
Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2937

A LIGHTWEIGHT AND EFFICIENT DEEP
CONVOLUTIONAL NEURAL NETWORK BASED ON
DEPTHWISE DILATED SEPARABLE CONVOLUTION

HOANH NGUYEN

Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh

City, Vietnam

E-mail: nguyenhoanh@iuh.edu.vn

ABSTRACT

Deep convolutional neural networks (CNNs) have achieved significant improvements in different vision
tasks, including classification, detection and segmentation. However, the increasing model size and
computation makes it difficult to implement DNNs on embedded systems with limited hardware resources.
Many approaches proposed to build a lightweight network and have achieved comparable performance, such
as MobileNets, ShuffleNet, and ESPNet. This paper proposes a lightweight and efficient network based on
depthwise dilated separable convolution and MobileNetv2 architecture. Depthwise dilated convolution in
depthwise dilated separable convolution module effectively enlarge the field of view of filters to incorporate
larger context without increasing the number of parameters or the amount of computation. Furthermore,
instead of using a convolution with 3×3 kernel size for each depthwise separable convolution block in
MobileNetv2, this paper uses dilated convolutions with different dilation rates to learn the representations in
parallel. The proposed model is evaluated on two public datasets. The results show that the proposed model
achieves better classification accuracy compared with MobileNetv2. In addition, a simple object detection
framework based on the proposed model is designed and conducted on an embedded system. Experiment
results show the effectiveness of the proposed model in different vision tasks.

Keywords: Deep Convolutional Networks, MobileNetv2, Image Classification, Object Detection, Depthwise
Separable Convolution

1. INTRODUCTION

In recent years, deep CNNs have shown
significant improvements in many computer vision
tasks such as image classification, object detection,
and image segmentation. For example, AlexNet [2],
which has 60 million parameters and 500,000
neurons and consists of five convolutional layers and
two globally connected layers with a final 1000-way
softmax, has won the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012). VGG-
16 [15] includes 13 convolutional and 3 fully-
connected layers. VGG-16 architecture stacks more
layers onto AlexNet and uses smaller filters size
(2×2 kernel and 3×3 kernel). The network consists
of 138M parameters and takes up about 500MB of
storage space. Inception-v1 [16] designed a 22-layer
architecture with 5M parameters. The network is
built using dense blocks, where blocks are stacked
instead of stacking convolutional layers. The

network has won the ImageNet Large-Scale Visual
Recognition Challenge 2014 (ILSVRC 2014).
Inception-v3 [17] is a successor to Inception-v1. The
motivation for Inception-v3 is to avoid
representational bottlenecks and have more efficient
computations by using factorization methods.
Xception [18] is an adaptation from Inception, where
the Inception modules have been replaced with
depthwise separable convolutions. ResNeXt-50 [19]
presented a simple, highly modularized network
architecture for image classification. The network is
constructed by repeating a building block that
aggregates a set of transformations with the same
topology.

Most of above deep CNNs require large
amounts of computational resources, including
memory and power, which makes it difficult to apply
the model to portable mobile devices with limited
hardware resources. In order to apply deep CNN
model to real-time applications on low-spec devices,

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2938

Figure 1: Depthwise Separable Convolution Includes Depthwise Convolution (a) and Pointwise Convolution (b).

many approaches proposed to compress existing
architecture or design an efficient architecture. For
compressing existing architecture, most of
approaches applied this approach improves the
inference efficiency of CNNs via weight
quantization and/or weight pruning. Hubara et al.
[14] proposed a neural network with binary weights
and activations at run-time. At train time, the binary
weights and activations are used for computing the
parameter gradients. During the forward pass, the
proposed network drastically reduces memory size
and accesses, and replace most arithmetic operations
with bit-wise operations, which is expected to
substantially improve power-efficiency. Rastegari et
al. [20] proposed two efficient approximations to
standard convolutional neural networks, including
binary-weight-networks and XNOR-networks. He et
al. [21] introduced a new channel pruning method to
accelerate very deep convolutional neural networks.
The compressing approaches are effective, because
CNNs have a substantial number of redundant
weights. For designing efficient architectures, many
approaches have explored efficient CNNs that can be
trained end-to-end. MobileNetv1 [1], Mobilenetv2
[3] proposed to use depthwise separable
convolutions that factor a convolution into two steps
to reduce computational complexity as shown in
Figure 1, including depthwise convolution that
performs lightweight filtering by applying a single
convolutional kernel per input channel and
pointwise convolution that usually expands the
feature map along channels by learning linear
combinations of the input channels. Huang et al. [22]
introduced DenseNet, which connects each layer to
every other layer in a feed-forward fashion.
Squeezenet [23] propose a small DNN architecture

which achieved AlexNet-level accuracy on
ImageNet with 50x fewer parameters. The efficient
architectures greatly reduce computational
requirements without significantly reducing
accuracy.

2. METHODOLOGY

2.1 Depthwise Dilated Separable Convolution

To mitigate the computational cost and
complexity in deep CNN architecture, many
approaches proposed to replace standard
convolution layers by different types of convolution
layers, such as depthwise separable convolution
layer [1] and group convolution layer [2]. This
section elaborates the depth-wise dilated separable
convolution in detail and compares with other
efficient convolutions.
A standard convolution layer takes an input feature
map with size 𝑊 ൈ𝐻 ൈ 𝐶 and generates an output
feature map with size 𝑊ᇱ ൈ 𝐻ᇱ ൈ 𝐶ᇱ by using
convolution kernel with size 𝑛 ൈ 𝑛 ൈ 𝐶 ൈ 𝐶ᇱ. Here,
𝑊 ൈ𝐻 and 𝑊ᇱ ൈ 𝐻ᇱ are the spatial width and height
of input feature map and output feature map
respectively; 𝐶 and 𝐶ᇱ are the input and output
channels respectively. The number of learning
parameters is 𝑛ଶ𝐶𝐶ᇱ. In depth-wise separable
convolution [1], standard convolution is replaced by
depth-wise separable convolution, which includes
depthwise convolution and pointwise convolution.
Depthwise convolution applies a single filter per
each input channel and pointwise convolution
applies 1×1 convolution to create a linear
combination of the output of the depthwise layer. In
this paper, depth-wise dilated separable convolution
is used to replace standard convolution. Depth-wise

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2939

Figure 2: (a) Standard Convolution; (b) Dilated Convolution with Dilation Rate = 2; (c) Dilated Convolution with

Dilation Rate = 3.

Table 1: Comparison of The Number of Parameters Between Different Types of Convolutions.

Type of convolution Receptive field Number of Parameters

Standard convolution 𝑛 ൈ 𝑛 𝑛ଶ𝐶𝐶ᇱ
Group convolution 𝑛 ൈ 𝑛 𝑛ଶ𝐶𝐶ᇱ

𝑔

Depth-wise separable convolution 𝑛 ൈ 𝑛 𝑛ଶ𝐶𝐶𝐶ᇱ
Depth-wise dilated separable convolution 𝑛 ൈ 𝑛 𝑛ଶ𝐶𝐶𝐶ᇱ

dilated separable convolution includes two layers:
depth-wise dilated convolution layer and point-wise
convolution layer. Depth-wise dilated convolution
layer applies dilated convolution per input channel
with a dilation rate of 𝑟, thus enabling the
convolution to learn representations from an
effective receptive field of 𝑛 ൈ 𝑛, where 𝑛 is
calculated as follow:

𝑛 ൌ ሺ𝑛 െ 1ሻ. 𝑟 1 (1)

Dilated convolution with dilation rate of 𝑟 introduces
𝑟 െ 1 zeros between consecutive filter values,
effectively enlarging the kernel size of a 𝑛 ൈ 𝑛 filter
to 𝑛 ൈ 𝑛 by using the equation (1) without
increasing the number of parameters or the amount
of computational cost. Figure 2(a) illustrates
standard convolution with 3×3 convolution kernel.
Figure 2(b) shows dilated convolution where
convolution kernel changed to 5×5 with dilation rate
= 2. Figure 2(c) shows dilated convolution where
convolution kernel changed to 7×7 with dilation rate
= 3.
Depth-wise dilated convolution layer only filters
input channels, it does not combine them to create
new features. Thus, point-wise convolution with 1×1
kernel size is used to learn linear combinations of
input channels. The combination of depth-wise
dilated convolution and point-wise convolution
reduces the computational cost by a factor of Ω as
follow:

Ω ൌ
మᇲ

మାᇲ
 (2)

Table 1 shows the comparison of the number of
parameters between different types of convolutions.
As shown, depth-wise dilated separable convolution
is efficient and can learn representations from a large
and efficient receptive field.

2.2 MobileNetv2 Architecture

MobileNetv2 [3] is an improved network based
on MobileNetv1. Each improved module makes
MobileNetv2 even more efficient and powerful. In
the MobileNetv2 architecture, the depth-wise
separable convolution has been modified as shown
in Figure 3. There are three convolutional layers in
the modified depth-wise separable convolution
block. The first layer is a 1×1 point-wise convolution
layer which is used to expand the number of
channels of the input feature map before it goes into
the depth-wise convolution layer. This layer is also
called as expansion layer where the number of
channels of input feature is always smaller than that
of output feature. An expansion factor is defined to
show how much the data gets expanded. By default,
the expansion factor is set at six. The middle layer is
a 3×3 depth-wise convolution layer that filters the
input feature map as in the MobileNetv1 network.
The final layer is a 1×1 point-wise convolution layer.
This final convolution layer is used to project data
with a high number of channels into a tensor with a
much lower number of channels, thus making the
number of channels of the input feature map smaller.
The final convolution layer is also called a
bottleneck layer because it reduces the amount of
data that flows through the network. Figure 4 shows
an example of filtering step in depth-wise separable
convolution block used in MobileNetv2 where a

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2940

Figure 3: Depth-Wise Separable Convolution Used in MobileNetv2 Network.

Figure 4: An Example of Filtering Step in Depth-Wise Separable Convolution Block.

feature map with 112 channels is fed into depth-wise
separable convolution block. First, the expansion
layer converts input feature map into a new feature
map with 112*6 = 672 channels. Next, the depth-
wise convolution layer applies filters to 673 channels
feature. Finally, the final bottleneck layer projects
the 672 channels feature map back to smaller
channel.

In addition, the residual connection as in
ResNet [4] is adopted in the depth-wise separable

convolution block to help with the flow of gradients
through the network. The residual connection is
adopted when the number of channels going into the
block is the same as the number of channels coming
out of the block. Each layer in the modified depth-
wise separable convolution is followed by batch
normalization [5] and ReLU6 as activation function
(except the last bottleneck layer since using a non-
linearity after this layer destroyed useful
information). Based on the modified depth-wise

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2941

Table 2: MobileNetv2 Architecture.

Layer Type Kernel size,
Stride

Input size Output size Expansion
factor

0 Standard convolution 3×3×32, 2 224×224×3 112×112×32 -

1 Depth-wise separable convolution -, 1 112×112×32 112×112×16 1

2 Depth-wise separable convolution -, 2 112×112×16 56×56×24 6

3 Depth-wise separable convolution -, 1 56×56×24 56×56×24 6

4 Depth-wise separable convolution -, 2 56×56×24 28×28×32 6

5 Depth-wise separable convolution -, 1 28×28×32 28×28×32 6

6 Depth-wise separable convolution -, 1 28×28×32 28×28×32 6

7 Depth-wise separable convolution -, 2 28×28×32 14×14×64 6

8 Depth-wise separable convolution -, 1 14×14×64 14×14×64 6

9 Depth-wise separable convolution -, 1 14×14×64 14×14×64 6

10 Depth-wise separable convolution -, 1 14×14×64 14×14×64 6

11 Depth-wise separable convolution -, 1 14×14×64 14×14×96 6

12 Depth-wise separable convolution -, 1 14×14×96 14×14×96 6

13 Depth-wise separable convolution -, 1 14×14×96 14×14×96 6

14 Depth-wise separable convolution -, 2 14×14×96 7×7×160 6

15 Depth-wise separable convolution -, 1 7×7×160 7×7×160 6

16 Depth-wise separable convolution -, 1 7×7×160 7×7×160 6

17 Depth-wise separable convolution -, 1 7×7×160 7×7×320 6

18 Standard convolution 1×1×1280, 1 7×7×320 7×7×1280 -

19 Average pooling 7×7 7×7×1280 1×1×1280 -

20 Standard convolution 1×1×k, 1 1×1×1280 1×k -

separable convolution block, the full MobileNetv2
architecture is shown in Table 2. As shown in Table
2, MobileNetv2 consists of 17 of the modified
depthwise separable convolution blocks followed by
a regular 1×1 convolution layer. The first layer is a
regular 3×3 convolution layer with 32 channels.

2.3 Proposed Network Architecture Based on
MobileNetv2 and Depth-wise Dilated Separable
Convolution

Taking advantage of depth-wise dilated
separable convolution and MobileNetv2
architecture, this paper introduces pyramid depth-
wise dilated separable convolution by integrating
depth-wise dilated convolution into depth-wise
separable convolution in original MobileNetv2
network. Figure 5 presents the structure of pyramid
depth-wise dilated separable convolution. In the
pyramid depth-wise dilated separable convolution,
low-dimensional input feature map is first projected
to high-dimensional feature map by using pointwise
convolution layer as in depth-wise dilated separable
convolution. Then, the representations in high-

dimensional feature map are learned in parallel by
using dilated convolutions with different dilation
rates. Different dilation rates in each branch allow
the pyramid depth-wise dilated separable
convolution to learn the representations from a large
effective receptive field. This factorization allows
the pyramid depth-wise dilated separable
convolution to be efficient. Next, the output features
of each branch are fused by using concatenation
operation. Finally, the final bottleneck layer projects
the high-dimensional fused feature map back to
smaller channel.

Based on the proposed pyramid depth-wise
dilated separable convolution and MobileNetv2
architecture, the architecture of the proposed
network is shown in Table 3. At each spatial level,
the proposed network repeats pyramid depth-wise
dilated separable convolution several times to
increase the depth of the network. In addition,
PReLU [6] is used after every convolution layer with
an exception to the last point-wise convolution layer.

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2942

Figure 5: The Structure of Pyramid Depth-Wise Dilated Separable Convolution.

3. EXPERIMENTS AND RESULTS

3.1 Dataset

To evaluate the effectiveness of the proposed
model, this paper conducts experiments on the
Caltech-101 dataset [7] and Caltech-256 dataset [8].
Caltech-101 dataset contains 9,145 images with 102
classes, which are 101 object classes and one
background class. The number of images in each
class is between 40 to 800. Caltech-256 dataset is
based on Caltech-101 dataset with more images and

classes. There are 30,607 images in this dataset with
257 classes, which are 256 object classes and one
background class. Figure 6 presents some images in
Caltech-101 dataset (a) and Caltech-256 dataset (b).
In each dataset, 2,000 images are randomly selected
as testing images. The remaining labeled images are
used for training.

3.2 Implementation Details

The proposed model is trained and tested using
Python with Pytorch deep learning framework [9].

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2943

Table 3: The Architecture of The Proposed Network.

Layer Type Kernel size,
Stride

Input size Output size # Repeat

0 Standard convolution 3×3×32, 2 224×224×3 112×112×32 1

1 Pyramid depth-wise dilated
separable convolution

-, 1 112×112×32 112×112×16 1

2 Pyramid depth-wise dilated
separable convolution

-, 2 112×112×16 56×56×24 1

3 Pyramid depth-wise dilated
separable convolution

-, 1 56×56×24 56×56×24 1

4 Pyramid depth-wise dilated
separable convolution

-, 2 56×56×24 28×28×32 1

5 Pyramid depth-wise dilated
separable convolution

-, 1 28×28×32 28×28×32 2

7 Pyramid depth-wise dilated
separable convolution

-, 2 28×28×32 14×14×64 1

8 Pyramid depth-wise dilated
separable convolution

-, 1 14×14×64 14×14×96 6

14 Pyramid depth-wise dilated
separable convolution

-, 2 14×14×96 7×7×160 1

15 Pyramid depth-wise dilated
separable convolution

-, 1 7×7×160 7×7×320 3

18 Standard convolution 1×1×1280, 1 7×7×320 7×7×1280 1

19 Average pooling 7×7 7×7×1280 1×1×1280 1

20 Standard convolution 1×1×k, 1 1×1×1280 1×k 1

The proposed model is implemented on a Window
system machine with CPU Intel Core i7-8700 @3.2
GHz, GPU Nvidia GTX 1080, RAM 12GB DDR4,
and CUDA 10.1 with cuDNN back-ends. To
initialize the weights of the network, this paper uses
the method described in [6]. The network is trained
with a batch size of 512 for 300 epochs by
optimizing the cross-entropy loss. For faster
convergence, this paper decays the learning rate by a
factor of two at the following epoch intervals: {50,
100, 130, 160, 190, 220, 250, 280}, and the initial
learning rate is set at 0.045.

3.3 Analysis of Experimental Results

In this section, this paper conducts experiments
on Caltech-101 dataset and Caltech-256 dataset and
compares the classification results with other state-
of-the-are models, including MobileNetv1 [1],
MobileNetv2 [3], and ShuffleNet [10].

Table 4 provides a performance comparison
between the proposed model and other state-of-the-
art models on Caltech-101 dataset. It can be
observed that the accuracy of classification models
has reached a balance after 25,000 training steps. For
the classification accuracy, the proposed model
outperforms other models on Caltech-101 dataset
with the same training step. More specific, compared

with MobileNetv1 network, the accuracy of the
proposed model is improved by 2.5% after 25,000
training steps. Compared with MobileNetv2 and
Shufflenet network, the accuracy of the proposed
model is improved by 0.3% and 1.4% respectively
after 25,000 training steps. When increasing the
training step to 45,000, the accuracy of the proposed
model increases by 0.7%, while the accuracy of
MobileNetv1 decreases by 0.2%. For other models,
the accuracy of MobileNetv2 increases to 79.8%,
and the accuracy of Shufflenet increases to 78.7% at
this training step.

Table 5 presents the classification accuracy of
four classification models on Caltech-256 dataset.
As shown, the classification accuracy of all models
is almost steady after 30,000 training steps.
Compared with other models, the proposed model
achieves the best classification results. With training
step at 30,000, the accuracy of the proposed model
is improved by 7.5%, 0.9%, and 2.7% compared
with MobileNetv1, MobileNetv2, and Shufflenet
respectively. After 50,000 training steps, the
accuracy of the proposed model is improved by
7.8%, 0.1%, and 2% compared with MobileNetv1,
MobileNetv2, and Shufflenet respectively.

The classification results on two datasets show
the effectiveness of the proposed model. With depth-

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2944

Figure 6: Example Images in Caltech-101 Dataset (a) and Caltech-256 Dataset (b).

Table 4: Classification Accuracy (%) on The Caltech-101 Dataset.

Model Number of steps

 25,000 30,000 35,000 40,000 45,000

MobileNetv1 76.6 75.7 76.8 76.8 76.4

MobileNetv2 79.3 79.5 79.8 79.8 79.8

Shufflenet 77.3 78.4 78.1 79.2 78.7

Proposed model 79.4 79.5 79.9 80.1 80.1

Table 5: Classification Accuracy (%) on The Caltech-256 Dataset.

Model Number of steps

 30,000 35,000 40,000 45,000 50,000

MobileNetv1 64.6 64.6 64.5 64.7 64.6

MobileNetv2 71.2 71.2 72.1 72.3 72.3

Shufflenet 69.4 70.2 70.5 70.4 70.4

Proposed model 72.1 72.3 72.3 72.4 72.4

wise dilated separable convolution, the receptive
field in each layer is enlarged while maintaining the
computation cost. Thus, the accuracy of the model is
improved compared with depth-wise separable
convolution in original models.

3.4 Application of Object Detection on
Embedded System

To evaluate the effectiveness of the proposed
model in object detection, this paper implements the
proposed model for vehicle detection on embedded
system. For vehicle detection framework, this paper
adopts RPN [11] to design a lightweight and

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2945

Figure 7: The Structure of The Proposed Detector.

Figure 8: Jetson TX2 Board.

Table 6: Technical Specifications of The NVIDIA Jetson TX2 Embedded Board.

Components Specification

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU
Quad-Core ARM® Cortex®-A57 MPCore

GPU 256-core NVIDIA Pascal™ GPU architecture with 256
NVIDIA CUDA cores

Memory 8GB 128-bit LPDDR4 Memory
1866 MHx - 59.7 GB/s

Operating system Ubuntu Linux 14.04 LTS

Camera 5MP CSI camera module (with Omnivision OV5693)

Connectivity 802.11a/b/g/n/ac 2×2 867Mbps WiFi

Storage 32GB eMMC 5.1

efficient detector. Figure 7 presents the structure of
the proposed detector. As shown, the proposed
lightweight model is used as the base network. The
RPN includes a 3×3 convolution layer followed by
two 1×1 convolution layers. The base network is
used to generate base feature maps, and the RPN is
used to generate vehicle proposals and classify and
regress the coordinates of detected vehicles. Feature

map generated after Layer 17 of the base network is
adopted to detect vehicle.

For the hardware components of the proposed
embedded system, this paper uses the most power-
efficient embedded AI computing device, the Jetson
TX2 board as shown in Figure 8. Table 6 presents
the main technical specifications of the board. The
Jetson TX2 is a recent embedded board developed

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2946

Table 7: Detection Results of The Proposed Detector on KITTI Dataset with NVIDIA Jetson TX2.

Model Base network mAP (%) Inference time (s)

SSD VGG-16 68.4 0.4

Proposed detector Proposed model 65.8 0.1

by NVIDIA in the embedded system category. This
mini-computer provides the performance required
for the latest visual computing applications,
especially in deep learning. It is built based on
NVIDIA Pascal-family GPU architecture with 256
CUDA cores providing greater than 1TFLOPS of
FP16 compute performance in less than 7.5 watts of
power, 64-bit CPUs, and a 5MP CSI camera module.
To implement the proposed detector on the NVIDIA
Jetson TX2 board, this paper uses the Pytorch deep
learning framework [9] compiled for GPU and
Python programming language.

For the experimental dataset, this paper adopts
KITTI dataset [12] for vehicle detection. KITTI
dataset is a recent public dataset for evaluating the
performance of different vehicle detection
approaches. The dataset contains various scales of
vehicles in different traffic scenes. The size of
images in this dataset is 3840×1280 pixels. The
dataset consists of 7481 images for training and 7518
images for testing. According to size, occlusion and
truncation of vehicles in images, the dataset is
classified into three difficulty level groups: easy,
moderate and hard. For evaluating the results, this
paper adopts mean average precision (mAP), which
is calculated by averaging the average precision of
all three groups.

In Table 7, this paper presents the mAP and the
inference time of the proposed detector and SSD
[13] on NVIDIA Jetson TX2 with KITTI dataset.
According to Table 7, the proposed detector with the
proposed lightweight architecture as the base
network achieves mAP at 65.8% on KITTI dataset.
Because SSD detector used detection network on
different layers of the based network, this detector
achieves better result compared with the proposed
detector. However, the proposed detector takes 0.1
second to process an image, while SSD detector
takes up to 0.4 second. These results show the
effectiveness of the proposed model on different
visual tasks with a trade-off between accuracy and
inference speed.

4. CONCLUSIONS

This paper proposes a lightweight and efficient
deep convolutional neural network based on
depthwise dilated separable convolution and
MobileNetv2 architecture. In the proposed model,

depthwise dilated convolution is used to replace
standard depthwise convolution. Depthwise dilated
convolution effectively enlarge the field of view of
filters to incorporate larger context without
increasing the number of parameters or the amount
of computation. In addition, a pyramid depth-wise
dilated separable convolution is introduced, where
feature maps are learned in parallel by using dilated
convolutions with different dilation rates.
Experimental results on Caltech-101 dataset and
Caltech-256 dataset show that the proposed model
achieves better accuracy compared with
MobileNetv2. Furthermore, an object detection
framework based on the proposed model is designed
and implemented on the NVIDIA Jetson TX2.
Experiment results show the effectiveness of the
proposed model on different vision tasks.

REFERENCES:
[1] Howard, Andrew G., Menglong Zhu, Bo

Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. "Mobilenets: Efficient
convolutional neural networks for mobile
vision applications." arXiv preprint
arXiv:1704.04861 (2017).

[2] Krizhevsky, Alex, Ilya Sutskever, and
Geoffrey E. Hinton. "Imagenet
classification with deep convolutional
neural networks." In Advances in neural
information processing systems, pp. 1097-
1105. 2012.

[3] Sandler, Mark, Andrew Howard, Menglong
Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. "Mobilenetv2: Inverted residuals and
linear bottlenecks." In Proceedings of the
IEEE conference on computer vision and
pattern recognition, pp. 4510-4520. 2018.

[4] He, Kaiming, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. "Deep residual learning
for image recognition." In Proceedings of
the IEEE conference on computer vision
and pattern recognition, pp. 770-778. 2016.

[5] Ioffe, Sergey, and Christian Szegedy.
"Batch normalization: Accelerating deep
network training by reducing internal
covariate shift." arXiv preprint
arXiv:1502.03167 (2015).

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2947

[6] He, Kaiming, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. "Delving deep into
rectifiers: Surpassing human-level
performance on imagenet classification."
In Proceedings of the IEEE international
conference on computer vision, pp. 1026-
1034. 2015.

[7] Fei-Fei, Li, Rob Fergus, and Pietro Perona.
"Learning generative visual models from
few training examples: An incremental
bayesian approach tested on 101 object
categories." In 2004 conference on
computer vision and pattern recognition
workshop, pp. 178-178. IEEE, 2004.

[8] Griffin, Gregory, Alex Holub, and Pietro
Perona. "Caltech-256 object category
dataset." (2007).

[9] Paszke, Adam, Sam Gross, Soumith
Chintala, and Gregory Chanan. "Pytorch:
Tensors and dynamic neural networks in
python with strong gpu
acceleration." PyTorch: Tensors and
dynamic neural networks in Python with
strong GPU acceleration 6 (2017).

[10] Zhang, Xiangyu, Xinyu Zhou, Mengxiao
Lin, and Jian Sun. "Shufflenet: An
extremely efficient convolutional neural
network for mobile devices."
In Proceedings of the IEEE conference on
computer vision and pattern recognition,
pp. 6848-6856. 2018.

[11] Ren, Shaoqing, Kaiming He, Ross
Girshick, and Jian Sun. "Faster r-cnn:
Towards real-time object detection with
region proposal networks." In Advances in
neural information processing systems, pp.
91-99. 2015.

[12] Geiger, Andreas, Philip Lenz, and Raquel
Urtasun. "Are we ready for autonomous
driving? the kitti vision benchmark suite."
In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3354-
3361. IEEE, 2012.

[13] Liu, Wei, Dragomir Anguelov, Dumitru
Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg.
"Ssd: Single shot multibox detector."
In European conference on computer
vision, pp. 21-37. Springer, Cham, 2016.

[14] Hubara, Itay, Matthieu Courbariaux, Daniel
Soudry, Ran El-Yaniv, and Yoshua Bengio.
"Binarized neural networks." In Advances
in neural information processing systems,
pp. 4107-4115. 2016.

[15] Simonyan, Karen, and Andrew Zisserman.
"Very deep convolutional networks for
large-scale image recognition." arXiv
preprint arXiv:1409.1556 (2014).

[16] Szegedy, Christian, Wei Liu, Yangqing Jia,
Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich.
"Going deeper with convolutions." In
Proceedings of the IEEE conference on
computer vision and pattern recognition,
pp. 1-9. 2015.

[17] Szegedy, Christian, Vincent Vanhoucke,
Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. "Rethinking the inception
architecture for computer vision." In
Proceedings of the IEEE conference on
computer vision and pattern recognition,
pp. 2818-2826. 2016.

[18] Chollet, François. "Xception: Deep
learning with depthwise separable
convolutions." In Proceedings of the IEEE
conference on computer vision and pattern
recognition, pp. 1251-1258. 2017.

[19] Xie, Saining, Ross Girshick, Piotr Dollár,
Zhuowen Tu, and Kaiming He.
"Aggregated residual transformations for
deep neural networks." In Proceedings of
the IEEE conference on computer vision
and pattern recognition, pp. 1492-1500.
2017.

[20] Rastegari, Mohammad, Vicente Ordonez,
Joseph Redmon, and Ali Farhadi. "Xnor-
net: Imagenet classification using binary
convolutional neural networks."
In European conference on computer
vision, pp. 525-542. Springer, Cham, 2016.

[21] He, Yihui, Xiangyu Zhang, and Jian Sun.
"Channel pruning for accelerating very
deep neural networks." In Proceedings of
the IEEE International Conference on
Computer Vision, pp. 1389-1397. 2017.

[22] Huang, Gao, Zhuang Liu, Laurens Van Der
Maaten, and Kilian Q. Weinberger.
"Densely connected convolutional
networks." In Proceedings of the IEEE
conference on computer vision and pattern
recognition, pp. 4700-4708. 2017.

[23] Iandola, Forrest N., Song Han, Matthew W.
Moskewicz, Khalid Ashraf, William J.
Dally, and Kurt Keutzer. "SqueezeNet:
AlexNet-level accuracy with 50x fewer
parameters and< 0.5 MB model size." arXiv
preprint arXiv:1602.07360 (2016).

