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ABSTRACT 
 

Deep convolutional neural networks (CNNs) have achieved significant improvements in different vision 
tasks, including classification, detection and segmentation. However, the increasing model size and 
computation makes it difficult to implement DNNs on embedded systems with limited hardware resources. 
Many approaches proposed to build a lightweight network and have achieved comparable performance, such 
as MobileNets, ShuffleNet, and ESPNet. This paper proposes a lightweight and efficient network based on 
depthwise dilated separable convolution and MobileNetv2 architecture. Depthwise dilated convolution in 
depthwise dilated separable convolution module effectively enlarge the field of view of filters to incorporate 
larger context without increasing the number of parameters or the amount of computation. Furthermore, 
instead of using a convolution with 3×3 kernel size for each depthwise separable convolution block in 
MobileNetv2, this paper uses dilated convolutions with different dilation rates to learn the representations in 
parallel. The proposed model is evaluated on two public datasets. The results show that the proposed model 
achieves better classification accuracy compared with MobileNetv2. In addition, a simple object detection 
framework based on the proposed model is designed and conducted on an embedded system. Experiment 
results show the effectiveness of the proposed model in different vision tasks. 

Keywords: Deep Convolutional Networks, MobileNetv2, Image Classification, Object Detection, Depthwise 
Separable Convolution 

 
 
1. INTRODUCTION  
 

In recent years, deep CNNs have shown 
significant improvements in many computer vision 
tasks such as image classification, object detection, 
and image segmentation. For example, AlexNet [2], 
which has 60 million parameters and 500,000 
neurons and consists of five convolutional layers and 
two globally connected layers with a final 1000-way 
softmax, has won the ImageNet Large Scale Visual 
Recognition Challenge 2012 (ILSVRC2012). VGG-
16 [15] includes 13 convolutional and 3 fully-
connected layers. VGG-16 architecture stacks more 
layers onto AlexNet and uses smaller filters size 
(2×2 kernel and 3×3 kernel). The network consists 
of 138M parameters and takes up about 500MB of 
storage space. Inception-v1 [16] designed a 22-layer 
architecture with 5M parameters. The network is 
built using dense blocks, where blocks are stacked 
instead of stacking convolutional layers. The 

network has won the ImageNet Large-Scale Visual 
Recognition Challenge 2014 (ILSVRC 2014). 
Inception-v3 [17] is a successor to Inception-v1. The 
motivation for Inception-v3 is to avoid 
representational bottlenecks and have more efficient 
computations by using factorization methods. 
Xception [18] is an adaptation from Inception, where 
the Inception modules have been replaced with 
depthwise separable convolutions. ResNeXt-50 [19] 
presented a simple, highly modularized network 
architecture for image classification. The network is 
constructed by repeating a building block that 
aggregates a set of transformations with the same 
topology.  

Most of above deep CNNs require large 
amounts of computational resources, including 
memory and power, which makes it difficult to apply 
the model to portable mobile devices with limited 
hardware resources. In order to apply deep CNN 
model to real-time applications on low-spec devices, 
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Figure 1: Depthwise Separable Convolution Includes Depthwise Convolution (a) and Pointwise Convolution (b).

many approaches proposed to compress existing 
architecture or design an efficient architecture. For 
compressing existing architecture, most of 
approaches applied this approach improves the 
inference efficiency of CNNs via weight 
quantization and/or weight pruning. Hubara et al. 
[14] proposed a neural network with binary weights 
and activations at run-time. At train time, the binary 
weights and activations are used for computing the 
parameter gradients. During the forward pass, the 
proposed network drastically reduces memory size 
and accesses, and replace most arithmetic operations 
with bit-wise operations, which is expected to 
substantially improve power-efficiency. Rastegari et 
al. [20] proposed two efficient approximations to 
standard convolutional neural networks, including 
binary-weight-networks and XNOR-networks. He et 
al. [21] introduced a new channel pruning method to 
accelerate very deep convolutional neural networks. 
The compressing approaches are effective, because 
CNNs have a substantial number of redundant 
weights. For designing efficient architectures, many 
approaches have explored efficient CNNs that can be 
trained end-to-end. MobileNetv1 [1], Mobilenetv2 
[3] proposed to use depthwise separable 
convolutions that factor a convolution into two steps 
to reduce computational complexity as shown in 
Figure 1, including depthwise convolution that 
performs lightweight filtering by applying a single 
convolutional kernel per input channel and 
pointwise convolution that usually expands the 
feature map along channels by learning linear 
combinations of the input channels. Huang et al. [22] 
introduced DenseNet, which connects each layer to 
every other layer in a feed-forward fashion. 
Squeezenet [23] propose a small DNN architecture 

which achieved AlexNet-level accuracy on 
ImageNet with 50x fewer parameters. The efficient 
architectures greatly reduce computational 
requirements without significantly reducing 
accuracy. 
 
2. METHODOLOGY 
 
2.1 Depthwise Dilated Separable Convolution 

To mitigate the computational cost and 
complexity in deep CNN architecture, many 
approaches proposed to replace standard 
convolution layers by different types of convolution 
layers, such as depthwise separable convolution 
layer [1] and group convolution layer [2]. This 
section elaborates the depth-wise dilated separable 
convolution in detail and compares with other 
efficient convolutions. 
A standard convolution layer takes an input feature 
map with size 𝑊 ൈ𝐻 ൈ 𝐶 and generates an output 
feature map with size 𝑊ᇱ ൈ 𝐻ᇱ ൈ 𝐶ᇱ by using 
convolution kernel with size 𝑛 ൈ 𝑛 ൈ 𝐶 ൈ 𝐶ᇱ. Here, 
𝑊 ൈ𝐻 and 𝑊ᇱ ൈ 𝐻ᇱ are the spatial width and height 
of input feature map and output feature map 
respectively; 𝐶 and 𝐶ᇱ are the input and output 
channels respectively. The number of learning 
parameters is 𝑛ଶ𝐶𝐶ᇱ. In depth-wise separable 
convolution [1], standard convolution is replaced by 
depth-wise separable convolution, which includes 
depthwise convolution and pointwise convolution. 
Depthwise convolution applies a single filter per 
each input channel and pointwise convolution 
applies 1×1 convolution to create a linear 
combination of the output of the depthwise layer. In 
this paper, depth-wise dilated separable convolution 
is used to replace standard convolution. Depth-wise 
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Figure 2: (a) Standard Convolution; (b) Dilated Convolution with Dilation Rate = 2; (c) Dilated Convolution with 

Dilation Rate = 3.

Table 1: Comparison of The Number of Parameters Between Different Types of Convolutions. 

Type of convolution Receptive field Number of Parameters 

Standard convolution 𝑛 ൈ 𝑛 𝑛ଶ𝐶𝐶ᇱ 
Group convolution 𝑛 ൈ 𝑛 𝑛ଶ𝐶𝐶ᇱ

𝑔
 

Depth-wise separable convolution 𝑛 ൈ 𝑛 𝑛ଶ𝐶𝐶𝐶ᇱ 
Depth-wise dilated separable convolution 𝑛 ൈ 𝑛 𝑛ଶ𝐶𝐶𝐶ᇱ 

dilated separable convolution includes two layers: 
depth-wise dilated convolution layer and point-wise 
convolution layer. Depth-wise dilated convolution 
layer applies dilated convolution per input channel 
with a dilation rate of 𝑟, thus enabling the 
convolution to learn representations from an 
effective receptive field of 𝑛 ൈ 𝑛, where 𝑛 is 
calculated as follow: 
 

𝑛 ൌ ሺ𝑛 െ 1ሻ. 𝑟  1   (1) 
 

Dilated convolution with dilation rate of 𝑟 introduces 
𝑟 െ 1 zeros between consecutive filter values, 
effectively enlarging the kernel size of a 𝑛 ൈ 𝑛 filter 
to 𝑛 ൈ 𝑛 by using the equation (1) without 
increasing the number of parameters or the amount 
of computational cost. Figure 2(a) illustrates 
standard convolution with 3×3 convolution kernel. 
Figure 2(b) shows dilated convolution where 
convolution kernel changed to 5×5 with dilation rate 
= 2. Figure 2(c) shows dilated convolution where 
convolution kernel changed to 7×7 with dilation rate 
= 3. 
Depth-wise dilated convolution layer only filters 
input channels, it does not combine them to create 
new features. Thus, point-wise convolution with 1×1 
kernel size is used to learn linear combinations of 
input channels. The combination of depth-wise 
dilated convolution and point-wise convolution 
reduces the computational cost by a factor of Ω as 
follow: 
 

Ω ൌ
మᇲ

మାᇲ
   (2) 

 

Table 1 shows the comparison of the number of 
parameters between different types of convolutions. 
As shown, depth-wise dilated separable convolution 
is efficient and can learn representations from a large 
and efficient receptive field. 
 
2.2 MobileNetv2 Architecture 

MobileNetv2 [3] is an improved network based 
on MobileNetv1. Each improved module makes 
MobileNetv2 even more efficient and powerful. In 
the MobileNetv2 architecture, the depth-wise 
separable convolution has been modified as shown 
in Figure 3. There are three convolutional layers in 
the modified depth-wise separable convolution 
block. The first layer is a 1×1 point-wise convolution 
layer which is used to expand the number of 
channels of the input feature map before it goes into 
the depth-wise convolution layer. This layer is also 
called as expansion layer where the number of 
channels of input feature is always smaller than that 
of output feature. An expansion factor is defined to 
show how much the data gets expanded. By default, 
the expansion factor is set at six. The middle layer is 
a 3×3 depth-wise convolution layer that filters the 
input feature map as in the MobileNetv1 network. 
The final layer is a 1×1 point-wise convolution layer. 
This final convolution layer is used to project data 
with a high number of channels into a tensor with a 
much lower number of channels, thus making the 
number of channels of the input feature map smaller. 
The final convolution layer is also called a 
bottleneck layer because it reduces the amount of 
data that flows through the network. Figure 4 shows 
an example of filtering step in depth-wise separable 
convolution block used in MobileNetv2 where a 
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Figure 3: Depth-Wise Separable Convolution Used in MobileNetv2 Network.

 
Figure 4: An Example of Filtering Step in Depth-Wise Separable Convolution Block.

feature map with 112 channels is fed into depth-wise 
separable convolution block. First, the expansion 
layer converts input feature map into a new feature 
map with 112*6 = 672 channels. Next, the depth-
wise convolution layer applies filters to 673 channels 
feature. Finally, the final bottleneck layer projects 
the 672 channels feature map back to smaller 
channel. 

In addition, the residual connection as in 
ResNet [4] is adopted in the depth-wise separable 

convolution block to help with the flow of gradients 
through the network. The residual connection is 
adopted when the number of channels going into the 
block is the same as the number of channels coming 
out of the block. Each layer in the modified depth-
wise separable convolution is followed by batch 
normalization [5] and ReLU6 as activation function 
(except the last bottleneck layer since using a non-
linearity after this layer destroyed useful 
information). Based on the modified depth-wise  
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Table 2: MobileNetv2 Architecture. 

Layer Type Kernel size, 
Stride 

Input size Output size Expansion 
factor 

0 Standard convolution 3×3×32, 2 224×224×3 112×112×32 - 

1 Depth-wise separable convolution -, 1 112×112×32 112×112×16 1 

2 Depth-wise separable convolution -, 2 112×112×16 56×56×24 6 

3 Depth-wise separable convolution -, 1 56×56×24 56×56×24 6 

4 Depth-wise separable convolution -, 2 56×56×24 28×28×32 6 

5 Depth-wise separable convolution -, 1 28×28×32 28×28×32 6 

6 Depth-wise separable convolution -, 1 28×28×32 28×28×32 6 

7 Depth-wise separable convolution -, 2 28×28×32 14×14×64 6 

8 Depth-wise separable convolution -, 1 14×14×64 14×14×64 6 

9 Depth-wise separable convolution -, 1 14×14×64 14×14×64 6 

10 Depth-wise separable convolution -, 1 14×14×64 14×14×64 6 

11 Depth-wise separable convolution -, 1 14×14×64 14×14×96 6 

12 Depth-wise separable convolution -, 1 14×14×96 14×14×96 6 

13 Depth-wise separable convolution -, 1 14×14×96 14×14×96 6 

14 Depth-wise separable convolution -, 2 14×14×96 7×7×160 6 

15 Depth-wise separable convolution -, 1 7×7×160 7×7×160 6 

16 Depth-wise separable convolution -, 1 7×7×160 7×7×160 6 

17 Depth-wise separable convolution -, 1 7×7×160 7×7×320 6 

18 Standard convolution 1×1×1280, 1 7×7×320 7×7×1280 - 

19 Average pooling 7×7 7×7×1280 1×1×1280 - 

20 Standard convolution 1×1×k, 1 1×1×1280 1×k - 

separable convolution block, the full MobileNetv2 
architecture is shown in Table 2. As shown in Table 
2, MobileNetv2 consists of 17 of the modified 
depthwise separable convolution blocks followed by 
a regular 1×1 convolution layer. The first layer is a 
regular 3×3 convolution layer with 32 channels. 
 
2.3 Proposed Network Architecture Based on 
MobileNetv2 and Depth-wise Dilated Separable 
Convolution 

Taking advantage of depth-wise dilated 
separable convolution and MobileNetv2 
architecture, this paper introduces pyramid depth-
wise dilated separable convolution by integrating 
depth-wise dilated convolution into depth-wise 
separable convolution in original MobileNetv2 
network. Figure 5 presents the structure of pyramid 
depth-wise dilated separable convolution. In the 
pyramid depth-wise dilated separable convolution, 
low-dimensional input feature map is first projected 
to high-dimensional feature map by using pointwise 
convolution layer as in depth-wise dilated separable 
convolution. Then, the representations in high-

dimensional feature map are learned in parallel by 
using dilated convolutions with different dilation 
rates. Different dilation rates in each branch allow 
the pyramid depth-wise dilated separable 
convolution to learn the representations from a large 
effective receptive field. This factorization allows 
the pyramid depth-wise dilated separable 
convolution to be efficient. Next, the output features 
of each branch are fused by using concatenation 
operation. Finally, the final bottleneck layer projects 
the high-dimensional fused feature map back to 
smaller channel. 

Based on the proposed pyramid depth-wise 
dilated separable convolution and MobileNetv2 
architecture, the architecture of the proposed 
network is shown in Table 3. At each spatial level, 
the proposed network repeats pyramid depth-wise 
dilated separable convolution several times to 
increase the depth of the network. In addition, 
PReLU [6] is used after every convolution layer with 
an exception to the last point-wise convolution layer. 
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Figure 5: The Structure of Pyramid Depth-Wise Dilated Separable Convolution.

3. EXPERIMENTS AND RESULTS 
 
3.1 Dataset 

To evaluate the effectiveness of the proposed 
model, this paper conducts experiments on the 
Caltech-101 dataset [7] and Caltech-256 dataset [8]. 
Caltech-101 dataset contains 9,145 images with 102 
classes, which are 101 object classes and one 
background class. The number of images in each 
class is between 40 to 800. Caltech-256 dataset is 
based on Caltech-101 dataset with more images and 

classes. There are 30,607 images in this dataset with 
257 classes, which are 256 object classes and one 
background class. Figure 6 presents some images in 
Caltech-101 dataset (a) and Caltech-256 dataset (b). 
In each dataset, 2,000 images are randomly selected 
as testing images. The remaining labeled images are 
used for training. 
 
3.2 Implementation Details 

The proposed model is trained and tested using 
Python with Pytorch deep learning framework [9].  
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Table 3: The Architecture of The Proposed Network. 

Layer Type Kernel size, 
Stride 

Input size Output size # Repeat 

0 Standard convolution 3×3×32, 2 224×224×3 112×112×32 1 

1 Pyramid depth-wise dilated 
separable convolution 

-, 1 112×112×32 112×112×16 1 

2 Pyramid depth-wise dilated 
separable convolution 

-, 2 112×112×16 56×56×24 1 

3 Pyramid depth-wise dilated 
separable convolution 

-, 1 56×56×24 56×56×24 1 

4 Pyramid depth-wise dilated 
separable convolution 

-, 2 56×56×24 28×28×32 1 

5 Pyramid depth-wise dilated 
separable convolution 

-, 1 28×28×32 28×28×32 2 

7 Pyramid depth-wise dilated 
separable convolution 

-, 2 28×28×32 14×14×64 1 

8 Pyramid depth-wise dilated 
separable convolution 

-, 1 14×14×64 14×14×96 6 

14 Pyramid depth-wise dilated 
separable convolution 

-, 2 14×14×96 7×7×160 1 

15 Pyramid depth-wise dilated 
separable convolution 

-, 1 7×7×160 7×7×320 3 

18 Standard convolution 1×1×1280, 1 7×7×320 7×7×1280 1 

19 Average pooling 7×7 7×7×1280 1×1×1280 1 

20 Standard convolution 1×1×k, 1 1×1×1280 1×k 1 

The proposed model is implemented on a Window 
system machine with CPU Intel Core i7-8700 @3.2 
GHz, GPU Nvidia GTX 1080, RAM 12GB DDR4, 
and CUDA 10.1 with cuDNN back-ends. To 
initialize the weights of the network, this paper uses 
the method described in [6]. The network is trained 
with a batch size of 512 for 300 epochs by 
optimizing the cross-entropy loss. For faster 
convergence, this paper decays the learning rate by a 
factor of two at the following epoch intervals: {50, 
100, 130, 160, 190, 220, 250, 280}, and the initial 
learning rate is set at 0.045. 
 
3.3 Analysis of Experimental Results 

In this section, this paper conducts experiments 
on Caltech-101 dataset and Caltech-256 dataset and 
compares the classification results with other state-
of-the-are models, including MobileNetv1 [1], 
MobileNetv2 [3], and ShuffleNet [10]. 

Table 4 provides a performance comparison 
between the proposed model and other state-of-the-
art models on Caltech-101 dataset. It can be 
observed that the accuracy of classification models 
has reached a balance after 25,000 training steps. For 
the classification accuracy, the proposed model 
outperforms other models on Caltech-101 dataset 
with the same training step. More specific, compared 

with MobileNetv1 network, the accuracy of the 
proposed model is improved by 2.5% after 25,000 
training steps. Compared with MobileNetv2 and 
Shufflenet network, the accuracy of the proposed 
model is improved by 0.3% and 1.4% respectively 
after 25,000 training steps. When increasing the 
training step to 45,000, the accuracy of the proposed 
model increases by 0.7%, while the accuracy of 
MobileNetv1 decreases by 0.2%. For other models, 
the accuracy of MobileNetv2 increases to 79.8%, 
and the accuracy of Shufflenet increases to 78.7% at 
this training step. 

Table 5 presents the classification accuracy of 
four classification models on Caltech-256 dataset. 
As shown, the classification accuracy of all models 
is almost steady after 30,000 training steps. 
Compared with other models, the proposed model 
achieves the best classification results. With training 
step at 30,000, the accuracy of the proposed model 
is improved by 7.5%, 0.9%, and 2.7% compared 
with MobileNetv1, MobileNetv2, and Shufflenet 
respectively. After 50,000 training steps, the 
accuracy of the proposed model is improved by 
7.8%, 0.1%, and 2% compared with MobileNetv1, 
MobileNetv2, and Shufflenet respectively. 

The classification results on two datasets show 
the effectiveness of the proposed model. With depth-
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Figure 6: Example Images in Caltech-101 Dataset (a) and Caltech-256 Dataset (b).

Table 4: Classification Accuracy (%) on The Caltech-101 Dataset. 

Model Number of steps 

 25,000 30,000 35,000 40,000 45,000 

MobileNetv1 76.6 75.7 76.8 76.8 76.4 

MobileNetv2 79.3 79.5 79.8 79.8 79.8 

Shufflenet 77.3 78.4 78.1 79.2 78.7 

Proposed model 79.4 79.5 79.9 80.1 80.1 

Table 5: Classification Accuracy (%) on The Caltech-256 Dataset. 

Model Number of steps 

 30,000 35,000 40,000 45,000 50,000 

MobileNetv1 64.6 64.6 64.5 64.7 64.6 

MobileNetv2 71.2 71.2 72.1 72.3 72.3 

Shufflenet 69.4 70.2 70.5 70.4 70.4 

Proposed model 72.1 72.3 72.3 72.4 72.4 

wise dilated separable convolution, the receptive 
field in each layer is enlarged while maintaining the 
computation cost. Thus, the accuracy of the model is 
improved compared with depth-wise separable 
convolution in original models. 
 

3.4 Application of Object Detection on 
Embedded System 

To evaluate the effectiveness of the proposed 
model in object detection, this paper implements the 
proposed model for vehicle detection on embedded 
system. For vehicle detection framework, this paper 
adopts RPN [11] to design a lightweight and 
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Figure 7: The Structure of The Proposed Detector.

 
Figure 8: Jetson TX2 Board.

Table 6: Technical Specifications of The NVIDIA Jetson TX2 Embedded Board. 

Components Specification 

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU 
Quad-Core ARM® Cortex®-A57 MPCore 

GPU 256-core NVIDIA Pascal™ GPU architecture with 256 
NVIDIA CUDA cores 

Memory 8GB 128-bit LPDDR4 Memory 
1866 MHx - 59.7 GB/s 

Operating system Ubuntu Linux 14.04 LTS 

Camera 5MP CSI camera module (with Omnivision OV5693) 

Connectivity 802.11a/b/g/n/ac 2×2 867Mbps WiFi 

Storage 32GB eMMC 5.1 

efficient detector. Figure 7 presents the structure of 
the proposed detector. As shown, the proposed 
lightweight model is used as the base network. The 
RPN includes a 3×3 convolution layer followed by 
two 1×1 convolution layers. The base network is 
used to generate base feature maps, and the RPN is 
used to generate vehicle proposals and classify and 
regress the coordinates of detected vehicles. Feature 

map generated after Layer 17 of the base network is 
adopted to detect vehicle. 

For the hardware components of the proposed 
embedded system, this paper uses the most power-
efficient embedded AI computing device, the Jetson 
TX2 board as shown in Figure 8. Table 6 presents 
the main technical specifications of the board. The 
Jetson TX2 is a recent embedded board developed  
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Table 7: Detection Results of The Proposed Detector on KITTI Dataset with NVIDIA Jetson TX2. 

Model Base network mAP (%) Inference time (s) 

SSD VGG-16 68.4 0.4 

Proposed detector Proposed model 65.8 0.1 

by NVIDIA in the embedded system category. This 
mini-computer provides the performance required 
for the latest visual computing applications, 
especially in deep learning. It is built based on 
NVIDIA Pascal-family GPU architecture with 256 
CUDA cores providing greater than 1TFLOPS of 
FP16 compute performance in less than 7.5 watts of 
power, 64-bit CPUs, and a 5MP CSI camera module. 
To implement the proposed detector on the NVIDIA 
Jetson TX2 board, this paper uses the Pytorch deep 
learning framework [9] compiled for GPU and 
Python programming language.  

For the experimental dataset, this paper adopts 
KITTI dataset [12] for vehicle detection. KITTI 
dataset is a recent public dataset for evaluating the 
performance of different vehicle detection 
approaches. The dataset contains various scales of 
vehicles in different traffic scenes. The size of 
images in this dataset is 3840×1280 pixels. The 
dataset consists of 7481 images for training and 7518 
images for testing. According to size, occlusion and 
truncation of vehicles in images, the dataset is 
classified into three difficulty level groups: easy, 
moderate and hard. For evaluating the results, this 
paper adopts mean average precision (mAP), which 
is calculated by averaging the average precision of 
all three groups. 

In Table 7, this paper presents the mAP and the 
inference time of the proposed detector and SSD 
[13] on NVIDIA Jetson TX2 with KITTI dataset. 
According to Table 7, the proposed detector with the 
proposed lightweight architecture as the base 
network achieves mAP at 65.8% on KITTI dataset. 
Because SSD detector used detection network on 
different layers of the based network, this detector 
achieves better result compared with the proposed 
detector.  However, the proposed detector takes 0.1 
second to process an image, while SSD detector 
takes up to 0.4 second. These results show the 
effectiveness of the proposed model on different 
visual tasks with a trade-off between accuracy and 
inference speed. 
 
4. CONCLUSIONS 
 

This paper proposes a lightweight and efficient 
deep convolutional neural network based on 
depthwise dilated separable convolution and 
MobileNetv2 architecture. In the proposed model, 

depthwise dilated convolution is used to replace 
standard depthwise convolution. Depthwise dilated 
convolution effectively enlarge the field of view of 
filters to incorporate larger context without 
increasing the number of parameters or the amount 
of computation. In addition, a pyramid depth-wise 
dilated separable convolution is introduced, where 
feature maps are learned in parallel by using dilated 
convolutions with different dilation rates. 
Experimental results on Caltech-101 dataset and 
Caltech-256 dataset show that the proposed model 
achieves better accuracy compared with 
MobileNetv2. Furthermore, an object detection 
framework based on the proposed model is designed 
and implemented on the NVIDIA Jetson TX2. 
Experiment results show the effectiveness of the 
proposed model on different vision tasks. 
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