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ABSTRACT 
 

Maximizing user protection from Phishing website is a primary objective in the design of these networks. 
Intelligent phishing detection management models can assist designers to achieve this objective. Our 
proposed model aims to reduce the computational time and increase the security against the phishing 
websites by applying the intelligent detection model. In this paper, we employed Multilayer Perceptron 
(MLP) to achieve the highest accuracy and optimal training ratio to maximize internet security. The 
simulation results show the selection of the most significant features minimize the computational time. The 
optimal training percentage is 70% as it minimizes the time complexity and it increases the model accuracy. 

Keywords: MLP, Activation function, semantic attack, Phishing 
 
1. INTRODUCTION  
 

Cyber-Attacks are classified into two classes: 
Syntactic attacks and Semantic attacks. Syntactic 
attacks which are considered as malicious programs 
that harm computer networks or computer software 
by attacking through worms, viruses, spyware or 
adware [1]. In Semantic attacks, the attackers use a 
computer system to fool the victim users, the 
semantic attacks pretend to do something but they 
are doing something else, yet the computing system 
works exactly as it is intended [2, 3]. 

The semantic attacks circumvent technological 
protections by deliberately exploiting system 
attributes, such as system or machine applications, 
to trick the victim instead of targeting him/her 
directly [4]. Table 1 shows families of different 
semantic attacks such as Phishing, File 
Masquerading, Application Masquerading, Web 
Pop-Up, Advertisement, Social Networking, 
Removable Media, and Wireless [5]. 

Phishing is a kind of intrusion that acquires 
sensitive users' information such as usernames, 
passwords, and other confidential information. 
Phishers use a variety of forms to fool users in 
different ways, for example, email, fake link, or 
phone call [6]. 

Phishing is an attack by an individual or a group 
that uses social engineering strategies to solicit 
personally identifiable information from 
unsuspecting customers. Phishing emails are built 
to look as if they were sent from a lawful institution 
or a familiar person. Often these emails try to attract 
subscribers to click a link which will take the 
customer to a fraudulent site that seems credible 
[7].  

PhishLabs report identified phishing sites in 2019 
which target 1,263 different brands belonging to 
773 parent organizations. The top five targeted 
industries (Figure 1) comprised 83.9 percent of the 
total amount of phishing. United States 
organizations remained the most popular target for 
phishing scams in 2019, ranking for 84 percent of 
the total malware amount [8, 9]. 

Contemporary browsers like Firefox typically use 
black-list lists, i.e., a comprehensive list of fake 
URLs to counter phishing attacks [10, 11]. 
Therefore, when a Link is submitted via the 
browser, the system scans the list for the URL and 
blocks the website if the entry exists. These 
approaches could be ineffective solutions, as the 
phishers may use false addresses to pass by through 
some filters. Studies show steady growth in both 
phishing activities and the associated costs [12, 13]. 
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Cyber-attacks cost companies more than $5 million 
between 2013 to 2017 [14]. 

Phishing attacks are classified into four main 
categories as shown in Figure 2. Credential 
harvesting where the attacker sends a trusted link to 
spoofed login pages. In extortion, the attacker asks 
victims for money exchange as a donation. Malware 
is a kind of hidden downloadable file as soon as the 
victim press in link. Spear-phishing where attacker 
targets high-level employees to enforce them to fill 
some tasks manually [15, 16]. 

2. LITERATURE REVIEW 
 

Different researchers have conducted a lot of 
work in website security, some of them manipulated 
the routing security [17, 18], and other researchers 
work with intrusion detection, intrusion prevention, 
and smart grids security [19]. 

Pawan Parakash proposed two methods to 
identify phishing website. The first proposed 
method introduced the five heuristics to enumerate 
the combination if they are known phishing 
websites to find out the new phishing websites. The 
second method used the matching algorithms to 
find out the new phishing websites [20]. 

Samuel Marchal analyzed the URL of the 
websites and extracted the features of the URL. 
Based on the several queries through Google and 
Yahoo search engines, the authors determined the 
keywords for each website. Then, the keywords 
with extracted features used in machine learning 
classification algorithm to find out the phishing 
websites from the real dataset [21]. In [22], authors 
introduced models using machine learning and data 
mining algorithms to detect websites’ phishing. 

The authors in [23] used the artificial neural 
network to spot phishing websites. The proposed 
work used 17 neurons as input that match 17 
characteristics in the dataset and one hidden layer 
level and two neurons as output to decide whether 
or not the website is phishing. The dataset was 
divided as 80 percent for training set and 20 percent 
for testing set. The model achieved 92.48 percent 
accuracy. 

Authors in [24] introduced a model relying on 
machine learning techniques called PLIFER. This 
model requires an age of the URL domain (?). In 
addition, ten features are extracted and a Random 
Forests (RFs) model is used to identify the phishing 
website. 96% of phishing emails were correctly 
identified by this model. Classification models are 
also used to identify phishing utilizing labeled 

datasets. Different classification methods use 
features, like URL-based and text-based 
applications. 

Proposed software collection model hybrid set of 
features (HEFS) to identify phishing websites 
relying on machine learning algorithms. A 
cumulative distribution gradient technique is used 
to extract the primary feature set. Then, the second 
set of features is extracted using a method called 
data perturbation ensemble.  A Random Forests 
(RFs) model, an ensemble learner, is subsequently 
implemented to identify phishing websites. The 
results indicate that HEFS identified phishing 
features with a precision of up to 94.6 percent [25]. 

2.1 Preliminaries 
This section provides a brief description of the 

phishing dataset for the experimental comparison, 
as well as background about the search algorithm, 
heat map, and a multilayer perceptron (MLP) 
algorithm used in this study. 

2.2 Dataset  
The dataset used are collected from PhishTank 

archive [26], MillerSmiles archive [27] and Google 
searching operators. The website phishing dataset 
consists of 30 features. These features were 
classified into four categories: Address Bar 
features, abnormal features, HTML and JavaScript 
features, and Domain features. 

2.3 Search algorithm (CfsSubsetEval) 
Correlation-based Feature Subset Selection for 

machine learning evaluates the importance of a 
subset of attributes by calculating the individual 
predictive capabilities of each function along with 
the degree of consistency among them. The heat 
map is a Visual presentation of values where the 
features found in the graph are described as colors 
[28]. 

2.4 A Multilayer Perceptron (MLP) 
A MLP is a feeding forward artificial neural 

network (ANN). A MLP consists of a large number 
of extremely connected neurons running 
concurrently to achieve certain tasks. Mainly a 
MLP contains input and output layers, and some 
hidden (intermediate) layer(s). Each node contains 
an activation function (sigmoid, RBF). The core 
mechanism of the MLP network consists of signals 
flowing chronologically through multiple layers 
from the input to the output layer [29]. 

The training phase at MLP consists of three 
steps, the first step is input pattern X of the dataset 
then the output is generated and compared with the 
desired output. The second step is back propagated 
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based on the error signal between the network’s 
output and the desired output. The last step is 
synaptic weights. This process is repeated for the 
next input vector until all instances in the training 
set are processed [30]. 

3. THE PROPOSED SYSTEM 
In this work, an intelligent neural network model 

for efficient phishing website detection on the 
Internet is presented with the use of the 
classification algorithm. In this study, a web 
phishing dataset is used to evaluate the performance 
of the intelligent algorithm in terms of classification 
accuracy. 

Figure 3 shows the block diagram of the 
proposed system. In the first step, the data are read 
and the needed features and their categories are 
recognized. Then, the dataset is cleaned and 
prepared in the proper format to read the file in 
MATLAB and Python. 

The second step is processing which consists of 
three functions to be performed on the Phishing 
website dataset. The first function is Rank () to sort 
the feature from the most significant to the least 
significant according to their correlation to the class 
attribute. Based on the ranking function, the 
significance of each feature is calculated. Then, 
these features are sorted in descending order. For 
the ranking purpose, the MATLAB built-in 
procedure called independent significance features 
test (IndFeat()) is used [31, 32]. Then, the attribute 
evaluator Correlation-based Feature Selection 
(CfsSubsetEval()) [33] based on specific searching 
method is applied. Then, the intersection is 
performed between the output features from 
IndFeat() and CfsSubsetEval() to utilize the best 
features to determine if the URL is phishing or not. 

In step 4, a MLP classifier is applied on the 
selected N features, based on the training dataset 
the machine learning model builds the optimal 
knowledge base. The intelligent model learns the 
correlation between the N features and the expected 
output. After that, the testing dataset will pass 
through the intelligent system. Then, the intelligent 
model is evaluated by measuring different 
performance metrics such as classification accuracy 
and computational speed. 

4. EXPERIMENTAL WORK 
 

The proposed model is set up based on the 
following experimental parameters as shown in 
Table 2. 

Table 2 lists the values of the important 
parameters such as learning rate, number of epochs 
(number of passes through all instances in the 
dataset), and number of hidden layers, Batch size, 
and momentum. 

This experiment was conducted on the Phishing 
Websites dataset; the dataset contains 30 attributes 
(one of them is a label). MATLAB is used to apply 
ranking for features from the most significant to 
least significant, and Python is used to draw the 
heat map as shown in Figure 4. Also, WEKA 
simulator v3.6 is used in the MLP classification 
process. 

5. DISCUSSION OF RESULTS  
To evaluate the performance of the intelligent 

classification algorithm MLP, the confusion matrix 
is used [34, 35]. The confusion matrix gives a 
visualization of how the classifier has performed on 
the input dataset. Different performance metrics, 
such as recall, precision, accuracy, and F-measure, 
can be derived from this matrix. The confusion 
matrix consists of four possible outcomes as shown 
in Table 3, which are false positive (FP), true 
positive (TP), false negative (FN), and true negative 
(TN) [36]. 

 False Positives (FP) occur when the actual class 
of the test sample is negative and is wrongly 
marked as positive. True Negatives (TN) occur 
when the actual class of the test sample is negative 
and is marked correctly as negative. False 
Negatives (FN) occur when the actual class of the 
test sample is positive and is wrongly marked as 
negative. True Positives (TP) occur when the actual 
class of the test sample is positive and is marked 
correctly as positive. 

Figure 6 demonstrates the output of the 
experiments in different training ratio  

(50%, 60%, 70%, and 80%). Based on the output 
of the confusion matrix, the accuracy and F-
Measure are calculated. 

Precision = TruePositives / (TruePositives + 
FalsePositives) (1) 

Recall = TruePositives / (TruePositives + 
FalseNegatives) (2) 

Accuracy = TP+TN/TP+FP+FN+TN (3) 
6. CONCLUSION  

 

This paper presents an intelligent model for 
detecting phishing websites on the Internet. It 
provides a comparative study among four training 
percentages by using MLP classifiers. The main 
contribution of the proposed system is to build a 
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real-time intelligent classifier. In addition, the 
proposed intelligent system reduces the 
computational time by applying features selection 
in the processing phase. The aim is to determine the 
most appropriate percentage of the training set 
using the MLP classification model for detecting 
phishing websites. It is observed that as the training 
percentage increases, the training time and 
computational complexity increases as well.   

For future work, we intend to evaluate the 
performance of other machine learning classifiers 
and compare them to find the best one that 
improves the URL security. 
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Table 1. Families of Semantic Attacks 

Semantic Attack  Tools

Brute‐Force Attack  an end‐all method to crack a difficult password 

Dictionary Attack  the attacker uses a dictionary in an attempt to guess the password 

Denial‐Of‐Service 
Attack 

The attack focuses on the interruption of a network service.  

Backdoor  Any secret method of bypassing normal authentication or security controls.

Eavesdropping  listening to a private conversation

Spoofing  falsifying data

Privilege Escalation  an attacker able to fool the system into giving them access to restricted data

Phishing  The attacker uses Email, Website, URL to crack usernames, passwords and credit 
card details directly from users 

Clickjacking  the attacker tricks a user into clicking on a button 

File Masquerading   The attacker uses the name of the file is maliciously called anything close to one 
that could be trusted 

 
 

 
Figure 1. Top five targeted industries 
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Figure 2. Phishing Attacks categories 

 
. 

 
Figure 3. Block diagram of the proposed system. 
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The scheme operates in five stages, which are as follows: 
1. Read the dataset. 
2. Preprocessing 
3. Processing 

a) Select attribute [Calculate significance level of feature, Sort in descending 
order.] 

i. Rank 
ii. Attribute evaluator  

iii. Search method  
4. Machine learning. 
5. Performance evaluation.          

 

Table 2. Experimental parameters. 

Parameter  Value

Learning rate for MLP  0.3

Number of epochs for MLP 500

Number of hidden layers for MLP 1

Number of hidden neurons for MLP 1

Batch Size  100

Momentum  0.2
 

 
Figure 4. Heat map for features correlation 
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Figure 5. Structure of MLP 
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Table 3. Confusion matrix. 

 
Predicted class 

 
Positive  Negative 

Actual class 
Positive  TP  FP 

Negative  FN  TN 

 

 
 

Figure 6. The output of Confusion matrix in different training Ratios 
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Figure 7. Percentages of the training data versus the accuracies and F-measures 

 

Table 4. Comparison with other algorithms using 70 % training dataset  

Paper  Machine Learning Algorithm  Accuracy 

[18]  NN  94.07% 

[19]  multi‐label rule‐based  94.8% 

[20]  NN  84% 

[21]  FFNN  87% 

[22]  feed forward NN  97.40% 

[23]  logistic regression classifier  98.40% 

[24]  Naïve Bayesian classifier  90% 

[25]  HNB and J48  96.25% 

Proposed Model 99.1 

 


