
Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3375

A SCATTER SEARCH HYBRID APPROACH FOR TEAM
ORIENTEERING PROBLEM

1HAMZAH ALKHAZALEH, 2MASRI AYOB, 3AMER IBRAHIM, 4NAHIL ABED, 5MOHAMMAD

HABLI, 6TAWFIK SAID

IT Department, School of Engineering and Technology, Aldar University College, Dubai, UAE
2Faculty Of Information Science & Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi,

Selangor, Darul Ehsan, Malaysia.
1hamzah@aldar.ac.ae, 2masri@ukm.edu.my, 3amer@aldar.ac.ae, 4nahilabed@aldar.ac.ae,

5m.habli@aldar.ac.ae, 6tawfik.said@aldar.ac.ae

ABSTRACT
The Team Orienteering Problem (TOP) is a particular vehicle routing problem in which the aim is to search
a fixed number of paths that maximize the scores associated with a set of given locations within a limited
time. Scatter Search explores a search space of solutions systematically by evolving a small set of reference
solutions. It has strategies for diversification (in diversification generation and subset generation methods);
and intensification (in the improvement and updating method). However, all these methods are very time
consuming. This paper proposes a scatter search hybrid approach (SSHA) to deal with the TOP by reduce
processing time and maintaining a good set of references solutions in terms of diversity and quality. It uses
some new operators, called reference set queen bee-method to initializing and updating the RefSet, and greedy
select parents to selecting pairs from a reference set for the combination method to generate a new solution.
Furthermore, to improve the quality of the solution, a local search is employed, called steepest descent to
explore neighborhood in a fully deterministic manner and then selects the best neighbour. Experiments
conducted on the standard benchmark of TOP clearly show that proposed approach outperforms the solving
methods in the scientific literature. Our algorithm detects all but one of the best known solutions. A statistical
test was conducted to determine the algorithm that performed better compared with the others. The results
revealed that SSHA outperformed all state-of-the-art algorithms and was comparable to one algorithm.

Keywords: Optimization, Metaheuristic, Team Orienteering Problem, Scatter Search Algorithm, Local

Search.

1. INTRODUCTION

The Team Orienteering Problem (TOP) is a
development of the orienteering problem (OP). It is
a well-known, challenging combinatorial
optimization problem that was first highlighted and
heuristically tackled by Butt and Cavalier [1]. The
TOP introduced by Chao, et al. [2]. The TOP can be
defined as a team consisting of several players (e.g.,
two, three, or four players). Each player should start
at the same point and must visit the subset of points,
which have their own scores, before reaching the
same end point in a specific time. Once the team
player visits a point, no other player can visit that
particular point. In other words, each point can be
visited only once. The objective is to maximize the
total team scores that have been collected before it
reaches the end point within the allowed time [2, 3].
The TOP has been considered an NP-hard problem
[4] because it goes beyond and is even more difficult
than the OP.

The applications of TOP include athlete recruiting
[2], technician routing [3] and tourist trip planning
[5]. In this paper, we are interested in TOP as the
core variant of OP for multiple vehicles. TOP have
attracted a good deal of attention in operational
research and artificial intelligent community. Apart
from the difficulty of solving it, TOP has been
selected for two reasons: it represents various real-
world applications and its results are still possible to
be improved. So far different exact method have
been developed for TOP proposed by Boussier, et al.
[6], Butt and Ryan [7], Dang, et al. [8] and Nicola, et
al. [9]. However, unless P = NP, there is no
algorithm which can find an optimal solution within
time polynomial in the size of customers. An
alternative approach to the TOP is metaheuristic,
which aims to yield a satisfactory solution within
reasonable time.

In contrast to exact solving approaches, a number of
heuristics and metaheuristics have been developed
for TOP. To date, ant colony optimization (ACO)

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3376

[10]that constructs the candidate solutions by
employing four constructive heuristics: sequential,
deterministic–concurrent, random–concurrent, and
simultaneous methods. guided local search [11],
large neighborhood search with three improvement
methods: local search improvement, shift and
insertion improvement, and replacement
improvement [12], memetic algorithm with optimal
split procedures for chromosome evaluation (MA)
[13], particle swarm optimization [14], path
relinking [15], Pareto mimic algorithm [16], tabu
search with an adaptive memory procedure [3], and
variable neighborhood search [5] have been applied
to the TOP. The interested reader is referred to [17]
for a survey. Among the current metaheuristics, the
Pareto mimic algorithm in [16] ranked first when
testing on the instances of [2]. Moreover, the results
on larger new generated instances demonstrate that
their algorithm is very effective though it consumes
relatively long running time.

This research aims to investigate the SS algorithm
that may improve the available search approaches
for the TOP. The main goal is to adapt the SS
algorithm, utilize its strengths, cover its weaknesses
by hybridizing it with other metaheuristic
algorithms, and attain a suitable balance between
exploration and exploitation.

In this paper, a metaheuristic, called scatter search
hybrid algorithm, is proposed. The main
contribution of this paper are summarized as
follows: (1) it uses different selective strategies in
subset generation method called, greedy selecting
parents (GSP), to generate new solution by selecting
suitable parents for solution combination method,
and different updating strategies in references set
update method called, references set queen bee
(RefSetQB), to update the references set solution
with new solution. (2) To hybridize the SS algorithm
with other local search algorithm called, steepest
decent (SD), to enhance the exploitation search.
Experiments conducted on the standard benchmark
of TOP clearly show that SSHA outperforms most
of the existing solution methods of the literature. It
detects all but one of the best known solutions.
Moreover, a strict improvement was found for one
instance of the benchmark. The remainder of this
paper is structured as follows. Section 2 provides a
description of the TOP. SSHA are described in
Section 3. In Section 4, the experimental study of the
parameters is discussed. The computational results
on the standard benchmark is described in Section 5.
Finally, in Section 6, some conclusions and further
developments are discussed.

2. DESCRIPTION OF THE TOP

The TOP can be represented as a complete graph G
= (V, E), where V = [1, 2,.., n+1] is a set of points
and E= [(i, j) | i, j ϵ V] is a set of edges. The aim of
the TOP is to find m routes that start at point 0 and
end at point n+1, such that the total score of the
visited points is maximized. Each point can be
visited only once. For each route, the total time taken
to visit the points cannot exceed the predetermined
time limit Tmax. Let cij be the travel time of edge (i, j)
ϵ E, Ti is the service time for point i, and si is the
score of point i. K = [1, 2,..,m] is a set of routes, V'
= [1, 2,.., n] is a set of points visited by the kth route,
and U is a subset of V that is not included in the
solution. yik = 1 if the ith point is visited in the kth
route. Otherwise, yik = 0. xijk = 1 if the edge (i,j) is
visited in the kth route and point j is visited directly
after point i. Otherwise, xijk =0. The evaluation
function, f(xp) for solution x, xp can be formulated as
Equation (1). The TOP can be formulated as follows
[2, 10, 18]:

f൫xp൯=Max si

n

i=1

yik, ሺ1ሻ
m

k=1

Subjected to:

 cij

n+1

j=0

xijk

n

i=0

+ Tiyik ≤ Tmax

n

i=1

, ∀ k ∈ K (2)

xijk ∈ X ⊆ ሼ0, 1ሽ (3)

Where constraint (2) is the time limit constraint,
which indicates that the total traveling time of each
route must not exceed the Tmax. X is a decision
variable used in constraints (4)–(9).

 xjik

n

j=0

= xijk

n+1

j=1

, ∀ i ∈ V'; k ∈ K (4)

 x0jk = 1, ∀ k ∈ K (5)

n+1

j=1

 xilk

n

i=0

= 1, l = n + 1; ∀ k ∈ K (6)

 xijk

n

i=1

= yik, ∀ i ∈ V', ∀ k ∈ K (7)

 yik ≤1, ∀ i ∈ V' (8)

m

k=1

 yik
i,j∈U

≤|U|-1, U is an arbitrary subset of

V'; 2 ≤ |U| ≤ n; ∀ k ∈ K ሺ9ሻ

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3377

yik, xijk ∈ ሼ0, 1ሽ (10)

Constraint (4) guarantees the connectivity of each
route. Constraints (5) and (6) ensure that the route
will start at point 0 and end at n+1. Constraint (7)
describes the relation between x and y. Constraint (8)
ensures that each vertex is visited only by one route.
Constraint (9) imposes restrictions on the variables.

3. A SCATTER SEARCH HYBRID

ALGORITHM

The SS is a population-based metaheuristic
introduced by Glover [19]. It constructs the solutions
by combining other elite solutions to exploit their
positive attributes. The main aspect of the
mechanisms within SS are not restricted to single
uniform design allows the exploration of strategic
possibilities that may prove effective in particular
implementation [20, 21].

The search process of the SS algorithm starts with
constructing a number of trial diverse solutions as an
input population. Each solution in the population
pool is enhanced using the improvement method.
After initializing the population, a small set of good
solutions is selected from the population to build a
small population called a reference set, where the
“good” criteria are based on the objective function
value and diversity value of the solutions. After
building a reference set, new subsets are generated
using the subset generation method by selecting the
solutions from the reference set pool in
lexicographical order. Each subset of solutions is
combined in a systematic way to produce one or
more new solutions, each of which is mapped into an
associated feasible solution. Each new solution is
enhanced by the improvement method. The
reference set pool is updated by a new trial solution
using a steady-state replacement mechanism. This
step is known as a dynamic update of the search
experience [22, 23]. The pseudo-code of the SS is
illustrated in Algorithm 1.

Algorithm 1. The main procedure pseudo-code of the SS
Set P = Ø, |P| = PSize = 50.
While (until |P| = PSize)

Step 1: Use the Diversification Generation Method to construct a population of solutions.
Step 2: Apply the Improvement Method. Let 𝜒 be the resulting solution. If 𝜒∉Ρ then add 𝜒

to P, otherwise, discard 𝜒.
End While

// employ nearest neighbour to construct the population of initial solutions.
// utilize steepest decent to improve all the solutions in the population.

Step 3: use the Reference Set Update method to build RefSet, |RefSet| = 20, RefSet =
ሾ𝑋ଵ, … , 𝑋ሿ, ሾ𝑌ଵ, … , 𝑌ௗሿwith the “best” b1 and “diverse” b2 solutions in P. Order
the solutions in b1 according to their objective function value such that 𝜒ଵ is the
best solution and 𝜒 the worst.

While (StoppingCriterion)
Step 4: Generate NewSubsets by the Subset Generation Method.

// apply greedy selecting parents to generate the subset.
While (NewSubsets = Ø) // this is repeated until all NewSubsets are combined.

Step 5: select the Subset s in lexicographical order to be combined.
Step 6: Apply the Solution Combination Method to NewSubset s to obtain one new

solution 𝜒′.
// share 25% of the divers solution 𝑌ௗ attribute in the quality solution 𝑋 to
produce 𝜒′.
// convert the infeasible solution to feasible using repair strategy.

Step 7: Apply the Improvement Method to the new solution 𝜒′.
// utilize steepest decent to improve the produced new solution from Solution
Combination Method.

Step 8: apply the Reference Set Update method to update RefSet.
// utilize references set queen bee strategy.

Remove s from the Subsets
End While

If (RefSet has not updated)
Apply Diversification Generation Method to initial new population of solutions

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3378

// performing nearest neighbour.
Apply the Improvement Method to the new solutions in the population.
// apply steepest decent.
Replace the diverse solutions in the RefSet by the new solutions in the population.

End If
End While

Step 9: Return the best found solution

The reference set pool is exploited to avoid the
search from redundantly exploring the solutions that
have been evaluated and prevent the duplication of
solutions in the pool. The structure of reference set
pool stimulates search diversification and
intensification and may help the search to escape
from the local optima because of the types of
solutions in the pool and the updating strategy [24,
25].

Hence, the SS concentrates on maintaining the
balance between intensification and diversification
of the search. This balance is achieved by combining
all possible pairs in the reference set pool to generate
one or more new solutions, where the new solution
may contain attributes that are not available in the
original pairs. The SS exploits knowledge derived
from the search space and is thus considered an
information-derived algorithm [26].

The elements in the SS can be implemented in a
variety of ways and degree of sophistication because
of the flexibility of the SS framework [21, 22, 25].
For example, diversification generation method step
might apply several constructive heuristic to build
the population. Moreover, subset generation method
can utilize different selection mechanism to select
the parent for combination method [21].

A SS template consists of five procedures, as
described by Glover, et al. [22], Glover, et al. [23],
and Laguna and Martí [27]. Further details on the
algorithm are given in the following subsections.

3.1 A Diversification Generation Method

Initializing the population using a diversification
generation method plays an important role in
developing the method that balances diversification
and intensification [28]. The population generation
method aims to generate good starting solutions to
solve the TOP. The collection of initial solutions are
constructed uniformly and distributed in the search
space as input. This operation starts from scratch
(empty solution) and constructs a solution by
assigning points to one decision variable at a time
until a complete solution is generated. As shown in

Algorithm 1, a large number of diverse solutions are
constructed using the nearest-neighbor greedy
algorithm (NNGA) to obtain a diverse region in the
solution space [29]. All the generated solutions
considered in this work are feasible.

3.2 An Improvement Method

In SS, an improvement method is introduced to
transform a trial solution into one or more enhanced
trial solutions. Thus, this component is used to
enhance the generated solution quality via a local
search procedure that drives the solution to the local
optima [22]. The aim of this operation is to explore
the neighborhood of the generated solutions by
modifying it [21]. The solutions will be accepted if
they are still feasible. We employed five common
neighborhood structures (i.e. insert, swap, move, 2-
opt, and replace), all of which were drawn from
literature [11]. These neighborhood structures aims
to shorten the total travel time and increase the total
received score. The neighbors that improve the
current solution are randomly selected at each
iteration. We use a steepest descent heuristic as the
improvement method to search for a better quality
solution. We consecutively use a number of
iterations as a termination criterion.

3.2.1 Steepest Descent (SD)

SD explores neighborhood N in a fully deterministic
manner and then selects the best neighbor (solution)
[30, 31]. Hence, SD exhaustively explores the
neighborhood N of solution x, and all probable
moves are tried for solution x to return the best
neighboring (solution 𝑥ᇱ). In this work, SD is applied
after solution x is generated (x is generated by the
diversification generation or the combination
method) to further improve its quality. Each of the
five neighborhood N structures is selected randomly
and explored for each solution x to return the one
with the highest quality (𝑥ᇱ). SD is terminated when
it reaches the maximum number of iterations NI. The
pseudo-code of the best improvement hill climbing
(steepest descent) adopted in this work is presented
in Algorithm 2.

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3379

Algorithm 2. Steepest Descent
x = Initial solution;
NI = number of iteration;
While (stopping criterion is not met)

Choose neighborhood N() randomly;
Select best neighbor 𝑥ᇱ where 𝑥ᇱ ∈ N(x);\\ 𝑥ᇱnew solution;
If f(𝑥ᇱ)> f(x) then \\ f(x)the objective function value of solution x
 x = 𝑥ᇱ
End if
End while

3.3 A reference set update method

The reference set is the heart of a SS procedure,
which may result in important modifications during
the search process because of its initial composition
[21]. The initial RefSet is built by selecting the elite
solutions from the population and inserting them into
the RefSet. These elite solutions are selected based
on the objective value (solution quality) and
diversity value (solution diversity). The diversity
value is calculated by diversity measurement
method, for more details see [32]. The RefSet is
divided into two sets of solutions, namely, RefSet1,
which contains high-quality solutions; and RefSet2,
which contains the most diverse solutions.
Moreover, the reference set update method is
employed to update the RefSet after generating the
new trial solution x through the combination and

improvement methods. In this work, a queen bee
strategy is used to build and update the reference set.

3.3.1 Reference set queen bee-method (RefSet-

QB)

The reference set queen bee-method idea came from
the bee colony optimization algorithm [31]. This
method consists of initializing and updating the
RefSet. Initializing the RefSet starts with selecting
the 10 best solutions from the population based on
their objective function values. Then, the 10 most
diverse solutions are selected from the population
based on their diversity values. All the selected
solutions (20 solutions) are placed and sorted in one
pool (RefSet). The best solution in the initial RefSet
is marked as the queen bee. Algorithm 3 illustrates
the initialization step of the queen bee method.

Algorithm 3. Initial RefSetQB
Set RefSet = Ø, | RefSet | = RefSet_Size = 20.
Step 1: sort the population p of solutions based in the objective function f(x).
Step 2: chose the better 10 quality solutions and put them in the RefSet.
Step 3: sort the population p of solutions based in the diversity vlaue d(x).
Step 4: chose the better 10 diverse solutions and put them in the RefSet.
Step 5: sort the RefSet based on the objective function f(x).
Return RefSet = ሾ𝑋ଵ, … , 𝑋ሿ

Meanwhile, the RefSet is updated by comparing the
new trial solution (x') with the worst quality solution
(xb) in the RefSet. If the new trial solution (x') is
better in terms of the objective function value, it will
supersede the worst quality solution (xb). Once the
RefSet cannot be updated anymore, the new trial
solution (x') will supersede the worst diverse

solution (xy) if it is better in terms of the diversity
value. When the updating strategy fails to update the
RefSet, the solutions in the RefSet, except for the
queen bee (best solution in the RefSet), are replaced
by the other solutions generated by the
diversification generation method. Algorithm 4
illustrates the updating step of the queen bee method.

Algorithm 4. Update RefSetQB
Now_Sol_List =ሾ𝑋ଵ, … , 𝑋ሿ; //new trial solutions generated by combination method

and improved by improvement method.
While (Now_Sol_List = Ø)

xb = worst quality solution in the RefSet based on the objective function value.

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3380

xy = worst diversity solution in the RefSet based on the diversity value.
If (f(x') > f(xb)) // f(x') objective function of new trial solutions;

replace the worst quality solution xb in RefSet by x'.
remove x' from Now_Sol_List.

Else If (d(x') > d(xy)) // d(x') diversity value of new solutions to RefSet;
replace the worst diversity solution xy in RefSet by x'.
remove x' from Now_Sol_List.

Else
remove x' from Now_Sol_List.

End If
End While

If (RefSet has not updated)
Apply Diversification Generation Method to initial new population
of solutions by performing nearest neighbour.
Apply the Improvement Method to the new solutions in the
population.
// apply hill climbing.
Replace the solutions except queen bee in the RefSet by the new trial
solutions in the population.

End If

3.4 A subset generation method

Subset generation method (SGM) plays an important
role in selecting pairs from a reference set for the
combination method to generate a new solution [23].
The most common subset generation method is to
generate the subset of pairs using a lexicographical
order mechanism, namely, Type-I selection (i.e., the
size of all subsets is 2). In the present work, greedy
select parents (GSP) is employed as selection
mechanism to generate a subset of pairs for the
combination method.

3.4.1 Greedy select parents (GSP)

This selection strategy operates on two lists of
quality and diverse solutions in the reference set to
generate a subset of two solutions. This method
generates three types of subsets: two quality
solutions, two diversity solutions, and one quality
and one diversity solution [33]. Each solution is
elected randomly from each list once. The pseudo-
code of this strategy is illustrated in Algorithm 5.

Algorithm 5. Greedy select parents
TempListX = RefSet = ሾ𝑋ଵ, … , 𝑋ሿ
TempListY = RefSet = ሾ𝑌ଵ, … , 𝑌ௗሿ
SubsetList = Ø.
Subset S = Ø, |S| = SSize = 2.
While (TempList is empty)
Generate empty subset S;

While (until |S|= SSize)
Switch :

case 1
Step 1: select x randomly from TempListX; // x is solution
quality
Step 2: add x to S;
Step 3: remove x from TempListX;

case 2
Step 1: select y randomly from TempListY;//y is solution
diversity
Step 2: add y to S;
Step 3: remove y from TempListY;

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3381

case 3
apply case 1 & case 2;

Step 5: add S to SubsetList
End while
Step 6: return SubsetList

3.5 A solution combination method

The main goal of this component is to generate one
or more trial solutions from various regions of the
solution search space. These new trial solutions are
subjected to the improvement method. In this study,
we use the work of Martí, et al. [34] to design the
combination method, which produces one trial
solution in a systematic way. The solution in the
subset with the highest quality is selected, and then
25% is taken from other solutions with the highest
quality. The new solution has 75% of the quality
solution attributes and 25% percent of the diverse
solution attributes and is perhaps infeasible.

Repair strategy is applied on the infeasible solution
to restore its feasibility by removing the repeated
points and the lowest score so that the solution does
not exceed the time limit. For instance, a strategy is
applied in the case where the search operators used
by the combination method may generate infeasible
solutions.

The SS features the role of the reference set update
method in maintaining elite solutions (in terms of
solutions of high quality and high diversity) and the
SGM in providing pairs for producing a new
solution. A greedy select parents (GSP) is employed
as selection mechanism to generate a subset of pairs
in SGM which considers both quality and diversity
solutions in the RefSet to be selected as a subset
during the search process and produces new
solutions that maintain the diversity of the RefSet.
Steepest Descent is single-solution-based
metaheuristics can improve the quality of the
obtained results further by exploiting the promising
area.

In this work, the repairing strategy first checks the
repeated points. If the point is repeated in the
solution, one of these points is randomly selected
and then removed from the others. In the second
step, the time budget for each route is examined. If
the solution exceeds the available time, the edge that
causes a long travel time between points is removed.
In the next section, the performance of the SSHA on

the standard benchmark for
TOP is discussed.

4. EXPERIMENTAL SETUP

We have conducted an experimental study to
evaluate our proposals and to compare the algorithm,
termed SSHA, with the state of the art. In this study,
we have considered the standard benchmark dataset
most widely used in the literature, namely, team
orienteering problem [2], making a total of 387
instances with different sizes and flexibility (the
number of points, time limit, and number of player).

The SS is coded using Java 1.7 and performed on a
personal computer (Intel Pentium (R) Core i5 CPU
at 3.40 GHz with 4 gigabyte RAM), running on
Windows 8 operating system (64-bit). The proposed
SS executed 31 independent runs with different
random seeds for some instances of the TOP to
assess the effectiveness of using different
parameters. Talbi [31] recommended performing
minimum 30 runs in the statistical analysis of the
algorithm performance. Executing 31 runs can easily
calculate the median value without the need for
interpolation.

4.1 Parameter settings

There are three parameters in SSHA, that is, the
population size (Popsize), the number of iteration
(Itermax) based on the fix number (k), and references
set size (RefSet). The parameter values are
determined using statistical study. The tested values
of these parameters are as follows: Popsize = [30; 50;
100], k = [10; 20; 30; 40; 50], and RefSet size = [6;
10; 20]. Based on experimental results, we observed
that when Popsize = 20, k = 40, and RefSet size = 20,
SSHA works best. To analyze the effect of each
parameter, only one parameter is varied while others
are fixed.

The settings of the parameters of the SS HA used for
the TOP are presented in Table 1. We performed trial

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3382

and error methods called offline parameter tuning
[31].

Table 1. Parameter Settings

Parameters Values

1-
Population size
(Popsize)

50 solutions

2-
References set size
(RefSet)

20 solutions (b1 =
10, b2 = 10)

3-
References set quality
(RefSet1)

b1 = 10

4-
References set
diversity (RefSet2)

b2 = 10

5-
Number of Iteration
(Itermax)

Itermax =k . n/m; k
= 30

6- Subset generation size
2 solutions in each

subset

7-
Solution Combination
rate

1.0

We set the termination condition for the SS to solve
the TOP according to the work of Dang, et al. [14].
The SSHA stops when the number of elapsed
consecutive iterations reaches the obtained results of
Equation (10).

𝐼𝑡𝑒𝑟௫ ൌ 𝑘 . 𝑛 𝑚⁄ ሺ10ሻ

where k is the fixed number, n is the number of
points, and m is the number of paths. The termination
condition is changed based on the number of points
and number of paths.

5. RESULTS AND COMPARISON

This section is divided into two subsections. The first
subsection presents the assess the value of
incorporating the Steepest Descent (SD), Reference
set queen bee-method (RefSet-QB), and Greedy

select parents (GSP) with the proposed algorithm.
The second subsection compares the results of
proposed algorithm against the other algorithms that
have been introduced in the literature for TOP.

5.1 Effectiveness Evaluation

This experiment examines the value of using of
incorporating the Steepest Descent (SD), Reference
set queen bee-method (RefSet-QB), and Greedy
select parents (GSP) with SS. We have tested the
proposed algorithm (denoted as SS) with RefSet-QB
(denoted as SS-RefSetQB), GSP (denoted as SS-
GSP), both together (denoted ISS) and incorporated
ISS with SD (denoted as HISS-SD). To ensure a fair
comparison between SS, SS-RefSetQB, SS-GSP,
ISS, and HISS-SD the initial solution, number of
runs, stopping condition and computer resources are
the same for all instances. All algorithms have been
tested 31 runs over all instances. Table 2 lists, for
each instance, the maximum (Max), average (Avg),
standard deviation (Stdv), and CPU average time
(CPUAvg Time) achieved by SS, SS-RefSetQB, SS-
GSP, ISS, and HISS-SD. In the table, the maximum
value is preferred (Maximization problem) and best
results achieved by the compared algorithms are
presented in boldfont.

From table 2, it can be notice that HISS-SD obtained
the best results in all instance and outperformed the
other tested algorithms, except ISS, across most
instances. Moreover, both the average and standard
deviation results gained by HISS-SD are better than
other tested algorithms on all instances. The results
revel that the cooperative SS with RefSet-QB, GSP,
and SD contribute to HISS-SD performance and has
an effect on the ability of HISS-SD in producing
high quality and consistent results across all tested
instances.

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3383

Table 2. The computational results of SS, SS-RefSetQB, SS-GSP, ISS, and HISS-SD

To farther support these positive results, the
significant difference between the proposed
algorithms were examined by performing a
Wilcoxon rank test with the significance interval of
95% (α = 0.05). Pair comparisons were executed for
HISS-SD and the other proposed algorithms. Table
3 presents the p-value of the HISS-SD versus SS,
SS-RefSetQB, SS-GSP, and ISS for the TOP
instances. In Table 3, the symbol “+” denotes that
HISS-SD is statistically better than the contending
proposed algorithm (p-value < 0.05), “–” denotes
that HISS-SD was outperformed by the contending
proposed algorithm (p-value > 0.05), and “~”
denotes that HISS-SD has the same performance as
the contending proposed algorithm (p-value = 0.05).

Table 3. The p-value of HISS-SD versus SS, SS-
RefSetQB, SS-GSP, and ISS.

HISS-
SD
vs.

SS
SS-

GST
SS-

RefSetQB
ISS

Ins.
Name

p-value p-value p-value p-value

p4.2.l + + + +
p4.3.p + + + +
p4.4.s + + + +
p5.2.y + + + +
p5.3.r ~ ~ + ~
p5.4.v ~ ~ ~ ~
p6.2.n + + + +
p6.3.n + ~ ~ +
p6.4.l ~ ~ ~ ~
p7.2.o + + + +
p7.3.s + + + +
p7.4.l ~ ~ ~ ~

The results in Table 3 show that HISS-SD is
statistically better than the contending other
proposed algorithms in most instances. These results
support the fact that the SD algorithm improved the
performance of the SS, SS-RefSetQB, SS-GSP, and
ISS, while the HISS-SD obtained much better results
than the other proposed algorithms. Indeed, the use
the SD algorithm can effectively enhance the search
performance to obtain very good results for all tested
instances.

5.2 The comparison of HISS-SD with other
algorithms for TOP.

This section compares the performance of the
proposed algorithms with state-of-the-art of
algorithms used to solve team orienteering problem
(TOP). The results of the proposed algorithms for
TOP are compared with state-of-the-art algorithms
in terms of maximum obtained value, average CPU
time, relative percentage error (RPE), and average
RPE (ARPE). A statistical test is also performed to
compare the proposed algorithms with other
algorithms implemented to solve TOP.

The state-of-the-art algorithms used to compare the
results are presented in Table 4. The symbols of
these algorithms, including the descriptions and
references are presented in Table 4.

The comparison of 157 instances with the standard
benchmark for TOP, which are set as 4, 5, 6, and 7,
is reported. Other instances (i.e., sets 1, 2, and 3) are
eliminated from the comparison because all the

 Ins. Name
Algorithms p4.2.l p4.3.p p4.4.s p5.2.y p5.3.r p5.4.v p6.2.n p6.3.n p6.4.l p7.2.o p7.3.s p7.4.l

SS

Max 1071 1222 1254 1645 1125 1320 1260 1170 696 945 1079 590

Avg 1064 1200.06 1225.84 1621.61 1124.03 1320 1245.1 1167.68 696 935.71 1073.35 589.52

Stdv 7.19 16.32 18.5 12.27 2.01 0 11.26 4.82 0 7.51 5.39 1.98

CPUAvg Time 269.37 248.72 185.79 172.4 103.56 53.51 109.87 104.12 46.01 336.83 229.75 91.57

SS-GST

Max 1074 1222 1256 1645 1125 1320 1260 1170 696 945 1081 590

Avg 1070.19 1208.77 1235.81 1635 1124.84 1320 1253.23 1168.84 696 941.23 1074.97 589.81

Stdv 2.51 13.76 14.66 8.76 0.9 0 8.73 3.61 0 6.17 4.92 0.6

CPUAvg Time 199.12 105.26 69.75 138.45 90.3 42.34 86.73 98.85 38.15 219.1 160.71 78.13

SS-RefSetQB

Max 1073 1222 1256 1645 1125 1320 1260 1170 696 945 1081 590

Avg 1067 1206.94 1225.77 1629.19 1122.9 1320 1246.26 1168.65 696 939.94 1070.68 589.48

Stdv 4.95 18.44 15.71 9.58 5.59 0 9.32 3.7 0 4.63 3.91 2.53

CPUAvg Time 200.01 143.37 129.25 134.59 90.46 45.3 80.51 94.29 42.7 254.85 189.19 71.79

ISS

Max 1074 1222 1257 1645 1125 1320 1260 1170 696 945 1081 590

Avg 1071.06 1215.16 1245.16 1635.65 1124.35 1320 1254.58 1168.89 696 942.61 1076.61 589.94

Stdv 3.93 11.92 6.94 8.44 1.87 0 6.9 3.96 0 3.33 5.03 0.36

CPUAvg Time 173.47 93.84 66.8 137.04 90.29 46.04 89.3 91.5 41.2 257.05 186.82 78.32

HISS-SD

Max 1074 1222 1260 1645 1125 1320 1260 1170 696 945 1081 590

Avg 1073.48 1221.68 1257 1645 1125 1320 1260 1170 696 945 1081 590

Stdv 0.51 0.54 3.44 0 0 0 0 0 0 0 0 0

CPUAvg Time 195.49 107.07 86.32 152.8 99.64 50.12 95.11 96.61 42.62 285.95 197.45 83.3

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3384

compared algorithms obtain the same best known
results.

Tables 5 – 9 present the results obtained through
state-of-the-art of algorithms for all compared
instances and through the proposed algorithms. In

addition, a comparison is also performed with
respect to the best known results for TOP. The best
results are displayed in boldfont and with a dark
background.

Table 4: Abbreviations of the compared methods for TOP.

Symbol Descriptions References
1- ASe Sequential Ant Colony Optimization (Ke et al. 2008)
2- ADC Deterministic Concurrent Ant Colony Optimization (Ke et al. 2008)
3- ARC Random Concurrent Ant Colony Optimization (Ke et al. 2008).
4- ASi Simultaneous Ant Colony Optimization (Ke et al. 2008)
5- MA10 Memetic Algorithm (Bouly et al. 2010)
6- PSOMA Particle Swarm Optimization Based Memetic Algorithm (Dang et al. 2013)
7- PSOiA Particle Swarm Optimization Inspired Algorithm (Dang et al. 2013)
8- PMA Pareto Mimic Algorithm (Ke, Zhai et al. 2016)

According to the results in Tables 5 – 9, SS, ISS, and
HISS-SD generate excellent results for most
instances of TOP. HISS-SD obtains the best results
compared with the proposed algorithms in 153 out of

157 instances. This result indicates that this
algorithm generalizes well among all TOP instances
instead of producing excellent results for few
instances only.

Table 5. Best results of SS, ISS, and HISS-SD compared with other algorithms for test set 4

Ins. HISS-SD ISS SS ASe ADC ARC ASi MA10 PSOMA PSOiA PMA
Best

Known
p4.2.a 206 206 206 206 206 206 206 206 206 206 206 206
p4.2.b 341 341 341 341 341 341 341 341 341 341 341 341
p4.2.c 452 452 452 452 452 452 452 452 452 452 452 452
p4.2.d 531 531 531 531 531 530 531 531 531 531 531 531
p4.2.e 618 618 618 618 600 600 613 618 618 618 618 618
p4.2.f 687 687 687 687 672 672 672 687 687 687 687 687
p4.2.g 757 756 756 757 756 756 756 757 757 757 757 757
p4.2.h 835 834 835 827 819 819 820 835 835 835 835 835
p4.2.i 918 918 918 918 900 918 918 918 918 918 918 918
p4.2.j 965 962 965 965 962 962 962 965 965 965 965 965
p4.2.k 1022 1022 1022 1022 1016 1016 1016 1022 1022 1022 1022 1022
p4.2.l 1074 1074 1074 1071 1070 1071 1069 1071 1071 1074 1074 1074
p4.2.m 1132 1132 1132 1130 1115 1119 1113 1132 1132 1132 1132 1132
p4.2.n 1174 1173 1172 1168 1149 1158 1169 1174 1174 1174 1174 1174
p4.2.o 1218 1216 1206 1215 1209 1198 1210 1218 1218 1218 1218 1218
p4.2.p 1242 1241 1239 1242 1229 1233 1239 1242 1241 1242 1242 1242
p4.2.q 1267 1264 1258 1263 1253 1252 1260 1267 1267 1268 1268 1268
p4.2.r 1292 1288 1276 1288 1278 1278 1279 1292 1292 1292 1292 1292
p4.2.s 1304 1304 1290 1304 1304 1303 1304 1304 1304 1304 1304 1304
p4.2.t 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306
p4.3.c 193 193 193 193 193 193 193 193 193 193 193 193
p4.3.d 335 335 335 335 333 333 335 335 335 335 335 335
p4.3.e 468 468 468 468 468 468 468 468 468 468 468 468
p4.3.f 579 579 579 579 579 579 579 579 579 579 579 579
p4.3.g 653 653 653 653 652 653 652 653 653 653 653 653
p4.3.h 729 729 729 720 713 713 713 728 729 729 729 729
p4.3.i 809 809 809 796 793 793 786 809 809 809 809 809
p4.3.j 861 861 860 861 857 855 858 861 861 861 861 861
p4.3.k 919 919 919 918 913 910 910 919 919 919 919 919
p4.3.l 979 978 979 979 958 976 966 979 979 979 979 979

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3385

p4.3.m 1063 1056 1061 1053 1039 1028 1046 1063 1063 1063 1063 1063
p4.3.n 1121 1121 1121 1121 1109 1112 1103 1121 1121 1121 1121 1121
p4.3.o 1172 1172 1170 1170 1163 1167 1165 1172 1172 1172 1172 1172
p4.3.p 1222 1222 1222 1221 1202 1207 1207 1222 1222 1222 1222 1222
p4.3.q 1253 1246 1251 1252 123 1239 1238 1253 1253 1253 1253 1253
p4.3.r 1273 1272 1262 1267 1263 1263 1263 1273 1273 1273 1273 1273
p4.3.s 1295 1293 1282 1293 1291 1289 1291 1295 1295 1295 1295 1295
p4.3.t 1305 1305 1299 1305 1304 1303 1304 1305 1304 1305 1305 1305
p4.4.e 183 183 183 183 183 183 183 183 183 183 183 183
p4.4.f 324 324 324 324 324 324 324 324 324 324 324 324
p4.4.g 461 461 461 461 461 460 460 461 461 461 461 461
p4.4.h 571 571 571 571 556 556 556 571 571 571 571 571
p4.4.i 657 657 657 657 653 653 653 657 657 657 657 657
p4.4.j 732 732 732 732 731 731 731 732 732 732 732 732
p4.4.k 821 820 821 821 820 818 818 821 821 821 821 821
p4.4.l 880 878 878 880 877 875 875 880 880 880 880 880
p4.4.m 919 916 919 918 911 911 911 916 919 919 919 919
p4.4.n 976 976 967 961 956 956 956 969 969 976 976 977
p4.4.o 1061 1061 1061 1036 1030 1029 1029 1061 1061 1061 1061 1061
p4.4.p 1124 1120 1124 1111 1108 1110 1110 1124 1124 1124 1124 1124
p4.4.q 1161 1160 1157 1145 1150 1148 1148 1161 1161 1161 1161 1161
p4.4.r 1216 1213 1211 1200 1195 1194 1194 1216 1216 1216 1216 1216
p4.4.s 1260 1257 1256 1249 1256 1252 1252 1260 1259 1260 1260 1260
p4.4.t 1285 1284 1282 1281 1281 1281 1281 1285 1285 1285 1285 1285

Table 6. Best results of SS, ISS, and HISS-SD compared with other algorithms for test set 5.

Ins. HISS-SD ISS SS ASe ADC ARC ASi MA10 PSOMA PSOiA PMA
Best

Known
p5.2.h 410 410 410 410 410 410 410 410 410 410 410 410
p5.2.j 580 580 580 580 580 580 580 580 580 580 580 580
p5.2.k 670 670 670 670 670 670 670 670 670 670 670 670
p5.2.l 800 800 800 800 800 800 800 800 800 800 800 800
p5.2.m 860 860 860 860 860 860 860 860 860 860 860 860
p5.2.n 925 925 925 925 920 920 925 925 925 925 925 925
p5.2.o 1020 1020 1020 1020 1020 1010 1010 1020 1020 1020 1020 1020
p5.2.p 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150
p5.2.q 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195
p5.2.r 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260
p5.2.s 1340 1340 1330 1340 1330 1330 1330 1330 1340 1340 1340 1340
p5.2.t 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400
p5.2.u 1460 1460 1430 1460 1460 1460 1460 1460 1460 1460 1460 1460
p5.2.v 1505 1505 1490 1505 1495 1500 1495 1505 1505 1505 1505 1505
p5.2.w 1565 1560 1550 1560 1555 1555 1555 1560 1560 1565 1565 1565
p5.2.x 1610 1610 1595 1610 1610 1610 1610 1610 1610 1610 1610 1610
p5.2.y 1645 1645 1645 1645 1645 1645 1645 1645 1645 1645 1645 1645
p5.2.z 1680 1680 1670 1680 1680 1680 1680 1680 1680 1680 1680 1680
p5.3.k 495 495 495 495 495 495 495 495 495 495 495 495
p5.3.l 595 595 595 595 595 595 595 595 595 595 595 595
p5.3.n 755 755 755 755 755 755 755 755 755 755 755 755
p5.3.o 870 870 870 870 870 870 870 870 870 870 870 870
p5.3.q 1070 1070 1070 1070 1065 1065 1065 1070 1070 1070 1070 1070
p5.3.r 1125 1125 1125 1125 1120 1125 1125 1125 1125 1125 1125 1125
p5.3.s 1190 1190 1190 1190 1190 1190 1185 1190 1190 1190 1190 1190
p5.3.t 1260 1260 1260 1260 1250 1255 1260 1260 1260 1260 1260 1260
p5.3.u 1345 1345 1345 1345 1330 1335 1335 1345 1345 1345 1345 1345
p5.3.v 1425 1425 1425 1425 1425 1425 1420 1425 1425 1425 1425 1425
p5.3.w 1485 1485 1475 1485 1465 1465 1465 1485 1485 1485 1485 1485
p5.3.x 1555 1555 1540 1540 1535 1540 1540 1555 1555 1555 1555 1555
p5.3.y 1595 1595 1580 1590 1590 1590 1590 1590 1595 1595 1595 1595
p5.3.z 1635 1635 1630 1635 1635 1635 1635 1635 1635 1635 1635 1635

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3386

p5.4.m 555 555 555 555 555 555 555 555 555 555 555 555
p5.4.o 690 690 690 690 690 690 690 690 690 690 690 690
p5.4.p 765 765 765 765 760 760 760 760 765 765 765 765
p5.4.q 860 860 860 860 860 860 860 860 860 860 860 860
p5.4.r 960 960 960 960 960 960 960 960 960 960 960 960
p5.4.s 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030
p5.4.t 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160
p5.4.u 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300
p5.4.v 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320
p5.4.w 1390 1390 1390 1390 1380 1390 1380 1380 1385 1390 1390 1390
p5.4.x 1450 1445 1445 1450 1450 1450 1450 1450 1450 1450 1450 1450
p5.4.y 1520 1520 1520 1520 1510 1510 1500 1520 1520 1520 1520 1520
p5.4.z 1620 1620 1595 1620 1620 1575 1580 1620 1620 1620 1620 1620

Table 7. Best results of SS, ISS, and HISS-SD compared with other algorithms for test set 6.

Ins.
HISS-

SD
ISS SS ASe

AD
C

ARC ASi
MA1

0
PSOM

A
PSOi

A
PM
A

Best
Known

p6.2.d 192 192 192 192 192 192 192 192 192 192 192 192
p6.2.j 948 948 948 948 948 948 948 948 948 948 948 948

p6.2.l 1116
111
6

111
6

111
6

111
0

111
6

111
6

1116 1116 1116
111
6

1116

p6.2.
m 1188

118
8

118
8

118
8

118
8

118
8

118
8

1188 1188 1188
118
8

1188

p6.2.n 1260
126
0

126
0

126
0

126
0

125
4

126
0

1260 1260 1260
126
0

1260

p6.3.g 282 282 282 282 282 282 282 282 282 282 282 282
p6.3.h 444 444 444 444 444 438 438 444 444 444 444 444
p6.3.i 642 642 642 642 642 642 642 642 642 642 642 642
p6.3.k 894 894 894 894 888 888 894 894 894 894 894 894

p6.3.l 1002
100
2

100
2

100
2

100
2

100
2

100
2

1002 1002 1002
100
2

1002

p6.3.
m

1080
108
0

108
0

108
0

107
4

108
0

108
0

1080 1080 1080
108
0

1080

p6.3.n 1170
117
0

117
0

117
0

116
4

116
4

116
4

1170 1170 1170
117
0

1170

p6.4.j 366 366 366 366 366 366 366 366 366 366 366 366
p6.4.k 528 528 528 528 528 528 528 528 528 528 528 528
p6.4.l 696 696 696 696 696 696 696 696 696 696 696 696

Table 8. Best results of SS, ISS, and HISS-SD compared with other algorithms for test set 6.

Ins.
HISS-

SD
ISS SS ASe

AD
C

ARC ASi
MA1

0
PSOM

A
PSOi

A
PM
A

Best
Known

p7.2.d 190 190 190 190 190 190 190 190 190 190 190 190
p7.2.e 290 290 290 290 290 290 290 290 290 290 290 290
p7.2.f 387 387 387 387 387 387 387 387 387 387 387 387
p7.2.g 459 459 459 459 459 459 459 459 459 459 459 459
p7.2.h 521 521 521 521 521 521 521 521 521 521 521 521
p7.2.i 580 579 580 580 579 579 579 580 580 580 580 580
p7.2.j 646 646 646 646 646 646 646 646 646 646 646 646
p7.2.k 705 704 705 705 704 704 704 705 705 705 705 705
p7.2.l 767 767 761 767 767 767 767 767 767 767 767 767
p7.2.
m 827 827 827 827 827 827 827 827 827 827 827 827

p7.2.n 888 888 888 888 878 878 878 888 888 888 888 888
p7.2.o 945 945 945 945 945 940 941 945 945 945 945 945

p7.2.p 1002
100
2

100
2

100
2

991 993 993 1002 1002 1002
100
2

1002

p7.2.q 1043
104
3

104
4

104
3

104
2

104
3

104
3 1044 1044 1044

104
4

1044

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3387

p7.2.r 1094
108
9

109
2

109
4

109
3

108
8

109
4

1094 1094 1094
109
4

1094

p7.2.s 1136
113
4

112
8

113
6

113
6

113
4

113
1 1136 1136 1136

113
6

1136

p7.2.t 1179
117
4

116
4

117
9

117
9

117
9

117
9

1179 1179 1179
117
9

1179

p7.3.h 425 425 425 425 425 425 425 425 425 425 425 425
p7.3.i 487 487 487 487 487 486 487 487 487 487 487 487
p7.3.j 564 564 564 564 564 564 564 564 564 564 564 564
p7.3.k 633 633 633 633 632 633 633 633 633 633 633 633
p7.3.l 684 684 682 684 683 684 684 684 683 684 684 684
p7.3.
m 762 762 762 762 762 762 762 762 762 762 762 762

p7.3.n 820 820 820 820 819 819 820 820 820 820 820 820
p7.3.o 874 874 874 874 874 874 874 874 874 874 874 874
p7.3.p 927 929 927 929 925 926 925 929 927 929 929 929
p7.3.q 987 987 987 987 987 987 987 987 987 987 987 987

p7.3.r 1026
102
4

102
4

102
6

102
4

102
1

102
2 1026 1026 1026

102
6

1026

p7.3.s 1081
108
1

108
1

108
1

108
1

108
1

107
7 1081 1081 1081

108
1

1081

p7.3.t 1120
111
8

111
6

111
8

111
7

110
3

111
7 1120 1120 1120

112
0

1120

p7.4.g 217 217 217 217 217 217 217 217 217 217 217 217
p7.4.h 285 285 285 285 285 285 285 285 285 285 285 285
p7.4.i 366 366 366 366 366 366 366 366 366 366 366 366
p7.4.k 520 520 520 520 520 520 520 520 520 520 520 520
p7.4.l 590 590 590 590 590 590 590 590 590 590 590 590
p7.4.
m 646 646 646 646 644 646 646 646 646 646 646 646

p7.4.n 730 726 730 730 725 725 726 726 726 730 730 730
p7.4.o 781 781 781 781 778 781 778 781 781 781 781 781
p7.4.p 846 846 846 846 846 838 842 846 846 846 846 846
p7.4.q 909 908 909 909 909 909 909 909 909 909 909 909
p7.4.r 970 970 970 970 970 970 970 970 970 970 970 970

p7.4.s 1022
102
2

102
2

102
2

101
9

102
1

101
9 1022 1022 1022

102
2

1022

p7.4.t 1077
107
7

107
7

107
7

107
2

107
7

107
7

1077 1077 1077
107
7

1077

Table 9: Performance comparison based on RPE average for each data set of the associated instance.

Data set
RPE average for each dataset
HISS-SD ISS SS ASe ADC ARC ASi MA10 PSOMA PSOiA PMA

Test Set 4 0.003 0.090 0.196 0.312 0.903 0.861 0.775 0.030 0.026 0.002 0.002
Test Set 5 0.000 0.015 0.246 0.036 0.231 0.257 0.284 0.061 0.015 0.000 0.000
Test Set 6 0.000 0.000 0.000 0.000 0.152 0.201 0.124 0.000 0.000 0.000 0.000
Test Set 7 0.007 0.058 0.097 0.006 0.146 0.188 0.150 0.013 0.021 0.000 0.000
RPE AVG 0.003 0.041 0.132 0.089 0.358 0.377 0.333 0.026 0.016 0.000 0.000
Eq. Best 153 123 115 128 80 80 84 146 146 156 156

The efficiency of the algorithm was measured by the
relative percentage error (RPE) and the average RPE
(ARPE). The RPE is clarified as the relative error
between the best known results obtained in scientific
literature and the best results obtained by the
proposed algorithm. It shows the performance of the
proposed algorithm over a number of runs, as in
Equation (11). On the other hand, the ARPE is

clarified as the relative error between the best known
results obtained in scientific literature and the
average results obtained by the proposed algorithm
over a number of runs. It shows the robustness of the
proposed algorithm, as in Equation (12).

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3388

𝑅𝑃𝐸 ൌ
𝑥௦௧ െ 𝑥௫

𝑥௦௧
 . 100 ሺ11ሻ

𝐴𝑅𝑃𝐸 ൌ
𝑥௦௧ െ 𝑥௩

𝑥௦௧
 . 100 ሺ12ሻ

where xbest is the best known result found in
literature, xmax is the best results obtained by the
proposed algorithm over all the independent runs,
and xavg is the average of the obtained results by the
proposed algorithm over a number of runs.

Tables 9 presents the RPE average value for each set
of standard benchmark instances. SS, ISS, and
HISS-SD are compared with state-of-the-art of
algorithms based on the RPE average value. Table 8
evidently shows that the RPE average values of SS,

ISS, and HISS-SD are 0.132, 0.041, and 0.003,
respectively. SS outperforms 3 algorithms (ADC,
ARC, and ASi) out of 8 algorithms. Meanwhile, ISS
outperforms 4 algorithms (ASe, ADC, ARC, and
ASi) out of 8 algorithms. HISS-SD outperforms 6
algorithms (ASe, ADC, ARC, ASi, MA10, PSOMA)
out of 8 algorithms. The last row in Table 8 presents
the number of solutions that is equal to the best
known results.

Table 10 presents the ARPE average for each set of
standard benchmark instances. SS, ISS, and HISS-
SD are compared with the state-of-the-art
algorithms, wherein the average results are reported
in scientific literature based on ARPE average value.
The table shows that SS and ISS outperform 4
compared algorithms (ASe, ADC, ARC, and ASi)
out of 8 algorithms. HISS-SD outperforms 7
compared algorithms (ASe, ADC, ARC, ASi,
MA10, PSOMA, and PMA) out of 8 algorithms.

Table 10: Performance comparison based on ARPE average for each data set of the associated instance.

Data set
ARPE average for each dataset
HISS-SD ISS SS ASe ADC ARC ASi MA10 PSOMA PSOiA PMA

Test Set 4 0.166 0.893 1.066 1.866 1.867 2.063 1.703 0.207 0.285 0.110 0.318
Test Set 5 0.050 0.232 0.712 0.823 1.161 1.107 1.181 0.095 0.090 0.034 0.090
Test Set 6 0.000 0.017 0.056 1.071 1.170 1.210 1.065 0.017 0.000 0.000 0.293
Test Set 7 0.056 0.389 0.439 0.512 0.617 2.532 2.457 0.106 0.179 0.030 0.128
ARPE AVG 0.068 0.383 0.568 1.068 1.204 1.728 1.601 0.106 0.139 0.044 0.208

The average values obtained by SS, ISS, HISS-SD,
and the state-of-the-art algorithms are used to
compare the performances of these algorithms
through a Friedman statistical test. The p-values
obtained through the Friedman and Iman–Davenport
statistical tests are less than the critical level (0.05),
which indicates the statistically different
performances of the compared algorithms. Hence,
the difference among the compared algorithms is
detected through a Holm and Hochberg post-hoc
statistical test (see Derrac, et al. [35] for more
details).

Table 10 summarizes the average ranking (lower is
better) for each algorithm (SS, ISS, and HISS-SD are
included in the ranking). The ranking shows that SS
is ranked 6.66, ISS is 6.05, and HISS-SD is 3.3.
Therefore, PSOiA becomes the controlled method in
the Holm and Hochberg statistical test because it is
ranked as the 1st algorithm. The p-values computed
by the Friedman test is 0.000, which is way below
the significance interval of 95% (α = 0.05). This
result shows that there is a significant difference
among the observed results listed in Tables 5-9.

Next, the Holm and Hochberg statistical test [35] is
performed to obtain the adjusted p-values for each
comparison between PSOiA (the control method)
and other algotherms. The adjusted p-value of the
Holm and Hochberg statistical test is summarized in
Table 12. PSOiA algorithm is statistically better than
ARC, ADC, ASi, ASe, SS, ISS, PMA, PSOMA, and
MA10 with a critical level of 0.05 (adjusted p-value
< 0.05). Whereas, the results also reveal that HISS-
SD is comparable to PSOiA with a critical level of
0.05 (adjusted p-value > 0.05). Notably, SS and ISS
are included in the comparison with the state-of-the-
art algorithms.

Table 11: Average rank obtained through a
Friedman test for the compared algorithms.

Algorithm Ranking
ASe 8.15
ADC 8.78
ARC 9.05
ASi 8.58

MA10 3.86
PSOMA 4.30
PSOiA 2.80
PMA 4.42

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3389

SS 6.66
ISS 6.05

HISS 3.30

In summary, multiple comparison statistical tests
indicate that HISS-SD an effective and efficient
solution method for the TOP compared with the
state-of-the-art algorithms.

Table 12: Adjusted p-value obtained through a

Holm and Hochberg statistical test for the
compared algorithms

i
Algorith

m
Unadjusted

P
pHol

m
pHochber

g
1 ARC 0 0 0
2 ADC 0 0 0

3 ASi 0 0 0
4 ASe 0 0 0
5 SS 0 0 0
6 ISS 0 0 0
7 PMA 0.000 0.000 0.000
8 PSOMA 0.000 0.000 0.000
9 MA10 0.004 0.009 0.009
1
0

HISS 0.188 0.188 0.188

The average execution CPU times for SS, ISS, and
HISS are then compared with the algorithms for
datasets 1–7 in Table 5.13. The execution times for
some of the algorithms (ARC and ASi) are reported
for datasets 4–7.

Table 13: Average execution time for each standard benchmark dataset.
 HISS-SD ISS SS ASe ADC ARC ASi MA10 PSOMA PSOiA PMA
Test Set 1 0.17 0.08 0.149 4.877 5.238 - - 1.95 0.18 2.15 6.81
Test Set 2 0.00 0.01 0.009 2.776 2.994 - - 0.24 0.01 0.41 1.43
Test Set 3 0.15 0.08 0.163 5.607 5.923 - - 2.06 0.49 3.18 9.56
Test Set 4 80.39 69.19 145.782 31.469 32.735 8.6 367.4 182.36 83.89 218.58 109.34
Test Set 5 50.24 46.34 54.974 14.331 15.132 2.9 119.9 35.33 14.72 49.5 22.86
Test Set 6 62.02 58.34 68.402 13.813 14.465 2.1 89.6 39.07 7.59 47.08 26.38
Test Set 7 120.39 111.34 138.521 23.312 24.652 6.3 272.8 112.75 49.09 97.47 54.56
AVG Time 44.77 40.77 58.286 13.741 14.448 4.975 212.425 53.394 22.281 59.767 35.58

6. CONCLUSION

We have proposed a Scatter Search algorithm for
Team Orienteering problem. SS follows the general
framework of the population-based metaheuristic
[31] while it has five prominent components: (1) A
Diversification Generation Method: SS employ this
component to generate good starting solutions to
solve the TOP. (2) An Improvement Method: The
aim of this operation is to explore the neighborhood
of the generated solutions by modifying it [21]. In
our algorithm, we used a Steepest Descent (SD)
heuristic as the improvement method to search for a
better quality solution. (3) A reference set update
method: this component is the heart of a SS
procedure, which may result in important
modifications during the search process because of
its initial composition [21]. In this work, a Queen
Bee (QB) strategy is used to build and update the
reference set. (4) Subset generation method (SGM):
plays an important role in selecting pairs from a
reference set for the combination method to generate
a new solution [23]. In the present work, greedy
select parents (GSP) is employed as selection
mechanism to generate a subset of pairs for the
combination method. (5) A solution combination
method: The main goal of this component is to

generate one or more trial solutions from various
regions of the solution search space.

We introduced new improved SS called ISS. In the
ISS, two main modifications were employed: a
selection strategy within the subset generation
method (greedy select parents (GSP)) and an
updating strategy within the reference set update
method (Queen Bee (QB) strategy). The
performance of the ISS can be further enhanced
because the SS is a population-based algorithm and
concentrates more on exploration (diversification)
than on exploitation (intensification) [31].
Furthermore, a hybridization of the ISS algorithm
with Steepest Descent (SD), namely, HISS-SD was
presented for the TOP. Generally, the hybridization
in this paper managed to improve the quality of the
obtained results by ISS further. The comparison
between the proposed algorithms showed that HISS-
SD is the best algorithm among the proposed
algorithms in terms of yielding the best results. To
further investigate the performance of HISS-SD, we
compare the HISS-SD with state-of-the-art
algorithms. The results were compared in terms of
maximum obtained value, relative percentage error,
average relative percentage error, and average CPU
time. A statistical test was conducted to determine

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3390

the algorithm that performed better compared with
the others. The results revealed that SS and ISS only
outperformed some of the state-of-the-art
algorithms. By contrast, HISS-SD outperformed all
state-of-the-art algorithms and was comparable to
one algorithm.

The proposed algorithms have been tested on TOP
benchmark datasets. The proposed algorithms could
be tested and validated with respect to other variants
of the orienteering problem, such as team
orienteering problem with time windows, multi-
constraint team orienteering problem with (multiple)
time windows, orienteering problem with hotel
selection, and orienteering problem with hotel
selection and time windows.
In future work, we intend to test the proposed HISS-
SD on other combinatorial optimization problems.
And the performance of the proposed algorithms
could be improved by dynamically changing the
parameter of SS during the search process based on
objective function value, which generates interesting
results.

REFERENCES

[1] S. E. Butt and T. M. Cavalier, "A heuristic for
the multiple tour maximum collection
problem," Computers & Operations Research,
vol. 21, no. 1, pp. 101-111, 1// 1994.

[2] I. M. Chao, B. L. Golden, and E. A. Wasil, "The
team orienteering problem," European Journal
of Operational Research, vol. 88, no. 3, pp. 464-
474, 2/8/ 1996.

[3] H. Tang and E. Miller-Hooks, "A TABU search
heuristic for the team orienteering problem,"
Computers & Operations Research, vol. 32, no.
6, pp. 1379-1407, 6// 2005.

[4] B. L. Golden, L. Levy, and R. Vohra, "The
orienteering problem," Naval Research
Logistics (NRL), vol. 34, no. 3, pp. 307-318,
1987.

[5] P. Vansteenwegen, W. Souffriau, G. Berghe,
and D. Oudheusden, "Metaheuristics for Tourist
Trip Planning," in Metaheuristics in the Service
Industry, vol. 624, K. Sörensen, M. Sevaux, W.
Habenicht, and M. J. Geiger, Eds. (Lecture
Notes in Economics and Mathematical Systems:
Springer Berlin Heidelberg, 2009, pp. 15-31.

[6] S. Boussier, D. Feillet, and M. Gendreau, "An
exact algorithm for team orienteering

problems," 4OR, vol. 5, no. 3, pp. 211-230, //
2007.

[7] S. E. Butt and D. M. Ryan, "An optimal solution
procedure for the multiple tour maximum
collection problem using column generation,"
Computers and Operations Research, vol. 26,
no. 4, pp. 427-441, // 1999.

[8] D.-C. Dang, R. El-Hajj, and A. Moukrim, "A
Branch-and-Cut Algorithm for Solving the
Team Orienteering Problem," in Integration of
AI and OR Techniques in Constraint
Programming for Combinatorial Optimization
Problems, vol. 7874, C. Gomes and M.
Sellmann, Eds. (Lecture Notes in Computer
Science: Springer Berlin Heidelberg, 2013, pp.
332-339.

[9] B. Nicola, M. Renata, and S. M. Grazia, "A
branch‐and‐cut algorithm for the Team
Orienteering Problem," International
Transactions in Operational Research, vol. 25,
no. 2, pp. 627-635, 2018.

[10] L. Ke, C. Archetti, and Z. Feng, "Ants can solve
the team orienteering problem," Computers &
Industrial Engineering, vol. 54, no. 3, pp. 648-
665, 4// 2008.

[11] P. Vansteenwegen, W. Souffriau, G. V. Berghe,
and D. V. Oudheusden, "A guided local search
metaheuristic for the team orienteering
problem," European Journal of Operational
Research, vol. 196, no. 1, pp. 118-127, 7/1/
2009.

[12] B.-I. Kim, H. Li, and A. L. Johnson, "An
augmented large neighborhood search method
for solving the team orienteering problem,"
Expert Systems with Applications, vol. 40, no. 8,
pp. 3065-3072, 2013/06/15/ 2013.

[13] H. Bouly, D.-C. Dang, and A. Moukrim, "A
memetic algorithm for the team orienteering
problem," (in English), 4OR, vol. 8, no. 1, pp.
49-70, 2010/03/01 2010.

[14] D.-C. Dang, R. N. Guibadj, and A. Moukrim,
"An effective PSO-inspired algorithm for the
team orienteering problem," European Journal
of Operational Research, vol. 229, no. 2, pp.
332-344, 9/1/ 2013.

[15] W. Souffriau, P. Vansteenwegen, G. Vanden
Berghe, and D. Van Oudheusden, "A Path
Relinking approach for the Team Orienteering
Problem," Computers & Operations Research,
vol. 37, no. 11, pp. 1853-1859, 11// 2010.

Journal of Theoretical and Applied Information Technology
31st August 2020. Vol.98. No 16
© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3391

[16] L. Ke, L. Zhai, J. Li, and F. T. S. Chan, "Pareto
mimic algorithm: An approach to the team
orienteering problem," Omega, vol. 61, pp. 155-
166, 2016/06/01/ 2016.

[17] A. Gunawan, H. C. Lau, and P. Vansteenwegen,
"Orienteering Problem: A survey of recent
variants, solution approaches and applications,"
European Journal of Operational Research,
vol. 255, no. 2, pp. 315-332, 2016/12/01/ 2016.

[18] P. Vansteenwegen, W. Souffriau, and D. V.
Oudheusden, "The orienteering problem: A
survey," European Journal of Operational
Research, vol. 209, no. 1, pp. 1-10, 2/16/ 2011.

[19] F. Glover, "HEURISTICS FOR INTEGER
PROGRAMMING USING SURROGATE
CONSTRAINTS," Decision Sciences, vol. 8,
no. 1, pp. 156-166, 1977.

[20] M. Laguna, R. Martín, and R. C. Martí, Scatter
search: methodology and implementations in C.
Springer, 2003.

[21] M. C. Resende, C. Ribeiro, F. Glover, and R.
Martí, "Scatter Search and Path-Relinking:
Fundamentals, Advances, and Applications," in
Handbook of Metaheuristics, vol. 146, M.
Gendreau and J.-Y. Potvin, Eds. (International
Series in Operations Research & Management
Science: Springer US, 2010, pp. 87-107.

[22] F. Glover, M. Laguna, and R. Marti, "Scatter
Search," in Advances in Evolutionary
Computing, A. Ghosh and S. Tsutsui, Eds.
(Natural Computing Series: Springer Berlin
Heidelberg, 2003, pp. 519-537.

[23] F. Glover, M. Laguna, and R. Marti, "Scatter
Search and Path Relinking: Advances and
Applications," in Handbook of Metaheuristics,
vol. 57, F. Glover and G. Kochenberger, Eds.
(International Series in Operations Research &
Management Science: Springer US, 2003, pp. 1-
35.

[24] F. Glover, "A template for scatter search and
path relinking," in Artificial Evolution, vol.
1363, J.-K. Hao, E. Lutton, E. Ronald, M.
Schoenauer, and D. Snyers, Eds. (Lecture Notes
in Computer Science: Springer Berlin
Heidelberg, 1998, pp. 1-51.

[25] F. Glover, M. Laguna, and R. Martí,
"Fundamentals of scatter search and path
relinking," Control and cybernetics, vol. 39, no.
3, pp. 653-684, 2000.

[26] Z. Michalewicz and D. B. Fogel, "Traditional
Methods — Part 1," in How to Solve It: Modern
HeuristicsBerlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 55-81.

[27] M. Laguna and R. Martí, "Scatter Search," in
Metaheuristic Procedures for Training Neutral
Networks, vol. 36, E. Alba and R. Martí, Eds.
(Operations Research/Computer Science
Interfaces Series: Springer US, 2006, pp. 139-
152.

[28] V. Campos, F. Glover, M. Laguna, and R. Martí,
"An Experimental Evaluation of a Scatter
Search for the Linear Ordering Problem," (in
English), Journal of Global Optimization, vol.
21, no. 4, pp. 397-414, 2001/12/01 2001.

[29] H. A. Alkhazaleh, M. Ayob, Z. Othman, and Z.
Ahmad, "Constructive heuristics for team
orienteering problems," Journal of Applied
Sciences, vol. 13, no. 6, pp. 876-882, 2013.

[30] C. Blum and A. Roli, "Hybrid Metaheuristics:
An Introduction," in Hybrid Metaheuristics: An
Emerging Approach to Optimization, C. Blum,
M. J. B. Aguilera, A. Roli, and M. Sampels, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 1-30.

[31] E.-G. Talbi, Metaheuristics: From Design to
Implementation. John Wiley & Sons, 2009, p.
593.

[32] H. A. Alkhazaleh, M. Ayob, Z. Othman, and Z.
Ahmad, "Diversity measurement for a solution
of team orienteering problem," International
Journal of Advancements in Computing
Technology, vol. 5, no. 16, p. 21, 2013.

[33] G. M. Jaradat and M. Ayob, "Scatter search for
solving the course timetabling problem," in
Data Mining and Optimization (DMO), 2011
3rd Conference on, 2011, pp. 213-218.

[34] R. Martí, M. Laguna, and F. Glover, "Principles
of scatter search," European Journal of
Operational Research, vol. 169, no. 2, pp. 359-
372, 3/1/ 2006.

[35] J. Derrac, S. García, D. Molina, and F. Herrera,
"A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing
evolutionary and swarm intelligence
algorithms," Swarm and Evolutionary
Computation, vol. 1, no. 1, pp. 3-18,
2011/03/01/ 2011.

