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ABSTRACT 
The Team Orienteering Problem (TOP) is a particular vehicle routing problem in which the aim is to search 
a fixed number of paths that maximize the scores associated with a set of given locations within a limited 
time. Scatter Search explores a search space of solutions systematically by evolving a small set of reference 
solutions. It has strategies for diversification (in diversification generation and subset generation methods); 
and intensification (in the improvement and updating method). However, all these methods are very time 
consuming. This paper proposes a scatter search hybrid approach (SSHA) to deal with the TOP by reduce 
processing time and maintaining a good set of references solutions in terms of diversity and quality. It uses 
some new operators, called reference set queen bee-method to initializing and updating the RefSet, and greedy 
select parents to selecting pairs from a reference set for the combination method to generate a new solution. 
Furthermore, to improve the quality of the solution, a local search is employed, called steepest descent to 
explore neighborhood in a fully deterministic manner and then selects the best neighbour. Experiments 
conducted on the standard benchmark of TOP clearly show that proposed approach outperforms the solving 
methods in the scientific literature. Our algorithm detects all but one of the best known solutions. A statistical 
test was conducted to determine the algorithm that performed better compared with the others. The results 
revealed that SSHA outperformed all state-of-the-art algorithms and was comparable to one algorithm. 
 
Keywords: Optimization, Metaheuristic, Team Orienteering Problem, Scatter Search Algorithm, Local 

Search. 
  
1. INTRODUCTION 

 
The Team Orienteering Problem (TOP) is a 
development of the orienteering problem (OP). It is 
a well-known, challenging combinatorial 
optimization problem that was first highlighted and 
heuristically tackled by Butt and Cavalier [1]. The 
TOP introduced by Chao, et al. [2]. The TOP can be 
defined as a team consisting of several players (e.g., 
two, three, or four players). Each player should start 
at the same point and must visit the subset of points, 
which have their own scores, before reaching the 
same end point in a specific time. Once the team 
player visits a point, no other player can visit that 
particular point. In other words, each point can be 
visited only once. The objective is to maximize the 
total team scores that have been collected before it 
reaches the end point within the allowed time [2, 3]. 
The TOP has been considered an NP-hard problem 
[4] because it goes beyond and is even more difficult 
than the OP. 
 

The applications of TOP include athlete recruiting 
[2], technician routing [3] and tourist trip planning 
[5]. In this paper, we are interested in TOP as the 
core variant of OP for multiple vehicles. TOP have 
attracted a good deal of attention in operational 
research and artificial intelligent community. Apart 
from the difficulty of solving it, TOP has been 
selected for two reasons: it represents various real-
world applications and its results are still possible to 
be improved. So far different exact method have 
been developed for TOP proposed by Boussier, et al. 
[6], Butt and Ryan [7], Dang, et al. [8] and Nicola, et 
al. [9]. However, unless P = NP, there is no 
algorithm which can find an optimal solution within 
time polynomial in the size of customers. An 
alternative approach to the TOP is metaheuristic, 
which aims to yield a satisfactory solution within 
reasonable time.  
 
In contrast to exact solving approaches, a number of 
heuristics and metaheuristics have been developed 
for TOP. To date, ant colony optimization (ACO) 
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[10]that constructs the candidate solutions by 
employing four constructive heuristics: sequential, 
deterministic–concurrent, random–concurrent, and 
simultaneous methods. guided local search [11], 
large neighborhood search with three improvement 
methods: local search improvement, shift and 
insertion improvement, and replacement 
improvement [12], memetic algorithm with optimal 
split procedures for chromosome evaluation (MA) 
[13], particle swarm optimization [14], path 
relinking [15], Pareto mimic algorithm [16], tabu 
search with an adaptive memory procedure [3], and 
variable neighborhood search [5] have been applied 
to the TOP. The interested reader is referred to [17] 
for a survey. Among the current metaheuristics, the 
Pareto mimic algorithm in [16] ranked first when 
testing on the instances of [2]. Moreover, the results 
on larger new generated instances demonstrate that 
their algorithm is very effective though it consumes 
relatively long running time. 
 
This research aims to investigate the SS algorithm 
that may improve the available search approaches 
for the TOP. The main goal is to adapt the SS 
algorithm, utilize its strengths, cover its weaknesses 
by hybridizing it with other metaheuristic 
algorithms, and attain a suitable balance between 
exploration and exploitation. 
 
In this paper, a metaheuristic, called scatter search 
hybrid algorithm, is proposed. The main 
contribution of this paper are summarized as 
follows: (1) it uses different selective strategies in 
subset generation method called, greedy selecting 
parents (GSP), to generate new solution by selecting 
suitable parents for solution combination method, 
and different updating strategies in references set 
update method called, references set queen bee 
(RefSetQB), to update the references set solution 
with new solution. (2) To hybridize the SS algorithm 
with other local search algorithm called, steepest 
decent (SD), to enhance the exploitation search. 
Experiments conducted on the standard benchmark 
of TOP clearly show that SSHA outperforms most 
of the existing solution methods of the literature. It 
detects all but one of the best known solutions. 
Moreover, a strict improvement was found for one 
instance of the benchmark. The remainder of this 
paper is structured as follows. Section 2 provides a 
description of the TOP. SSHA are described in 
Section 3. In Section 4, the experimental study of the 
parameters is discussed. The computational results 
on the standard benchmark is described in Section 5. 
Finally, in Section 6, some conclusions and further 
developments are discussed. 

 
2. DESCRIPTION OF THE TOP 

 
The TOP can be represented as a complete graph G 
= (V, E), where V = [1, 2,.., n+1] is a set of points 
and E= [(i, j) | i, j ϵ V] is a set of edges. The aim of 
the TOP is to find m routes that start at point 0 and 
end at point n+1, such that the total score of the 
visited points is maximized. Each point can be 
visited only once. For each route, the total time taken 
to visit the points cannot exceed the predetermined 
time limit Tmax. Let cij be the travel time of edge (i, j) 
ϵ E, Ti is the service time for point i, and si is the 
score of point i. K = [1, 2,..,m] is a set of routes, V' 
= [1, 2,.., n] is a set of points visited by the kth route, 
and U is a subset of V that is not included in the 
solution. yik = 1 if the ith point is visited in the kth 
route. Otherwise, yik = 0. xijk = 1 if the edge (i,j) is 
visited in the kth route and point j is visited directly 
after point i. Otherwise, xijk =0. The evaluation 
function, f(xp) for solution x, xp can be formulated as 
Equation (1). The TOP can be formulated as follows 
[2, 10, 18]: 

f൫xp൯=Max ෍ ෍ si

n

i=1

yik,                                   ሺ1ሻ
m

k=1

 

Subjected to: 

෍ ෍ cij
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j=0

xijk
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Where constraint (2) is the time limit constraint, 
which indicates that the total traveling time of each 
route must not exceed the Tmax. X is a decision 
variable used in constraints (4)–(9). 
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yik, xijk ∈ ሼ0, 1ሽ                                               (10) 
 
Constraint (4) guarantees the connectivity of each 
route. Constraints (5) and (6) ensure that the route 
will start at point 0 and end at n+1. Constraint (7) 
describes the relation between x and y. Constraint (8) 
ensures that each vertex is visited only by one route. 
Constraint (9) imposes restrictions on the variables. 
 
3. A SCATTER SEARCH HYBRID 

ALGORITHM 
 

The SS is a population-based metaheuristic 
introduced by Glover [19]. It constructs the solutions 
by combining other elite solutions to exploit their 
positive attributes. The main aspect of the 
mechanisms within SS are not restricted to single 
uniform design allows the exploration of strategic 
possibilities that may prove effective in particular 
implementation [20, 21].  

The search process of the SS algorithm starts with 
constructing a number of trial diverse solutions as an 
input population. Each solution in the population 
pool is enhanced using the improvement method. 
After initializing the population, a small set of good 
solutions is selected from the population to build a 
small population called a reference set, where the 
“good” criteria are based on the objective function 
value and diversity value of the solutions. After 
building a reference set, new subsets are generated 
using the subset generation method by selecting the 
solutions from the reference set pool in 
lexicographical order. Each subset of solutions is 
combined in a systematic way to produce one or 
more new solutions, each of which is mapped into an 
associated feasible solution. Each new solution is 
enhanced by the improvement method. The 
reference set pool is updated by a new trial solution 
using a steady-state replacement mechanism. This 
step is known as a dynamic update of the search 
experience [22, 23]. The pseudo-code of the SS is 
illustrated in Algorithm 1.

 
Algorithm 1. The main procedure pseudo-code of the SS 
Set P = Ø, |P| = PSize = 50. 
While (until |P| = PSize) 

Step 1: Use the Diversification Generation Method to construct a population of solutions.  
Step 2: Apply the Improvement Method. Let 𝜒 be the resulting solution. If 𝜒∉Ρ then add 𝜒 

to P, otherwise, discard 𝜒. 
End While 

// employ nearest neighbour to construct the population of initial solutions. 
// utilize steepest decent to improve all the solutions in the population. 

Step 3: use the Reference Set Update method to build RefSet, |RefSet| = 20, RefSet = 
ሾ𝑋ଵ, … , 𝑋௕ሿ, ሾ𝑌ଵ, … , 𝑌ௗሿwith the “best” b1 and “diverse” b2 solutions in P. Order 
the solutions in b1 according to their objective function value such that 𝜒ଵ is the 
best solution and 𝜒௕ the worst. 

While (StoppingCriterion) 
Step 4: Generate NewSubsets by the Subset Generation Method. 

// apply greedy selecting parents to generate the subset. 
While (NewSubsets = Ø) // this is repeated until all NewSubsets are combined. 

Step 5: select the Subset s in lexicographical order to be combined. 
Step 6: Apply the Solution Combination Method to NewSubset s to obtain one new 

solution 𝜒′. 
// share 25% of the divers solution 𝑌ௗ attribute in the quality solution 𝑋௕ to 
produce 𝜒′. 
// convert the infeasible solution to feasible using repair strategy. 

Step 7: Apply the Improvement Method to the new solution 𝜒′. 
// utilize steepest decent to improve the produced new solution from Solution 
Combination Method.  

Step 8: apply the Reference Set Update method to update RefSet. 
// utilize references set queen bee strategy. 

Remove s from the Subsets  
End While 

If (RefSet has not updated) 
Apply Diversification Generation Method to initial new population of solutions  
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// performing nearest neighbour. 
Apply the Improvement Method to the new solutions in the population. 
// apply steepest decent. 
Replace the diverse solutions in the RefSet by the new solutions in the population. 

End If 
End While 

Step 9: Return the best found solution 

The reference set pool is exploited to avoid the 
search from redundantly exploring the solutions that 
have been evaluated and prevent the duplication of 
solutions in the pool. The structure of reference set 
pool stimulates search diversification and 
intensification and may help the search to escape 
from the local optima because of the types of 
solutions in the pool and the updating strategy [24, 
25]. 
 
Hence, the SS concentrates on maintaining the 
balance between intensification and diversification 
of the search. This balance is achieved by combining 
all possible pairs in the reference set pool to generate 
one or more new solutions, where the new solution 
may contain attributes that are not available in the 
original pairs. The SS exploits knowledge derived 
from the search space and is thus considered an 
information-derived algorithm [26]. 
 
The elements in the SS can be implemented in a 
variety of ways and degree of sophistication because 
of the flexibility of the SS framework [21, 22, 25]. 
For example, diversification generation method step 
might apply several constructive heuristic to build 
the population. Moreover, subset generation method 
can utilize different selection mechanism to select 
the parent for combination method [21]. 
 
A SS template consists of five procedures, as 
described by Glover, et al. [22], Glover, et al. [23], 
and Laguna and Martí [27]. Further details on the 
algorithm are given in the following subsections. 
 
3.1 A Diversification Generation Method 

 
Initializing the population using a diversification 
generation method plays an important role in 
developing the method that balances diversification 
and intensification [28]. The population generation 
method aims to generate good starting solutions to 
solve the TOP. The collection of initial solutions are 
constructed uniformly and distributed in the search 
space as input.  This operation starts from scratch 
(empty solution) and constructs a solution by 
assigning points to one decision variable at a time 
until a complete solution is generated. As shown in 

Algorithm 1, a large number of diverse solutions are 
constructed using the nearest-neighbor greedy 
algorithm (NNGA) to obtain a diverse region in the 
solution space [29]. All the generated solutions 
considered in this work are feasible. 

 
3.2 An Improvement Method 

 
In SS, an improvement method is introduced to 
transform a trial solution into one or more enhanced 
trial solutions. Thus, this component is used to 
enhance the generated solution quality via a local 
search procedure that drives the solution to the local 
optima [22]. The aim of this operation is to explore 
the neighborhood of the generated solutions by 
modifying it [21]. The solutions will be accepted if 
they are still feasible. We employed five common 
neighborhood structures (i.e. insert, swap, move, 2-
opt, and replace), all of which were drawn from 
literature [11]. These neighborhood structures aims 
to shorten the total travel time and increase the total 
received score. The neighbors that improve the 
current solution are randomly selected at each 
iteration. We use a steepest descent heuristic as the 
improvement method to search for a better quality 
solution. We consecutively use a number of 
iterations as a termination criterion. 

 
3.2.1 Steepest Descent (SD) 
 
SD explores neighborhood N in a fully deterministic 
manner and then selects the best neighbor (solution) 
[30, 31]. Hence, SD exhaustively explores the 
neighborhood N of solution x, and all probable 
moves are tried for solution x to return the best 
neighboring (solution 𝑥ᇱ). In this work, SD is applied 
after solution x is generated (x is generated by the 
diversification generation or the combination 
method) to further improve its quality. Each of the 
five neighborhood N structures is selected randomly 
and explored for each solution x to return the one 
with the highest quality (𝑥ᇱ). SD is terminated when 
it reaches the maximum number of iterations NI. The 
pseudo-code of the best improvement hill climbing 
(steepest descent) adopted in this work is presented 
in Algorithm 2. 
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Algorithm 2. Steepest Descent 
x = Initial solution; 
NI = number of iteration; 
While (stopping criterion is not met) 

Choose neighborhood N() randomly; 
Select best neighbor 𝑥ᇱ where 𝑥ᇱ ∈  N(x);\\ 𝑥ᇱnew solution; 
If f(𝑥ᇱ)> f(x) then \\ f(x)the objective function value of solution x 
     x = 𝑥ᇱ 
End if 
End while 

3.3 A reference set update method  
 
The reference set is the heart of a SS procedure, 
which may result in important modifications during 
the search process because of its initial composition 
[21]. The initial RefSet is built by selecting the elite 
solutions from the population and inserting them into 
the RefSet. These elite solutions are selected based 
on the objective value (solution quality) and 
diversity value (solution diversity). The diversity 
value is calculated by diversity measurement 
method, for more details see [32]. The RefSet is 
divided into two sets of solutions, namely, RefSet1, 
which contains high-quality solutions; and RefSet2, 
which contains the most diverse solutions. 
Moreover, the reference set update method is 
employed to update the RefSet after generating the 
new trial solution x through the combination and 

improvement methods. In this work, a queen bee 
strategy is used to build and update the reference set. 

 
3.3.1   Reference set queen bee-method (RefSet-

QB) 
 
The reference set queen bee-method idea came from 
the bee colony optimization algorithm [31]. This 
method consists of initializing and updating the 
RefSet. Initializing the RefSet starts with selecting 
the 10 best solutions from the population based on 
their objective function values. Then, the 10 most 
diverse solutions are selected from the population 
based on their diversity values. All the selected 
solutions (20 solutions) are placed and sorted in one 
pool (RefSet). The best solution in the initial RefSet 
is marked as the queen bee. Algorithm 3 illustrates 
the initialization step of the queen bee method. 
 

 
Algorithm 3. Initial RefSetQB 
Set RefSet = Ø, | RefSet | = RefSet_Size = 20. 
Step 1: sort the population p of solutions based in the objective function f(x). 
Step 2: chose the better 10 quality solutions and put them in the RefSet. 
Step 3: sort the population p of solutions based in the diversity vlaue d(x). 
Step 4: chose the better 10 diverse solutions and put them in the RefSet. 
Step 5: sort the RefSet based on the objective function f(x). 
Return RefSet = ሾ𝑋ଵ, … , 𝑋௡ሿ 

Meanwhile, the RefSet is updated by comparing the 
new trial solution (x') with the worst quality solution 
(xb) in the RefSet. If the new trial solution (x') is 
better in terms of the objective function value, it will 
supersede the worst quality solution (xb). Once the 
RefSet cannot be updated anymore, the new trial 
solution (x') will supersede the worst diverse 

solution (xy) if it is better in terms of the diversity 
value. When the updating strategy fails to update the 
RefSet, the solutions in the RefSet, except for the 
queen bee (best solution in the RefSet), are replaced 
by the other solutions generated by the 
diversification generation method. Algorithm 4 
illustrates the updating step of the queen bee method. 

 
Algorithm 4. Update RefSetQB 
Now_Sol_List =ሾ𝑋ଵ, … , 𝑋௡ሿ; //new trial solutions generated by combination method 

and improved by improvement method. 
While (Now_Sol_List =  Ø) 

xb = worst quality solution in the RefSet based on the objective function value. 
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xy = worst diversity solution in the RefSet based on the diversity value. 
If (f(x') > f(xb))    // f(x') objective function of new  trial solutions; 

replace the worst quality solution xb in RefSet by x'. 
remove x' from Now_Sol_List. 

Else If (d(x') > d(xy)) // d(x') diversity value of new solutions to RefSet; 
replace the worst diversity solution xy in RefSet by x'. 
remove x' from Now_Sol_List. 

Else 
remove x' from Now_Sol_List. 

End If 
End While 

If (RefSet has not updated) 
Apply Diversification Generation Method to initial new population 
of solutions by performing nearest neighbour. 
Apply the Improvement Method to the new solutions in the 
population. 
// apply hill climbing. 
Replace the solutions except queen bee in the RefSet by the new trial 
solutions in the population. 

End If 

3.4 A subset generation method  
 
Subset generation method (SGM) plays an important 
role in selecting pairs from a reference set for the 
combination method to generate a new solution [23]. 
The most common subset generation method is to 
generate the subset of pairs using a lexicographical 
order mechanism, namely, Type-I selection (i.e., the 
size of all subsets is 2). In the present work, greedy 
select parents (GSP) is employed as selection 
mechanism to generate a subset of pairs for the 
combination method. 

3.4.1 Greedy select parents (GSP) 
 
This selection strategy operates on two lists of 
quality and diverse solutions in the reference set to 
generate a subset of two solutions. This method 
generates three types of subsets: two quality 
solutions, two diversity solutions, and one quality 
and one diversity solution [33]. Each solution is 
elected randomly from each list once. The pseudo-
code of this strategy is illustrated in Algorithm 5. 

 
 

 

Algorithm 5. Greedy select parents 
TempListX = RefSet = ሾ𝑋ଵ, … , 𝑋௕ሿ 
TempListY = RefSet = ሾ𝑌ଵ, … , 𝑌ௗሿ 
SubsetList = Ø. 
Subset S = Ø, |S| = SSize = 2. 
While (TempList is empty) 
Generate empty subset S; 

While (until |S|= SSize) 
Switch : 

case 1 
Step 1: select x randomly from TempListX; // x is solution 
quality 
Step 2: add x to S; 
Step 3: remove x from TempListX; 

case 2 
Step 1: select y randomly from TempListY;//y is solution 
diversity 
Step 2: add y to S; 
Step 3: remove y from TempListY; 
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case 3 
apply case 1 & case 2; 

 
Step 5: add S to SubsetList 
End while 
Step 6: return SubsetList 

 
3.5 A solution combination method  
 
The main goal of this component is to generate one 
or more trial solutions from various regions of the 
solution search space. These new trial solutions are 
subjected to the improvement method. In this study, 
we use the work of Martí, et al. [34] to design the 
combination method, which produces one trial 
solution in a systematic way. The solution in the 
subset with the highest quality is selected, and then 
25% is taken from other solutions with the highest 
quality. The new solution has 75% of the quality 
solution attributes and 25% percent of the diverse 
solution attributes and is perhaps infeasible. 
 
Repair strategy is applied on the infeasible solution 
to restore its feasibility by removing the repeated 
points and the lowest score so that the solution does 
not exceed the time limit. For instance, a strategy is 
applied in the case where the search operators used 
by the combination method may generate infeasible 
solutions. 
 
The SS features the role of the reference set update 
method in maintaining elite solutions (in terms of 
solutions of high quality and high diversity) and the 
SGM in providing pairs for producing a new 
solution. A greedy select parents (GSP) is employed 
as selection mechanism to generate a subset of pairs 
in SGM which considers both quality and diversity 
solutions in the RefSet to be selected as a subset 
during the search process and produces new 
solutions that maintain the diversity of the RefSet. 
Steepest Descent is single-solution-based 
metaheuristics can improve the quality of the 
obtained results further by exploiting the promising 
area. 
 
In this work, the repairing strategy first checks the 
repeated points. If the point is repeated in the 
solution, one of these points is randomly selected 
and then removed from the others. In the second 
step, the time budget for each route is examined. If 
the solution exceeds the available time, the edge that 
causes a long travel time between points is removed. 
In the next section, the performance of the SSHA on 

the standard benchmark for 
TOP is discussed. 
 
 
4. EXPERIMENTAL SETUP 
 
We have conducted an experimental study to 
evaluate our proposals and to compare the algorithm, 
termed SSHA, with the state of the art. In this study, 
we have considered the standard benchmark dataset 
most widely used in the literature, namely, team 
orienteering problem [2], making a total of 387 
instances with different sizes and flexibility (the 
number of points, time limit, and number of player ). 
 
The SS is coded using Java 1.7 and performed on a 
personal computer (Intel Pentium (R) Core i5 CPU 
at 3.40 GHz with 4 gigabyte RAM), running on 
Windows 8 operating system (64-bit). The proposed 
SS executed 31 independent runs with different 
random seeds for some instances of the TOP to 
assess the effectiveness of using different 
parameters. Talbi [31] recommended performing 
minimum 30 runs in the statistical analysis of the 
algorithm performance. Executing 31 runs can easily 
calculate the median value without the need for 
interpolation. 
 

 
4.1 Parameter settings 

 
There are three parameters in SSHA, that is, the 
population size (Popsize), the number of iteration 
(Itermax) based on the fix number (k), and references 
set size (RefSet). The parameter values are 
determined using statistical study. The tested values 
of these parameters are as follows: Popsize = [30; 50; 
100], k = [10; 20; 30; 40; 50], and RefSet size = [6; 
10; 20]. Based on experimental results, we observed 
that when Popsize = 20, k = 40, and RefSet size = 20, 
SSHA works best. To analyze the effect of each 
parameter, only one parameter is varied while others 
are fixed. 
 
 
The settings of the parameters of the SS HA used for 
the TOP are presented in Table 1. We performed trial 
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and error methods called offline parameter tuning 
[31]. 
 
 

 
Table 1. Parameter Settings 

# Parameters Values 

1- 
Population size 
(Popsize) 

50 solutions 

2- 
References set size 
(RefSet) 

20 solutions (b1 = 
10, b2 = 10) 

3- 
References set quality 
(RefSet1) 

b1 = 10 

4- 
References set 
diversity (RefSet2) 

b2 = 10 

5- 
Number of Iteration 
(Itermax) 

Itermax =k . n/m; k 
= 30 

6- Subset generation size 
2 solutions in each 

subset 

7- 
Solution Combination 
rate 

1.0 

We set the termination condition for the SS to solve 
the TOP according to the work of Dang, et al. [14]. 
The SSHA stops when the number of elapsed 
consecutive iterations reaches the obtained results of 
Equation (10). 

𝐼𝑡𝑒𝑟௠௔௫ ൌ 𝑘 . 𝑛 𝑚⁄                                         ሺ10ሻ  

 

where k is the fixed number, n is the number of 
points, and m is the number of paths. The termination 
condition is changed based on the number of points 
and number of paths. 

5. RESULTS AND COMPARISON 

This section is divided into two subsections. The first 
subsection presents the assess the value of 
incorporating the Steepest Descent (SD), Reference 
set queen bee-method (RefSet-QB), and Greedy 

select parents (GSP) with the proposed algorithm. 
The second subsection compares the results of 
proposed algorithm against the other algorithms that 
have been introduced in the literature for TOP. 

 
5.1 Effectiveness Evaluation 

This experiment examines the value of using of 
incorporating the Steepest Descent (SD), Reference 
set queen bee-method (RefSet-QB), and Greedy 
select parents (GSP) with SS. We have tested the 
proposed algorithm (denoted as SS) with RefSet-QB 
(denoted as SS-RefSetQB), GSP (denoted as SS-
GSP), both together (denoted ISS) and incorporated 
ISS with SD (denoted as HISS-SD). To ensure a fair 
comparison between SS, SS-RefSetQB, SS-GSP, 
ISS, and HISS-SD the initial solution, number of 
runs, stopping condition and computer resources are 
the same for all instances. All algorithms have been 
tested 31 runs over all instances. Table 2 lists, for 
each instance, the maximum (Max), average (Avg), 
standard deviation (Stdv), and CPU average time 
(CPUAvg Time) achieved by SS, SS-RefSetQB, SS-
GSP, ISS, and HISS-SD. In the table, the maximum 
value is preferred (Maximization problem) and best 
results achieved by the compared algorithms are 
presented in boldfont. 

 

From table 2, it can be notice that HISS-SD obtained 
the best results in all instance and outperformed the 
other tested algorithms, except ISS, across most 
instances. Moreover, both the average and standard 
deviation results gained by HISS-SD are better than 
other tested algorithms on all instances. The results 
revel that the cooperative SS with RefSet-QB, GSP, 
and SD contribute to HISS-SD performance and has 
an effect on the ability of HISS-SD in producing 
high quality and consistent results across all tested 
instances. 
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Table 2. The computational results of SS, SS-RefSetQB, SS-GSP, ISS, and HISS-SD

 

 

To farther support these positive results, the 
significant difference between the proposed 
algorithms were examined by performing a 
Wilcoxon rank test with the significance interval of 
95% (α = 0.05). Pair comparisons were executed for 
HISS-SD and the other proposed algorithms. Table 
3 presents the p-value of the HISS-SD versus SS, 
SS-RefSetQB, SS-GSP, and ISS for the TOP 
instances. In Table 3, the symbol “+” denotes that 
HISS-SD is statistically better than the contending 
proposed algorithm (p-value < 0.05), “–” denotes 
that HISS-SD was outperformed by the contending 
proposed algorithm (p-value > 0.05), and “~” 
denotes that HISS-SD has the same performance as 
the contending proposed algorithm (p-value = 0.05). 

Table 3. The p-value of HISS-SD versus SS, SS-
RefSetQB, SS-GSP, and ISS. 

HISS-
SD 
vs. 

SS 
SS-

GST 
SS-

RefSetQB 
ISS 

Ins. 
Name 

p-value p-value p-value p-value 

p4.2.l + + + + 
p4.3.p + + + + 
p4.4.s + + + + 
p5.2.y + + + + 
p5.3.r ~ ~ + ~ 
p5.4.v ~ ~ ~ ~ 
p6.2.n + + + + 
p6.3.n + ~ ~ + 
p6.4.l ~ ~ ~ ~ 
p7.2.o + + + + 
p7.3.s + + + + 
p7.4.l ~ ~ ~ ~ 

The results in Table 3 show that HISS-SD is 
statistically better than the contending other 
proposed algorithms in most instances. These results 
support the fact that the SD algorithm improved the 
performance of the SS, SS-RefSetQB, SS-GSP, and 
ISS, while the HISS-SD obtained much better results 
than the other proposed algorithms. Indeed, the use 
the SD algorithm can effectively enhance the search 
performance to obtain very good results for all tested 
instances. 

5.2 The comparison of HISS-SD with other 
algorithms for TOP. 
 

This section compares the performance of the 
proposed algorithms with state-of-the-art of 
algorithms used to solve team orienteering problem 
(TOP). The results of the proposed algorithms for 
TOP are compared with state-of-the-art algorithms 
in terms of maximum obtained value, average CPU 
time, relative percentage error (RPE), and average 
RPE (ARPE). A statistical test is also performed to 
compare the proposed algorithms with other 
algorithms implemented to solve TOP. 

The state-of-the-art algorithms used to compare the 
results are presented in Table 4. The symbols of 
these algorithms, including the descriptions and 
references are presented in Table 4. 

The comparison of 157 instances with the standard 
benchmark for TOP, which are set as 4, 5, 6, and 7, 
is reported. Other instances (i.e., sets 1, 2, and 3) are 
eliminated from the comparison because all the 

  Ins. Name
Algorithms  p4.2.l p4.3.p p4.4.s p5.2.y p5.3.r p5.4.v p6.2.n p6.3.n p6.4.l p7.2.o p7.3.s p7.4.l 

SS 

Max 1071 1222 1254 1645 1125 1320 1260 1170 696 945 1079 590 

Avg 1064 1200.06 1225.84 1621.61 1124.03 1320 1245.1 1167.68 696 935.71 1073.35 589.52 

Stdv 7.19 16.32 18.5 12.27 2.01 0 11.26 4.82 0 7.51 5.39 1.98 

CPUAvg Time 269.37 248.72 185.79 172.4 103.56 53.51 109.87 104.12 46.01 336.83 229.75 91.57 

SS-GST 

Max 1074 1222 1256 1645 1125 1320 1260 1170 696 945 1081 590 

Avg 1070.19 1208.77 1235.81 1635 1124.84 1320 1253.23 1168.84 696 941.23 1074.97 589.81 

Stdv 2.51 13.76 14.66 8.76 0.9 0 8.73 3.61 0 6.17 4.92 0.6 

CPUAvg Time 199.12 105.26 69.75 138.45 90.3 42.34 86.73 98.85 38.15 219.1 160.71 78.13 

SS-RefSetQB 

Max 1073 1222 1256 1645 1125 1320 1260 1170 696 945 1081 590 

Avg 1067 1206.94 1225.77 1629.19 1122.9 1320 1246.26 1168.65 696 939.94 1070.68 589.48 

Stdv 4.95 18.44 15.71 9.58 5.59 0 9.32 3.7 0 4.63 3.91 2.53 

CPUAvg Time 200.01 143.37 129.25 134.59 90.46 45.3 80.51 94.29 42.7 254.85 189.19 71.79 

ISS 

Max 1074 1222 1257 1645 1125 1320 1260 1170 696 945 1081 590 

Avg 1071.06 1215.16 1245.16 1635.65 1124.35 1320 1254.58 1168.89 696 942.61 1076.61 589.94 

Stdv 3.93 11.92 6.94 8.44 1.87 0 6.9 3.96 0 3.33 5.03 0.36 

CPUAvg Time 173.47 93.84 66.8 137.04 90.29 46.04 89.3 91.5 41.2 257.05 186.82 78.32 

HISS-SD 

Max 1074 1222 1260 1645 1125 1320 1260 1170 696 945 1081 590 

Avg 1073.48 1221.68 1257 1645 1125 1320 1260 1170 696 945 1081 590 

Stdv 0.51 0.54 3.44 0 0 0 0 0 0 0 0 0 

CPUAvg Time 195.49 107.07 86.32 152.8 99.64 50.12 95.11 96.61 42.62 285.95 197.45 83.3 
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compared algorithms obtain the same best known 
results. 

Tables 5 – 9 present the results obtained through 
state-of-the-art of algorithms for all compared 
instances and through the proposed algorithms. In 

addition, a comparison is also performed with 
respect to the best known results for TOP. The best 
results are displayed in boldfont and with a dark 
background. 

 

 

Table 4: Abbreviations of the compared methods for TOP. 

# Symbol Descriptions References 
1- ASe Sequential Ant Colony Optimization (Ke et al. 2008) 
2- ADC Deterministic Concurrent Ant Colony Optimization (Ke et al. 2008) 
3- ARC Random Concurrent Ant Colony Optimization (Ke et al. 2008). 
4- ASi Simultaneous Ant Colony Optimization (Ke et al. 2008) 
5- MA10 Memetic Algorithm (Bouly et al. 2010) 
6- PSOMA Particle Swarm Optimization Based Memetic Algorithm (Dang et al. 2013) 
7- PSOiA Particle Swarm Optimization Inspired Algorithm (Dang et al. 2013) 
8- PMA Pareto Mimic Algorithm (Ke, Zhai et al. 2016)

According to the results in Tables 5 – 9, SS, ISS, and 
HISS-SD generate excellent results for most 
instances of TOP. HISS-SD obtains the best results 
compared with the proposed algorithms in 153 out of 

157 instances. This result indicates that this 
algorithm generalizes well among all TOP instances 
instead of producing excellent results for few 
instances only. 

Table 5. Best results of SS, ISS, and HISS-SD compared with other algorithms for test set 4 

Ins. HISS-SD ISS SS ASe ADC ARC ASi MA10 PSOMA PSOiA PMA 
Best 

Known 
p4.2.a 206 206 206 206 206 206 206 206 206 206 206 206 
p4.2.b 341 341 341 341 341 341 341 341 341 341 341 341 
p4.2.c 452 452 452 452 452 452 452 452 452 452 452 452 
p4.2.d 531 531 531 531 531 530 531 531 531 531 531 531 
p4.2.e 618 618 618 618 600 600 613 618 618 618 618 618 
p4.2.f 687 687 687 687 672 672 672 687 687 687 687 687 
p4.2.g 757 756 756 757 756 756 756 757 757 757 757 757 
p4.2.h 835 834 835 827 819 819 820 835 835 835 835 835 
p4.2.i 918 918 918 918 900 918 918 918 918 918 918 918 
p4.2.j 965 962 965 965 962 962 962 965 965 965 965 965 
p4.2.k 1022 1022 1022 1022 1016 1016 1016 1022 1022 1022 1022 1022 
p4.2.l 1074 1074 1074 1071 1070 1071 1069 1071 1071 1074 1074 1074 
p4.2.m 1132 1132 1132 1130 1115 1119 1113 1132 1132 1132 1132 1132 
p4.2.n 1174 1173 1172 1168 1149 1158 1169 1174 1174 1174 1174 1174 
p4.2.o 1218 1216 1206 1215 1209 1198 1210 1218 1218 1218 1218 1218 
p4.2.p 1242 1241 1239 1242 1229 1233 1239 1242 1241 1242 1242 1242 
p4.2.q 1267 1264 1258 1263 1253 1252 1260 1267 1267 1268 1268 1268 
p4.2.r 1292 1288 1276 1288 1278 1278 1279 1292 1292 1292 1292 1292 
p4.2.s 1304 1304 1290 1304 1304 1303 1304 1304 1304 1304 1304 1304 
p4.2.t 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306 
p4.3.c 193 193 193 193 193 193 193 193 193 193 193 193 
p4.3.d 335 335 335 335 333 333 335 335 335 335 335 335 
p4.3.e 468 468 468 468 468 468 468 468 468 468 468 468 
p4.3.f 579 579 579 579 579 579 579 579 579 579 579 579 
p4.3.g 653 653 653 653 652 653 652 653 653 653 653 653 
p4.3.h 729 729 729 720 713 713 713 728 729 729 729 729 
p4.3.i 809 809 809 796 793 793 786 809 809 809 809 809 
p4.3.j 861 861 860 861 857 855 858 861 861 861 861 861 
p4.3.k 919 919 919 918 913 910 910 919 919 919 919 919 
p4.3.l 979 978 979 979 958 976 966 979 979 979 979 979 
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p4.3.m 1063 1056 1061 1053 1039 1028 1046 1063 1063 1063 1063 1063 
p4.3.n 1121 1121 1121 1121 1109 1112 1103 1121 1121 1121 1121 1121 
p4.3.o 1172 1172 1170 1170 1163 1167 1165 1172 1172 1172 1172 1172 
p4.3.p 1222 1222 1222 1221 1202 1207 1207 1222 1222 1222 1222 1222 
p4.3.q 1253 1246 1251 1252 123 1239 1238 1253 1253 1253 1253 1253 
p4.3.r 1273 1272 1262 1267 1263 1263 1263 1273 1273 1273 1273 1273 
p4.3.s 1295 1293 1282 1293 1291 1289 1291 1295 1295 1295 1295 1295 
p4.3.t 1305 1305 1299 1305 1304 1303 1304 1305 1304 1305 1305 1305 
p4.4.e 183 183 183 183 183 183 183 183 183 183 183 183 
p4.4.f 324 324 324 324 324 324 324 324 324 324 324 324 
p4.4.g 461 461 461 461 461 460 460 461 461 461 461 461 
p4.4.h 571 571 571 571 556 556 556 571 571 571 571 571 
p4.4.i 657 657 657 657 653 653 653 657 657 657 657 657 
p4.4.j 732 732 732 732 731 731 731 732 732 732 732 732 
p4.4.k 821 820 821 821 820 818 818 821 821 821 821 821 
p4.4.l 880 878 878 880 877 875 875 880 880 880 880 880 
p4.4.m 919 916 919 918 911 911 911 916 919 919 919 919 
p4.4.n 976 976 967 961 956 956 956 969 969 976 976 977 
p4.4.o 1061 1061 1061 1036 1030 1029 1029 1061 1061 1061 1061 1061 
p4.4.p 1124 1120 1124 1111 1108 1110 1110 1124 1124 1124 1124 1124 
p4.4.q 1161 1160 1157 1145 1150 1148 1148 1161 1161 1161 1161 1161 
p4.4.r 1216 1213 1211 1200 1195 1194 1194 1216 1216 1216 1216 1216 
p4.4.s 1260 1257 1256 1249 1256 1252 1252 1260 1259 1260 1260 1260 
p4.4.t 1285 1284 1282 1281 1281 1281 1281 1285 1285 1285 1285 1285 

 
Table 6. Best results of SS, ISS, and HISS-SD compared with other algorithms for test set 5. 

Ins. HISS-SD ISS SS ASe ADC ARC ASi MA10 PSOMA PSOiA PMA 
Best 

Known 
p5.2.h 410 410 410 410 410 410 410 410 410 410 410 410 
p5.2.j 580 580 580 580 580 580 580 580 580 580 580 580 
p5.2.k 670 670 670 670 670 670 670 670 670 670 670 670 
p5.2.l 800 800 800 800 800 800 800 800 800 800 800 800 
p5.2.m 860 860 860 860 860 860 860 860 860 860 860 860 
p5.2.n 925 925 925 925 920 920 925 925 925 925 925 925 
p5.2.o 1020 1020 1020 1020 1020 1010 1010 1020 1020 1020 1020 1020 
p5.2.p 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 
p5.2.q 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195 
p5.2.r 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 
p5.2.s 1340 1340 1330 1340 1330 1330 1330 1330 1340 1340 1340 1340 
p5.2.t 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 
p5.2.u 1460 1460 1430 1460 1460 1460 1460 1460 1460 1460 1460 1460 
p5.2.v 1505 1505 1490 1505 1495 1500 1495 1505 1505 1505 1505 1505 
p5.2.w 1565 1560 1550 1560 1555 1555 1555 1560 1560 1565 1565 1565 
p5.2.x 1610 1610 1595 1610 1610 1610 1610 1610 1610 1610 1610 1610 
p5.2.y 1645 1645 1645 1645 1645 1645 1645 1645 1645 1645 1645 1645 
p5.2.z 1680 1680 1670 1680 1680 1680 1680 1680 1680 1680 1680 1680 
p5.3.k 495 495 495 495 495 495 495 495 495 495 495 495 
p5.3.l 595 595 595 595 595 595 595 595 595 595 595 595 
p5.3.n 755 755 755 755 755 755 755 755 755 755 755 755 
p5.3.o 870 870 870 870 870 870 870 870 870 870 870 870 
p5.3.q 1070 1070 1070 1070 1065 1065 1065 1070 1070 1070 1070 1070 
p5.3.r 1125 1125 1125 1125 1120 1125 1125 1125 1125 1125 1125 1125 
p5.3.s 1190 1190 1190 1190 1190 1190 1185 1190 1190 1190 1190 1190 
p5.3.t 1260 1260 1260 1260 1250 1255 1260 1260 1260 1260 1260 1260 
p5.3.u 1345 1345 1345 1345 1330 1335 1335 1345 1345 1345 1345 1345 
p5.3.v 1425 1425 1425 1425 1425 1425 1420 1425 1425 1425 1425 1425 
p5.3.w 1485 1485 1475 1485 1465 1465 1465 1485 1485 1485 1485 1485 
p5.3.x 1555 1555 1540 1540 1535 1540 1540 1555 1555 1555 1555 1555 
p5.3.y 1595 1595 1580 1590 1590 1590 1590 1590 1595 1595 1595 1595 
p5.3.z 1635 1635 1630 1635 1635 1635 1635 1635 1635 1635 1635 1635 
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p5.4.m 555 555 555 555 555 555 555 555 555 555 555 555 
p5.4.o 690 690 690 690 690 690 690 690 690 690 690 690 
p5.4.p 765 765 765 765 760 760 760 760 765 765 765 765 
p5.4.q 860 860 860 860 860 860 860 860 860 860 860 860 
p5.4.r 960 960 960 960 960 960 960 960 960 960 960 960 
p5.4.s 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030 
p5.4.t 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 
p5.4.u 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 
p5.4.v 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 
p5.4.w 1390 1390 1390 1390 1380 1390 1380 1380 1385 1390 1390 1390 
p5.4.x 1450 1445 1445 1450 1450 1450 1450 1450 1450 1450 1450 1450 
p5.4.y 1520 1520 1520 1520 1510 1510 1500 1520 1520 1520 1520 1520 
p5.4.z 1620 1620 1595 1620 1620 1575 1580 1620 1620 1620 1620 1620 

 
Table 7. Best results of SS, ISS, and HISS-SD compared with other algorithms for test set 6. 

Ins. 
HISS-

SD 
ISS SS ASe 

AD
C 

ARC ASi 
MA1

0 
PSOM

A 
PSOi

A 
PM
A 

Best 
Known 

p6.2.d 192 192 192 192 192 192 192 192 192 192 192 192 
p6.2.j 948 948 948 948 948 948 948 948 948 948 948 948 

p6.2.l 1116 
111
6 

111
6 

111
6 

111
0 

111
6 

111
6 

1116 1116 1116 
111
6 

1116 

p6.2.
m 1188 

118
8 

118
8 

118
8 

118
8 

118
8 

118
8 

1188 1188 1188 
118
8 

1188 

p6.2.n 1260 
126
0 

126
0 

126
0 

126
0 

125
4 

126
0 

1260 1260 1260 
126
0 

1260 

p6.3.g 282 282 282 282 282 282 282 282 282 282 282 282 
p6.3.h 444 444 444 444 444 438 438 444 444 444 444 444 
p6.3.i 642 642 642 642 642 642 642 642 642 642 642 642 
p6.3.k 894 894 894 894 888 888 894 894 894 894 894 894 

p6.3.l 1002 
100
2 

100
2 

100
2 

100
2 

100
2 

100
2 

1002 1002 1002 
100
2 

1002 

p6.3.
m 

1080 
108
0 

108
0 

108
0 

107
4 

108
0 

108
0 

1080 1080 1080 
108
0 

1080 

p6.3.n 1170 
117
0 

117
0 

117
0 

116
4 

116
4 

116
4 

1170 1170 1170 
117
0 

1170 

p6.4.j 366 366 366 366 366 366 366 366 366 366 366 366 
p6.4.k 528 528 528 528 528 528 528 528 528 528 528 528 
p6.4.l 696 696 696 696 696 696 696 696 696 696 696 696 

 
Table 8. Best results of SS, ISS, and HISS-SD compared with other algorithms for test set 6. 

Ins. 
HISS-

SD 
ISS SS ASe 

AD
C 

ARC ASi 
MA1

0 
PSOM

A 
PSOi

A 
PM
A 

Best 
Known 

p7.2.d 190 190 190 190 190 190 190 190 190 190 190 190 
p7.2.e 290 290 290 290 290 290 290 290 290 290 290 290 
p7.2.f 387 387 387 387 387 387 387 387 387 387 387 387 
p7.2.g 459 459 459 459 459 459 459 459 459 459 459 459 
p7.2.h 521 521 521 521 521 521 521 521 521 521 521 521 
p7.2.i 580 579 580 580 579 579 579 580 580 580 580 580 
p7.2.j 646 646 646 646 646 646 646 646 646 646 646 646 
p7.2.k 705 704 705 705 704 704 704 705 705 705 705 705 
p7.2.l 767 767 761 767 767 767 767 767 767 767 767 767 
p7.2.
m 827 827 827 827 827 827 827 827 827 827 827 827 

p7.2.n 888 888 888 888 878 878 878 888 888 888 888 888 
p7.2.o 945 945 945 945 945 940 941 945 945 945 945 945 

p7.2.p 1002 
100
2 

100
2 

100
2 

991 993 993 1002 1002 1002 
100
2 

1002 

p7.2.q 1043 
104
3 

104
4 

104
3 

104
2 

104
3 

104
3 1044 1044 1044 

104
4 

1044 
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p7.2.r 1094 
108
9 

109
2 

109
4 

109
3 

108
8 

109
4 

1094 1094 1094 
109
4 

1094 

p7.2.s 1136 
113
4 

112
8 

113
6 

113
6 

113
4 

113
1 1136 1136 1136 

113
6 

1136 

p7.2.t 1179 
117
4 

116
4 

117
9 

117
9 

117
9 

117
9 

1179 1179 1179 
117
9 

1179 

p7.3.h 425 425 425 425 425 425 425 425 425 425 425 425 
p7.3.i 487 487 487 487 487 486 487 487 487 487 487 487 
p7.3.j 564 564 564 564 564 564 564 564 564 564 564 564 
p7.3.k 633 633 633 633 632 633 633 633 633 633 633 633 
p7.3.l 684 684 682 684 683 684 684 684 683 684 684 684 
p7.3.
m 762 762 762 762 762 762 762 762 762 762 762 762 

p7.3.n 820 820 820 820 819 819 820 820 820 820 820 820 
p7.3.o 874 874 874 874 874 874 874 874 874 874 874 874 
p7.3.p 927 929 927 929 925 926 925 929 927 929 929 929 
p7.3.q 987 987 987 987 987 987 987 987 987 987 987 987 

p7.3.r 1026 
102
4 

102
4 

102
6 

102
4 

102
1 

102
2 1026 1026 1026 

102
6 

1026 

p7.3.s 1081 
108
1 

108
1 

108
1 

108
1 

108
1 

107
7 1081 1081 1081 

108
1 

1081 

p7.3.t 1120 
111
8 

111
6 

111
8 

111
7 

110
3 

111
7 1120 1120 1120 

112
0 

1120 

p7.4.g 217 217 217 217 217 217 217 217 217 217 217 217 
p7.4.h 285 285 285 285 285 285 285 285 285 285 285 285 
p7.4.i 366 366 366 366 366 366 366 366 366 366 366 366 
p7.4.k 520 520 520 520 520 520 520 520 520 520 520 520 
p7.4.l 590 590 590 590 590 590 590 590 590 590 590 590 
p7.4.
m 646 646 646 646 644 646 646 646 646 646 646 646 

p7.4.n 730 726 730 730 725 725 726 726 726 730 730 730 
p7.4.o 781 781 781 781 778 781 778 781 781 781 781 781 
p7.4.p 846 846 846 846 846 838 842 846 846 846 846 846 
p7.4.q 909 908 909 909 909 909 909 909 909 909 909 909 
p7.4.r 970 970 970 970 970 970 970 970 970 970 970 970 

p7.4.s 1022 
102
2 

102
2 

102
2 

101
9 

102
1 

101
9 1022 1022 1022 

102
2 

1022 

p7.4.t 1077 
107
7 

107
7 

107
7 

107
2 

107
7 

107
7 

1077 1077 1077 
107
7 

1077 

 
Table 9: Performance comparison based on RPE average for each data set of the associated instance. 

Data set 
RPE average for each dataset 
HISS-SD ISS SS ASe ADC ARC ASi MA10 PSOMA PSOiA PMA 

Test Set 4 0.003 0.090 0.196 0.312 0.903 0.861 0.775 0.030 0.026 0.002 0.002 
Test Set 5 0.000 0.015 0.246 0.036 0.231 0.257 0.284 0.061 0.015 0.000 0.000 
Test Set 6 0.000 0.000 0.000 0.000 0.152 0.201 0.124 0.000 0.000 0.000 0.000 
Test Set 7 0.007 0.058 0.097 0.006 0.146 0.188 0.150 0.013 0.021 0.000 0.000 
RPE AVG 0.003 0.041 0.132 0.089 0.358 0.377 0.333 0.026 0.016 0.000 0.000 
Eq. Best 153 123 115 128 80 80 84 146 146 156 156 

 

The efficiency of the algorithm was measured by the 
relative percentage error (RPE) and the average RPE 
(ARPE). The RPE is clarified as the relative error 
between the best known results obtained in scientific 
literature and the best results obtained by the 
proposed algorithm. It shows the performance of the 
proposed algorithm over a number of runs, as in 
Equation (11). On the other hand, the ARPE is 

clarified as the relative error between the best known 
results obtained in scientific literature and the 
average results obtained by the proposed algorithm 
over a number of runs. It shows the robustness of the 
proposed algorithm, as in Equation (12). 
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𝑅𝑃𝐸 ൌ  
𝑥௕௘௦௧ െ 𝑥௠௔௫

𝑥௕௘௦௧
 . 100                         ሺ11ሻ 

 

𝐴𝑅𝑃𝐸 ൌ  
𝑥௕௘௦௧ െ 𝑥௔௩௚

𝑥௕௘௦௧
 . 100                       ሺ12ሻ 

 

where xbest is the best known result found in 
literature, xmax is the best results obtained by the 
proposed algorithm over all the independent runs, 
and xavg is the average of the obtained results by the 
proposed algorithm over a number of runs. 

Tables 9 presents the RPE average value for each set 
of standard benchmark instances. SS, ISS, and 
HISS-SD are compared with state-of-the-art of 
algorithms based on the RPE average value. Table 8 
evidently shows that the RPE average values of SS, 

ISS, and HISS-SD are 0.132, 0.041, and 0.003, 
respectively. SS outperforms 3 algorithms (ADC, 
ARC, and ASi) out of 8 algorithms. Meanwhile, ISS 
outperforms 4 algorithms (ASe, ADC, ARC, and 
ASi) out of 8 algorithms. HISS-SD outperforms 6 
algorithms (ASe, ADC, ARC, ASi, MA10, PSOMA) 
out of 8 algorithms. The last row in Table 8 presents 
the number of solutions that is equal to the best 
known results. 

Table 10 presents the ARPE average for each set of 
standard benchmark instances. SS, ISS, and HISS-
SD are compared with the state-of-the-art 
algorithms, wherein the average results are reported 
in scientific literature based on ARPE average value. 
The table shows that SS and ISS outperform 4 
compared algorithms (ASe, ADC, ARC, and ASi) 
out of 8 algorithms. HISS-SD outperforms 7 
compared algorithms (ASe, ADC, ARC, ASi, 
MA10, PSOMA, and PMA) out of 8 algorithms. 

Table 10: Performance comparison based on ARPE average for each data set of the associated instance. 

Data set 
ARPE average for each dataset 
HISS-SD ISS SS ASe ADC ARC ASi MA10 PSOMA PSOiA PMA 

Test Set 4 0.166 0.893 1.066 1.866 1.867 2.063 1.703 0.207 0.285 0.110 0.318 
Test Set 5 0.050 0.232 0.712 0.823 1.161 1.107 1.181 0.095 0.090 0.034 0.090 
Test Set 6 0.000 0.017 0.056 1.071 1.170 1.210 1.065 0.017 0.000 0.000 0.293 
Test Set 7 0.056 0.389 0.439 0.512 0.617 2.532 2.457 0.106 0.179 0.030 0.128 
ARPE AVG 0.068 0.383 0.568 1.068 1.204 1.728 1.601 0.106 0.139 0.044 0.208 

 

The average values obtained by SS, ISS, HISS-SD, 
and the state-of-the-art algorithms are used to 
compare the performances of these algorithms 
through a Friedman statistical test. The p-values 
obtained through the Friedman and Iman–Davenport 
statistical tests are less than the critical level (0.05), 
which indicates the statistically different 
performances of the compared algorithms. Hence, 
the difference among the compared algorithms is 
detected through a Holm and Hochberg post-hoc 
statistical test (see Derrac, et al. [35] for more 
details). 

Table 10 summarizes the average ranking (lower is 
better) for each algorithm (SS, ISS, and HISS-SD are 
included in the ranking). The ranking shows that SS 
is ranked 6.66, ISS is 6.05, and HISS-SD is 3.3. 
Therefore, PSOiA becomes the controlled method in 
the Holm and Hochberg statistical test because it is 
ranked as the 1st algorithm. The p-values computed 
by the Friedman test is 0.000, which is way below 
the significance interval of 95% (α = 0.05). This 
result shows that there is a significant difference 
among the observed results listed in Tables 5-9. 

Next, the Holm and Hochberg statistical test [35] is 
performed to obtain the adjusted p-values for each 
comparison between PSOiA (the control method) 
and other algotherms. The adjusted p-value of the 
Holm and Hochberg statistical test is summarized in 
Table 12. PSOiA algorithm is statistically better than 
ARC, ADC, ASi, ASe, SS, ISS, PMA, PSOMA, and 
MA10 with a critical level of 0.05 (adjusted p-value 
< 0.05). Whereas, the results also reveal that HISS-
SD is comparable to PSOiA with a critical level of 
0.05 (adjusted p-value > 0.05). Notably, SS and ISS 
are included in the comparison with the state-of-the-
art algorithms. 

 
Table 11: Average rank obtained through a 
Friedman test for the compared algorithms. 

Algorithm Ranking 
ASe 8.15 
ADC 8.78 
ARC 9.05 
ASi 8.58 

MA10 3.86 
PSOMA 4.30 
PSOiA 2.80 
PMA 4.42 
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SS 6.66 
ISS 6.05 

HISS 3.30 

In summary, multiple comparison statistical tests 
indicate that HISS-SD an effective and efficient 
solution method for the TOP compared with the 
state-of-the-art algorithms. 

 
Table 12: Adjusted p-value obtained through a 

Holm and Hochberg statistical test for the 
compared algorithms 

i 
Algorith

m 
Unadjusted 

P 
pHol

m 
pHochber

g 
1 ARC 0 0 0 
2 ADC 0 0 0 

3 ASi 0 0 0 
4 ASe 0 0 0 
5 SS 0 0 0 
6 ISS 0 0 0 
7 PMA 0.000 0.000 0.000 
8 PSOMA 0.000 0.000 0.000 
9 MA10 0.004 0.009 0.009 
1
0 

HISS 0.188 0.188 0.188 

 

The average execution CPU times for SS, ISS, and 
HISS are then compared with the algorithms for 
datasets 1–7 in Table 5.13. The execution times for 
some of the algorithms (ARC and ASi) are reported 
for datasets 4–7. 

 

Table 13: Average execution time for each standard benchmark dataset. 
  HISS-SD ISS SS ASe ADC ARC ASi MA10 PSOMA PSOiA PMA 
Test Set 1 0.17 0.08 0.149 4.877 5.238 - - 1.95 0.18 2.15 6.81 
Test Set 2 0.00 0.01 0.009 2.776 2.994 - - 0.24 0.01 0.41 1.43 
Test Set 3 0.15 0.08 0.163 5.607 5.923 - - 2.06 0.49 3.18 9.56 
Test Set 4 80.39 69.19 145.782 31.469 32.735 8.6 367.4 182.36 83.89 218.58 109.34 
Test Set 5 50.24 46.34 54.974 14.331 15.132 2.9 119.9 35.33 14.72 49.5 22.86 
Test Set 6 62.02 58.34 68.402 13.813 14.465 2.1 89.6 39.07 7.59 47.08 26.38 
Test Set 7 120.39 111.34 138.521 23.312 24.652 6.3 272.8 112.75 49.09 97.47 54.56 
AVG Time 44.77 40.77 58.286 13.741 14.448 4.975 212.425 53.394 22.281 59.767 35.58 

 

6. CONCLUSION 

We have proposed a Scatter Search algorithm for 
Team Orienteering problem. SS follows the general 
framework of the population-based metaheuristic 
[31] while it has five prominent components: (1) A 
Diversification Generation Method: SS employ this 
component to generate good starting solutions to 
solve the TOP. (2) An Improvement Method: The 
aim of this operation is to explore the neighborhood 
of the generated solutions by modifying it [21]. In 
our algorithm, we used a Steepest Descent (SD) 
heuristic as the improvement method to search for a 
better quality solution. (3)  A reference set update 
method: this component is the heart of a SS 
procedure, which may result in important 
modifications during the search process because of 
its initial composition [21]. In this work, a Queen 
Bee (QB) strategy is used to build and update the 
reference set. (4) Subset generation method (SGM): 
plays an important role in selecting pairs from a 
reference set for the combination method to generate 
a new solution [23]. In the present work, greedy 
select parents (GSP) is employed as selection 
mechanism to generate a subset of pairs for the 
combination method. (5) A solution combination 
method: The main goal of this component is to 

generate one or more trial solutions from various 
regions of the solution search space. 

 
We introduced new improved SS called ISS. In the 
ISS, two main modifications were employed: a 
selection strategy within the subset generation 
method (greedy select parents (GSP)) and an 
updating strategy within the reference set update 
method (Queen Bee (QB) strategy). The 
performance of the ISS can be further enhanced 
because the SS is a population-based algorithm and 
concentrates more on exploration (diversification) 
than on exploitation (intensification) [31]. 
Furthermore, a hybridization of the ISS algorithm 
with Steepest Descent (SD), namely, HISS-SD was 
presented for the TOP. Generally, the hybridization 
in this paper managed to improve the quality of the 
obtained results by ISS further. The comparison 
between the proposed algorithms showed that HISS-
SD is the best algorithm among the proposed 
algorithms in terms of yielding the best results. To 
further investigate the performance of HISS-SD, we 
compare the HISS-SD with state-of-the-art 
algorithms. The results were compared in terms of 
maximum obtained value, relative percentage error, 
average relative percentage error, and average CPU 
time. A statistical test was conducted to determine 
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the algorithm that performed better compared with 
the others. The results revealed that SS and ISS only 
outperformed some of the state-of-the-art 
algorithms. By contrast, HISS-SD outperformed all 
state-of-the-art algorithms and was comparable to 
one algorithm.  
 
The proposed algorithms have been tested on TOP 
benchmark datasets. The proposed algorithms could 
be tested and validated with respect to other variants 
of the orienteering problem, such as team 
orienteering problem with time windows, multi-
constraint team orienteering problem with (multiple) 
time windows, orienteering problem with hotel 
selection, and orienteering problem with hotel 
selection and time windows. 
In future work, we intend to test the proposed HISS-
SD on other combinatorial optimization problems. 
And the performance of the proposed algorithms 
could be improved by dynamically changing the 
parameter of SS during the search process based on 
objective function value, which generates interesting 
results. 
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