, no. 2, pp. 233–252, Apr.
2020.

[4] C. Tsekeris, “Surviving and thriving in the
Fourth Industrial Revolution: Digital skills
for education and society,” Homo Virtualis,
vol. 2, no. 1, p. 34, Mar. 2019.

[5] L. E. Margulieux, B. B. Morrison, and A.
Decker, “Reducing withdrawal and failure
rates in introductory programming with
subgoal labeled worked examples,” Int. J.
STEM Educ., vol. 7, no. 1, p. 19, Dec.
2020.

[6] O. Solarte Pabón and L. Machuca Villegas,
“Fostering Motivation and Improving
Student Performance in an introductory
programming course: An Integrated
Teaching Approach,” Rev. EIA, vol. 16, no.
31, p. 65, Jan. 2019.

[7] C. W. Callaghan and E. Papageorgiou,
“Personality, Gender and Student
Performance at a South African
University,” Africa Educ. Rev., vol. 17, no.
1, pp. 1–17, Jul. 2020.

[8] M. Reed, M. Maodzwa–Taruvinga, E. S.
Ndofirepi, and R. Moosa, “Insights gained
from a comparison of South African and
Canadian first-generation students: the
impact of resilience and resourcefulness on
higher education success,” Compare, vol.
49, no. 6, pp. 964–982, Nov. 2019.

[9] A. A. Ogegbo, E. Gaigher, and T.
Salagaram, “Benefits and challenges of
lesson study: A case of teaching Physical
Sciences in South Africa,” South African J.
Educ., vol. 39, no. 1, 2019.

[10] A. Alammary, “Blended learning models
for introductory programming courses: A
systematic review,” PLoS One, vol. 14, no.
9, p. e0221765, Sep. 2019.

[11] S. Xinogalos, M. Satratzemi, A.
Chatzigeorgiou, and D. Tsompanoudi,
“Factors Affecting Students’ Performance
in Distributed Pair Programming,” J. Educ.
Comput. Res., vol. 57, no. 2, pp. 513–544,
Apr. 2019.

[12] G. Kanaparan, R. Cullen, and D. Mason,
“Effect of Self-efficacy and Emotional

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3617

Engagement on Introductory Programming
Students,” Australas. J. Inf. Syst., vol. 23,
Jul. 2019.

[13] N. A. Bowman, L. Jarratt, K. C. Culver,
and A. M. Segre, “How prior programming
experience affects students’ pair
programming experiences and outcomes,”
in Annual Conference on Innovation and
Technology in Computer Science
Education, ITiCSE, 2019, pp. 170–175.

[14] Simon et al., “Pass rates in introductory
programming and in other STEM
disciplines,” in Annual Conference on
Innovation and Technology in Computer
Science Education, ITiCSE, 2019, pp. 53–
71.

[15] P. A. Ertmer and T. J. Newby,
“Behaviorism, cognitivism, constructivism:
Comparing critical features from an
instructional design perspective,” Perform.
Improv. Q., vol. 26, no. 2, pp. 43–71, 2013.

[16] B. Lu, J. Hunt, S. Sudarshan, and J. Fischer,
“Examining Strategies to Improve Student
Success in CS1,” 2019.

[17] E. Tomai and C. F. Reilly, “The impact of
math preparedness on introductory
programming (CS1) success (abstract
only),” in Proceedings of the 45th ACM
technical symposium on Computer science
education - SIGCSE ’14, 2014, pp. 711–
711.

[18] C. Watson and F. W. B. Li, “Failure rates in
introductory programming revisited,” in
ITICSE 2014 - Proceedings of the 2014
Innovation and Technology in Computer
Science Education Conference, 2014, pp.
39–44.

[19] Y. Qian and J. D. Lehman, “Using Targeted
Feedback to Address Common Student
Misconceptions in Introductory
Programming: A Data-Driven Approach,”
SAGE Open, vol. 9, no. 4, p.
215824401988513, Jul. 2019.

[20] N. G. Mourya, G. S. Walia, and A.
Radermacher, “Using Gamification and
Cyber Learning Environment to Improve
Students’ Learning in an Introductory
Computer Programming Course: An
Empirical Case Study: American Society
for Engineering Education,” ASEE Annual
Conference & Exposition, 2018. [Online].
Available:
https://www.asee.org/public/conferences/10
6/papers/22813/view. [Accessed: 24-May-
2020].

[21] M. Schoeman and H. Gelderblom, “The
effect of students’ educational background
and use of a program visualization tool in
introductory programming,” in ACM
International Conference Proceeding
Series, 2016, pp. 1–10.

[22] M. D. Gurer, I. Cetin, and E. Top, “Factors
affecting students’ attitudes toward
computer programming,” Informatics
Educ., vol. 18, no. 2, pp. 281–296, Oct.
2019.

[23] X. Zhang, C. Zhang, T. F. Stafford, and P.
Zhang, “Teaching Introductory
Programming to IS Students: The Impact of
Teaching Approaches on Learning
Performance,” 2013.

[24] J. Sweller, J. J. G. van Merriënboer, and F.
Paas, “Cognitive Architecture and
Instructional Design: 20 Years Later,”
Educational Psychology Review, vol. 31,
no. 2. Springer New York LLC, pp. 261–
292, 15-Jun-2019.

[25] PPC, “Cognitivism - The Peak Performance
Center,” 2020. [Online]. Available:
https://thepeakperformancecenter.com/educ
ational-
learning/learning/theories/cognitivism/.
[Accessed: 26-May-2020].

[26] R. S. Chauhan, “Unstructured interviews:
are they really all that bad?,” Hum. Resour.
Dev. Int., pp. 1–14, 2019.

[27] C. Robson, “Real World Research,” in Real
World Research, 2nd ed., Blackwell
Publishing Ltd, 2002.

[28] R. Stake, “The Art of Case Study Research:
Data Gathering,” Thousand Oaks, CA Sage,
pp. 49–68, 1995.

[29] P. Runeson, Case study research in
software engineering : guidelines and
examples. Wiley, 2012.

[30] A. Demetriou, S. Kazi, N. Makris, and G.
Spanoudis, “Cognitive ability, cognitive
self-awareness, and school performance:
From childhood to adolescence,”
Intelligence, vol. 79, p. 101432, Mar. 2020.

[31] S. H. K. Kang, “Spaced Repetition
Promotes Efficient and Effective
Learning,” Policy Insights from Behav.
Brain Sci., vol. 3, no. 1, pp. 12–19, Mar.
2016.

[32] D. McCormick and S. M. Ross, “Effects of
Computer Access and Flowcharting on
Students’ Attitudes and Performance in
Learning Computer Programming,” J.
Educ. Comput. Res., vol. 6, no. 2, pp. 203–

Journal of Theoretical and Applied Information Technology
15th September 2020. Vol.98. No 17
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3618

213, May 1990.
[33] A. K. Veerasamy, D. D’Souza, R. Lindén,

and M. J. Laakso, “Relationship between
perceived problem-solving skills and
academic performance of novice learners in
introductory programming courses,” J.
Comput. Assist. Learn., vol. 35, no. 2, pp.
246–255, Apr. 2019.

[34] C. B. Fried, “In-class laptop use and its
effects on student learning,” Comput.
Educ., vol. 50, no. 3, pp. 906–914, Apr.
2008.

[35] R. D. Calcott and E. T. Berkman,
“Attentional flexibility during approach and
avoidance motivational states: The role of
context in shifts of attentional breadth,” J.
Exp. Psychol. Gen., vol. 143, no. 3, pp.
1393–1408, 2014.

[36] A. Pérez-Poch, N. Olmedo, F. Sánchez, N.
Salán, and D. López, “On the influence of
creativity in basic programming learning at
a first-year Engineering course,” Int. J.
Eng. Educ., vol. 32, no. 5(B), pp. 2302–
2309, Dec. 2016.

[37] P. Silva, E. Costa, and J. R. de Araújo, “An
adaptive approach to provide feedback for
students in programming problem solving,”
in Lecture Notes in Computer Science
(including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), 2019, vol. 11528 LNCS,
pp. 14–23.

[38] K. Scager, J. Boonstra, T. Peeters, J.
Vulperhorst, and F. Wiegant,
“Collaborative learning in higher education:
Evoking positive interdependence,” CBE
Life Sci. Educ., vol. 15, no. 4, p. ar69, Dec.
2016.

[39] L. Zhang, S. Kalyuga, C. Lee, and C. Lei,
“Effectiveness of Collaborative Learning of
Computer Programming Under Different
Learning Group Formations According to
Students’ Prior Knowledge: A Cognitive
Load Perspective,” J. Interact. Learn. Res.,
vol. 27, no. 2, pp. 171–192, May 2016.

[40] I. K. Nti and J. A. Quarcoo, “Self-
motivation and Academic Performance In
Computer Programming Language Using a
Hybridised Machine Learning Technique,”
Juanita Ahia Quarcoo Int. J. Artif. Intell.
Expert Syst., vol. 8, no. 2, pp. 12–30, 2016.

[41] J. C. Horvath, J. M. Lodge, and J. Hattie, From
the Laboratory to the Classroom: Translating
Science of Learning for Teachers, Illustrate.
Routledge, Chapman and Hall, 2016.

