
Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2913

E-SSD: EMBEDDED DEEP CNN-BASED MODEL FOR CAR
LOCALIZATION IN AUTONOMOUS VEHICLE SYSTEMS

BASED ON LIGHTWEIGHT DEEP NETWORK

HOANH NGUYEN

Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh

City, Vietnam

E-mail: nguyenhoanh@iuh.edu.vn

ABSTRACT

Single Shot Multibox Detector (SSD) is the leading one-stage object detection method. However, the process
of detecting objects at different scales with different levels of semantic information makes it difficult to fuse
high-level features from deeper convolution layers with low-level features from shallower convolution layers.
To mitigate the fusion process of different feature layers and create enhanced semantic information feature
maps, this paper proposes a lightweight and efficient multi-feature fusion module. The proposed multi-feature
fusion module includes concatenation operation to concatenate the features at different scales in a simple and
efficient way, point-wise convolution layer to reduce the feature dimension, and bilinear interpolation to
upsample the size of feature maps. Furthermore, ESPv2 network, a lightweight and efficient deep
convolutional neural architecture, is adopted as the base network for generating base convolution layers from
input image. The proposed multi-feature fusion module and base network make a significant improvement in
both detection accuracy and inference speed. Experimental results on KITTI dataset show that the proposed
model outperforms SSD in terms of detection accuracy while maintaining inference speed. In addition, an
embedded system implemented on an NVIDIA Jetson TX2 is used for detecting cars in traffic scenes that
shows the effectiveness of the proposed detector.

Keywords: Car Detection, Convolutional Neural Network, Intelligent Transportation System, Object
Detection, Embedded System

1. INTRODUCTION

1.1 Car Detection

Vision-based car detection, which uses a
camera to acquire visual information from the
driving environment, is an important part of an
advanced driver assistance system. Using a camera
as sensor to capture image, the information
contained in images is abundant, including lanes,
vehicles, pedestrians, and traffic lights, which helps
the system to adapt to different difficult conditions.
In addition, a camera is cheaper than other sensors,
such as radar and lidar. With these advantages,
vision-based car detection has attracted the attention
of researchers. Many car detection methods have
been proposed in recent years. Traditional methods
are usually based on hand craft feature such as
colour, shape, energy, and so on to locate cars in
image. Li et al. [17] proposed a method of learning
reconfigurable hierarchical and-or models to
integrate context and occlusion for car detection. Wu
et al. [18] learnt the structure of the and-or model

with three components, and the model parameters
are jointly trained using Weak-Label Structural
SVM. Chen et al. [19] proposed a method based on
background Gaussian Mixture Model and shadow
removal method to deal with sudden illumination
changes and camera vibration. Cui et al. [20] used
Haar and Adaboost algorithm to detect the vehicle,
and a simplified Lucas-Kanade algorithm was used
to remove false positive detection. Slimani et al. [12]
proposed to use two-dimensional discrete wavelet
transform for extracting features from the images,
and background subtraction followed by the
connected components method to detect vehicles.

Recently, deep convolutional neural network
(CNN)-based methods have become the leading
method for high quality general object detection.
Faster region-based convolutional neural network
[9] defined a region proposal network (RPN) for
generating region proposals and a network using
these proposals to detect objects. RPN shares full-
image convolutional features with the detection
network, thus enabling nearly cost-free region

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2914

proposals. This method has achieved state-of-the-art
detection performance and become a commonly
employed paradigm for general object detection.
SSD detector [5] predicted category scores and box
offsets for a fixed set of default bounding boxes
using small convolutional filters applied to different
scales from feature maps of different scales, and
explicitly separate predictions by aspect ratio. SSD
achieved high inference speed with comparable
performance compared with other state-of-the-art
methods. Most of recent state-of-the-art deep
learning models target general object detection
including cars. To better handle the detection
problem of vehicles in complex conditions, Zhou et
al. [22] proposed a fast vehicle proposal network for
vehicle-like objects extraction, and an attribute
learning network aiming to verify each proposal.
The author in [23] proposed a multi-scale feature
map generation module to fuse different convolution
layers at different scales of the base network. In
addition, the information surrounding a given object
proposal was exploited to enhance the feature
representation of proposals. Dong et al. [24]
proposed a vehicle type classification method using
a semi-supervised convolutional neural network
from vehicle frontal-view images. Hu et al. [25]
proposed a scale-insensitive convolutional neural
network for fast detecting vehicles with a large
variance of scales. Deep CNN-based car detection
methods have achieved great success in recent years.
However, real-time car detection in driving
environment is still very challenging. One of the
main challenges is that CNN models are sensitive to
scales while it is quite common that in-car videos or
transportation surveillance videos contain vehicles
with a large variance of scales. Current methods are
based on modifying the popular CNN detectors to
enhance the performance of detection results. These
methods focus on making the network fit different
scales by utilizing input images with multiple
resolutions. However, these methods introduce
expensive computational overhead and thus are still
incapable of fast vehicle detection, which is essential
for autonomous driving systems, real time
surveillance and prediction systems.

1.2 Lightweight Deep Convolutional Neural

Network (CNN) Architecture
Recent deep CNN-based architectures

require a large amount of computational cost. While
these architectures achieved high performance on
high-end hardware machines, they are too expensive
for resource constrained devices such as mobile

devices and embedded computers. It is required that
the deep CNN architecture should be lightweight and
efficient while achieving comparable accuracy to
implement on resource constrained devices. Thus,
many enhanced networks for mobile devices have
been introduced recently. Mobilenets [26] used
depth-wise separable convolutions that factor a
convolution into two steps to reduce computational
complexity: depth-wise convolution that performs
light-weight filtering by applying a single
convolutional kernel per input channel and
pointwise convolution that usually expands the
feature map along channels by learning linear
combinations of the input channels. Mobilenetsv2
[27] proposed a lightweight network based on an
inverted residual structure where the shortcut
connections are between the thin bottleneck layers.
The intermediate expansion layer uses lightweight
depthwise convolutions to filter features as a source
of non-linearity. Shufflenet [28] and Shufflenet v2
[29] proposed new architecture that utilizes two new
operations, pointwise group convolution and
channel shuffle, to greatly reduce computation cost
while maintaining accuracy.

2. METHODOLOGY

The proposed approach is based on SSD
detector [5], which includes a base network for
generating convolution layers and a detection
subnetwork for locating objects at different layers. In
this paper, a lightweight and efficient structure is
adopted as the base network, which significantly
improves inference speed while maintaining
accuracy. Furthermore, a multi-feature fusion
module is designed to fuse low-level feature map
and high-level feature map, thus enhancing detection
accuracy. The following subsections will elaborate
each module in detail.

2.1 The Feature Extraction Subnet

This section elaborates the structure of the
feature extraction subnet. To increase inference
speed of the proposed model on embedded system
and improve the detection performance, ESPNetv2
[1] is adopted as the base network for feature
extraction. ESPNetv2 is a lightweight structure that
can be easily deployed on mobile devices with
limited hardware parts. The core of ESPNetv2 is the
EESP unit and the Strided EESP unit, which
combine group point-wise convolution layers and
depth-wise dilated separate convolution layers. The

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2915

Figure 1: The Structure of The EESP Unit.

structure of the EESP and Strided EESP units are
illustrated in the next sub-sections.

2.1.1 The EESP Unit

The EESP unit (Extremely Efficient Spatial
Pyramid of Depth-wise Dilated Separable
Convolutions), which is motivated by the ESPNet
architecture [2], is specifically designed for mobile
devices. Figure 1 shows the structure of the EESP
unit. In the EESP unit, the high-dimensional input
feature maps are first projected into low-dimensional
space by using a 1×1 group point-wise convolution
layer. The representations in low-dimensional
feature maps are then learned in parallel by using
3×3 depth-wise dilated separable convolution layers
with different dilation rates. Depth-wise dilated
separable convolutions are efficient and can learn
representations from large effective receptive fields.
Depth-wise dilated separable convolutions apply a

lightweight filtering by factoring a standard
convolution into two layers: depth-wise dilated
convolution layer and point-wise convolution layer.
Note that different dilation rates in each branch
allow the EESP unit to learn the representations from
a large effective receptive field, thus enhancing the
detection performance. By learning the
representations in a low-dimensional space, the
EESP units are efficient with small computational
costs. In addition, the feature maps generated by
depth-wise dilated separable convolution layers are
fused by using the computationally efficient
hierarchical feature fusion method [2] to remove the
gridding artifacts caused by dilated convolutions.

2.1.2 The Strided EESP Unit

The Strided EESP Unit was designed to learn
representations efficiently at multiple scales. Figure
2 shows the structure of the Strided EESP unit. As

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2916

Figure 2: The Structure of The Strided EESP Unit.

shown, depth-wise dilated separable convolutions in
the EESP unit is replaced by depth-wise dilated
separable convolutions with stride = 2. In addition,
an average pooling layer with kernel size 3×3 and
stride = 2 is adopted after input feature maps to
reduce the dimensions of input feature map, and
concatenation operation is used instead of element-
wise addition operation to fuse input feature map and
feature map generated by depth-wise dilated
separable convolutions. Furthermore, to preserve
spatial information during down-sampling and
convolution operations and learn representations
efficiently, an efficient long-range shortcut
connection between the input image and the current
down-sampling unit is added in each of the Strided
EESP unit. In this connection, the input image is first
down-samples to the same size of that of the feature
map by using a 3×3 average pooling layer with stride
= 2. The representations are then learned by using a

stack of two convolutions: a standard 3×3
convolution that learns the spatial representations
and a 1×1 point-wise convolution that learns linear
combinations between the input, and projects it to a
high-dimensional space.

2.1.3 The Feature Extraction Subnet

Architecture
The feature extraction subnet is based on

ESPNetv2 architecture, which is built on the EESP
units and the Strided EESP units. Figure 3 illustrates
the architecture of the feature extraction subnet. At
each spatial level, the feature extraction subnet
repeats the EESP unit several times to increase the
depth of the network. In the EESP units and the
Strided EESP units, batch normalization [3] and
PReLU [4] are added after every convolutional layer
with an exception to the last group-wise
convolutional layer where PReLU is applied after

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2917

Figure 3: The Architecture of The Feature Extraction Subnet.

element-wise sum operation. To maintain the same
computational complexity at each spatial-level, the
feature maps are doubled after every down-sampling
operation.

2.2 Multi-Feature Fusion Module

The original SSD detector [5] adopted feature
maps at different convolution layers of the base
network to directly generate object detection results.
This approach makes SSD detector lack the
capability to capture both the local detailed features
and global semantic features. FPN [6] and DSSD [7]
proposed to fuse low-level feature maps at shallower
convolution layers with high-level feature maps at
deeper convolution layers to improve the semantic
information of each feature map. These approaches
showed better detection performance compared with
the original SSD framework. However, these
approaches require multiple feature merging
processes, thus increasing computational cost. To
increase detection accuracy and maintain
computational cost, this paper proposes a
lightweight and efficient multi-feature fusion
module. Figure 4 illustrates the structure of the
proposed multi-feature fusion module. In original
SSD detector, VGG-16 [8] is used as the base
network. SSD used Conv4_3, Fc_7 of the base
network and newly added layers, including
Conv6_2, Conv7_2, Conv8_2, and Conv9_2 layer,
to generate object detection results by the detection
subnetwork. The corresponding feature size of these
layers is 38×38, 19×19, 10×10, 5×5, 3×3 and 1×1. In
this paper, the feature extraction subnet is designed
to generate convolution layers. The multi-feature
fusion module takes feature maps at layer 3, layer 5
and layer 7 as the input feature maps. The size of
feature map at layer 3 is set as the basic feature map,
which is 38×38×256. Next, in order to concatenate
the features with different scales in a simple and

efficient way, a 1×1 standard convolution layer is
adopted after layer 5 and layer 7 to reduce the feature
dimension firstly. Then bilinear interpolation is used
to upsample the size of these feature map to the same
size with feature map at layer 3. In this way, all the
features have the same size on spatial dimension.
Finally, concatenation operation is adopted to merge
different feature maps together and generate fused
feature map. Based on the fused feature map, this
paper adds several convolution layers, including
Conv8_2, Conv9_2, Conv10_2, Conv11_2, and
Conv12_2, as in SSD. The size of feature maps
generated by these convolution layers is 38×38,
19×19, 10×10, 5×5, 3×3 and 1×1 respectively. All
these feature maps are fed to the detection
subnetwork as in SSD.

2.3 Training

This paper follows the same training policy
as in SSD. First, this paper matches a set of default
boxes to target ground truth boxes. For each ground
truth box, this paper matches it with the best
overlapped default box and any default boxes whose
Jaccard overlap is larger than 0.5. Among the non-
matched default boxes, this paper selects certain
boxes as negative samples based on the confidence
loss so that the ratio with the matched ones is 3:1.
Then this paper minimizes the joint localization loss
and confidence loss.

2.3.1 Loss Function

The binary logistic loss is used here for box
classification, and smooth L1 loss [9] is employed
for box regression. The multi-task loss function used
for training network is defined as follow:

𝐿 ൌ

ଵ

ேಾ
∑ 𝐿௖௟௦ሺ𝑦௜, 𝑦௜

ᇱሻேಾ
௜ୀଵ ൅

ଵ

ேು
∑ 𝐿௥௘௚ሺ𝑟௜, 𝑟௜

ᇱሻேು
௜ୀଵ (1)

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2918

Figure 4: The Structure of The Proposed Multi-Feature Fusion Module.

where 𝑁ெ is the size of default boxes; 𝑁௉ is the
number of matched default boxes; 𝑦௜ is the predicted
probability of box 𝑖 being a car; 𝑦௜

ᇱ is the
corresponding ground-truth label (1 for positive box,
0 for negative box); 𝑟௜ is the predicted coordinate
offsets (x , y , w, h) for box 𝑖; 𝑟௜

ᇱ is the associated
offsets for box 𝑖 relative to the ground-truth.
In (1), the binary logistic loss 𝐿௖௟௦ is defined as
follow:

𝐿௖௟௦ሺ𝑦௜, 𝑦௜
ᇱሻ ൌ െlog ሺ𝑓௜

௬೔
ᇲ

ሻ (2)

and the smooth L1 loss is defined as follow:

𝐿௥௘௚ሺ𝑟௜, 𝑟௜
ᇱሻ ൌ 0.25 ∗ 𝑠𝑚𝑜𝑜𝑡ℎ௅ଵሺ𝑟௜ െ 𝑟௜

ᇱሻ (3)

where

𝑠𝑚𝑜𝑜𝑡ℎ௅ଵሺ𝑥ሻ ൌ ൜
0.5𝑥ଶ 𝑖𝑓 |𝑥| ൏ 1

|𝑥| െ 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

2.3.2 Choosing Default Boundary Boxes

SSD defines a scale value for each feature
map layer. The layer Conv4_3 detects objects at the
smallest scale 0.2 and then increases linearly to the
rightmost layer at a scale of 0.9. Combining the scale
value with the target aspect ratios, the width and the
height of the default boxes can be computed. For
layers making 6 predictions, SSD starts with 5 target
aspect ratios: 1, 2, 3, 1/2 and 1/3. Then the width and
the height of the default boxes are calculated as
follows:

𝑤 ൌ 𝑠𝑐𝑎𝑙𝑒. √𝑟𝑎𝑡𝑖𝑜 (5)

ℎ ൌ
௦௖௔௟௘

√௥௔௧௜௢
 (6)

This paper has made a minor change in the prior box
aspect ratio setting. Scene cars have rectangle shape
or square shape, this paper uses three aspect ratios:
1, 2, 1/2 and uses these aspect ratios at every
prediction layer.

2.3.3 Hard Negative Mining

As discussed above, there are much more
negative matches than positive matches. This creates
a class imbalance which hurts training. Thus, instead
of using all the negative boxes, these negative boxes
are sorted by their calculated confidence loss. As in
SSD, this paper picks the negative boxes with the top
loss and makes sure the ratio between the picked
negative boxes and positive boxes is at most 3:1.
This leads to a faster and more stable training.

2.3.4 Data Augmentation

Data augmentation is important in improving
accuracy of the network. To handle variants in
various object sizes and shapes, each training image
is randomly sampled by one of the following
options: Use the original; sample a patch with IoU of
0.1, 0.3, 0.5, 0.7 or 0.9; randomly sample a patch.
The sampled patch will have an aspect ratio between
1/2 and 2. Then it is resized to a fixed size and this
paper flips one-half of the training data.

3. EXPERIMENTS AND RESULTS

3.1 Dataset

To evaluate the detection performance of the
proposed method, this paper conducts experiments
on the KITTI dataset [13]. KITTI dataset is a large
public dataset for evaluating the performance of
different vehicle detection methods. It contains
various scales of vehicles in different traffic scenes.
The size of images in this dataset is 3840×1280
pixels. The dataset consists of 7481 images for
training and 7518 images for testing. According to
size, occlusion and truncation of vehicles in images,
the dataset is classified into three difficulty level
groups: easy, moderate and hard. Table 1 presents
detailed information of each group.

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2919

Table 1: Detailed Information of Each Group.

Group Detailed information

 Height Occlusion Truncation

Easy > 40 pixels Fully visible < 15%

Moderate > 25 pixels Partly occluded < 30%

Hard > 25 pixels Difficult to see < 50%

3.2 Evaluation Metrics
Precision and recall are usually used in the

evaluation process of an object detection approach.
The precision represents the proportion of the
correctly detected cars in the predicted cars, and the
recall represents the proportion of the correctly
detected cars in all dataset. The precision and recall
metrics are computed as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
ே೅ು

ே೅ುାேಷು
 (7)

𝑟𝑒𝑐𝑎𝑙𝑙 ൌ
ே೅ು

ே೅ುାேಷಿ
 (8)

where 𝑁்௉ represents the number of true positives,
which indicates the number of the correctly detected
cars. 𝑁ி௉ represents the number of false positives,
which indicates the number of the error detected cars
(misjudge the background as a target). 𝑁ிே
represents the number of false negatives, which
indicates the number of miss detected cars. If the IoU
between the predicted bounding box and the ground
truth bounding box exceeds 0.5, the detection is
regarded as true positive, otherwise, as a false
positive. The IoU between the predicted bounding
box (𝐵௉) and the ground truth bounding box (𝐵ீ) is
defined as follow:

𝐼𝑜𝑈 ൌ
௔௥௘௔ሺ஻ು∩஻ಸሻ

௔௥௘௔ሺ஻ು∪஻ಸሻ
 (9)

If there are multiple predicted bounding

boxes overlap the same ground truth bounding box,
then only one is considered as true positive, while
others are considered as false positive. The higher
precision rate and recall rate, the better detection
performance. However, the precision rate is usually
balanced against the recall rate. When the recall rate
increases, the precision rate will decrease
accordingly. Therefore, the average precision (AP)
of the precision-recall curve is usually used to
evaluate the detection performance. The AP is the
area under the precision-recall curve. Here, the
average precision is obtained by calculating the
average value of the corresponding precision when
the recall rate changes from 0 to 1. In this paper, the
average precision is calculated by the method used

in the PASCAL VOC Challenge [14], which
calculates the average precision by taking the mean
of the precision rate of the points at all different
recall rates on the P-R curve. Furthermore, the
inference speed is calculated to compare the
effectiveness of different methods.

3.3 Implementation Details

The proposed approach is implemented on a
Window system machine with CPU Core i7-8700
@3.2GHz, GPU NVIDIA GTX 1080, RAM @
12GB DDR4. The code is written in Python with
Pytorch deep learning library [11]. In addition,
tkinter library [10] is adopted to create graphical user
interface.
For the base network, all the proposed experiments
are all based on ESPNetv2 [1], which is pre-trained
on the ImageNet 1000-way classification dataset
[12]. This paper removes all the layers after layer 7
of the ESPNetv2. All of the raw features are
converted to 256 channels with a 1×1 convolutional
layer. Feature maps from layer 5 and layer 7 are
upsampled to 38×38 by bilinear interpolation. Then
the transformed feature maps are concatenated
together followed by a batch normalization layer to
normalize the feature values. Then several down-
sampling blocks (including one 3×3 convolutional
layer with stride 2 and one ReLU layer) are
appended one by one to generate the pyramid
features. This paper trains the proposed network
with batch size 32 for 120k iterations. The initial
learning rate is set to 0.001 and then divided by 10 at
step 80k, 100k and 120k. Following the training
strategy in SSD, the weight decay is set to 0.0005.
This paper adopts SGD with momentum 0.9 to
optimize the proposed network.

3.4 Results on KITTI Dataset

To evaluate the detection performance of the
proposed method, this paper conducts experiments
on KITTI dataset and compare the detection results
with that of recent methods, including Faster R-CNN
[9], SSD [5], YOLOv2 [15], and MS-CNN [16].
Faster R-CNN introduced a Region Proposal
Network (RPN) that shares full-image convolutional
features with the detection network, thus enabling

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2920

Table 2: Performance Comparison of Recent Methods and Proposed Method on KITTI Dataset.

Method AP (%) Inference time (s)

 Easy Moderate Hard

Faster R-CNN [9] 87.90 79.11 79.19 2

SSD [5] 83.89 67.17 59.09 0.06

YOLOv2 [15] 28.37 19.31 15.94 0.02

MS-CNN [16] 90.46 88.83 74.76 0.4

E-SSD 89.24 77.60 70.02 0.06

Figure 5: Examples of Detection Results of The Proposed Method on KITTI Dataset.

nearly cost-free region proposals. The RPN is a fully
convolutional network that simultaneously predicts
object bounds and objectness scores at each position.
SSD proposed a method for detecting objects in
images using a single deep neural network. YOLOv2
proposed various improvements to the YOLO
detection method and achieved significant
improvement over YOLO. MS-CNN proposed to
use the proposal sub-network to perform detection at

multiple output layers, so that receptive fields match
objects of different scales.

Table 2 presents the comparison of detection
results. As shown, the proposed approach
outperforms SSD in all three difficult level groups.
More specific, the proposed method improves the
AP by 5.35%, 10.43%, and 10.93% in easy,
moderate, and hard group respectively compared
with SSD. These results show that the multi-feature
fusion module based on efficient network has

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2921

Figure 6: Image of The NVIDIA Jetson TX2 Embedded Board (Left) and Developer Board (Right).

Table 3: Technical Specifications of The NVIDIA Jetson TX2 Embedded Board.

Components Specification

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU
Quad-Core ARM® Cortex®-A57 MPCore

GPU 256-core NVIDIA Pascal™ GPU architecture with 256
NVIDIA CUDA cores

Memory 8GB 128-bit LPDDR4 Memory
1866 MHx - 59.7 GB/s

Operating system Ubuntu Linux 14.04 LTS

Camera 5MP CSI camera module (with Omnivision OV5693)

Connectivity 802.11a/b/g/n/ac 2×2 867Mbps WiFi

Storage 32GB eMMC 5.1

Table 4: Running Time of The Proposed Detector and Other Detectors on NVIDIA Jetson TX2.

Model Base network Running time (s)

Faster R-CNN VGG-16 -

SSD VGG-16 -

E-SSD ESPNetv2 0.125

improved the detection accuracy of the proposed
model. Moreover, compared with YOLOv2, the
proposed method surpasses in all difficult level
groups. Comparing with Faster R-CNN, the
proposed method achieves better result in easy group
and comparable results in moderate and hard group.
For the inference speed, E-SSD maintains the same
speed as SSD detector. E-SSD takes 0.06 second for
processing an image. This result shows the efficient
of the base network and the feature fusion module.
YOLOv2 achieves the best inference time with only
0.02 second. However, YOLOv2 shows the worst
detection accuracy. According to the detection

results in Table 2, it can be observed that MS-CNN
achieves the best detection accuracy in all difficult
level groups. However, MS-CNN has the second
longest inference time with 0.4 second, which is
about seven times E-SSD. Figure 5 shows some
examples of detection results of the proposed
method on KITTI dataset. As shown, the proposed
method can detect cars with different scales in
difficult environment conditions.
3.5 Application in Embedded System

To evaluate the effectiveness of the proposed
model in embedded systems, this paper implements
the proposed model on embedded board for cars

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2922

detection. For the hardware components of the
proposed embedded system, this paper uses the
fastest, most power-efficient embedded AI
computing device, the Jetson TX2 board. Figure 6
shows the image of the development board, and
Table 3 presents the main technical specifications of
the board. The Jetson TX2 device is a technology
developed by NVIDIA in the embedded system
category. This device delivers the performance
required for the latest visual computing applications,
especially in deep learning. It is built based on
NVIDIA Pascal-family GPU architecture with 256
CUDA cores providing greater than 1TFLOPS of
FP16 compute performance in less than 7.5 watts of
power, 64-bit CPUs, and a 5MP CSI camera module.
To run the proposed model on the NVIDIA Jetson
TX2 device, this paper adopts the Pytorch deep
learning framework [11] compiled for GPU and
Python programming language. This paper explores
the running of the proposed deep CNN architectures
for car detection on the NVIDIA Jetson TX2
embedded platform. In Table 4, this paper
summarizes the running time of the proposed
detector on NVIDIA Jetson TX2 and the
performance of different deep architectures explored
in the proposed work. According to Table 4, the
proposed detector with ESPv2 architecture as the
base network can process eight frames per second.
In addition, as mentioned in Table 4, the NVIDIA
Jetson TX2 embedded platform cannot run with the
VGG16 deep architecture. Thus, the original Faster
R-CNN and SSD detector cannot be implemented on
the Jetson TX2 embedded platform.

4. CONCLUSIONS

This paper proposed a lightweight and efficient
deep CNN-based detector for car detection based on
SSD. In this paper, ESPNetv2, a lightweight and
efficient architecture, is adopted as the base network,
which significantly improves inference speed while
maintaining accuracy. Furthermore, a multi-feature
fusion module is designed to fuse low-level feature
map and high-level feature map, thus enhancing
detection accuracy. The proposed multi-feature
fusion module and base network in this paper make
a significant improvement in both detection
accuracy and inference speed on car detection.
Experimental results on KITTI dataset show that the
performance of the proposed method outperforms
SSD. In addition, an embedded system implemented
on an NVIDIA Jetson TX2 is used for detecting cars
in traffic scenes that shows the effectiveness of the
proposed detector.

REFERENCES:

[1] Mehta, Sachin, Mohammad Rastegari, Linda

Shapiro, and Hannaneh Hajishirzi.
"Espnetv2: A light-weight, power efficient,
and general purpose convolutional neural
network." In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 9190-9200. 2019.

[2] Mehta, Sachin, Mohammad Rastegari, Anat
Caspi, Linda Shapiro, and Hannaneh
Hajishirzi. "Espnet: Efficient spatial pyramid
of dilated convolutions for semantic
segmentation." In Proceedings of the
european conference on computer vision
(ECCV), pp. 552-568. 2018.

[3] Ioffe, Sergey, and Christian Szegedy. "Batch
normalization: Accelerating deep network
training by reducing internal covariate
shift." arXiv preprint
arXiv:1502.03167 (2015).

[4] He, Kaiming, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on
imagenet classification." In Proceedings of
the IEEE international conference on
computer vision, pp. 1026-1034. 2015.

[5] Liu, Wei, Dragomir Anguelov, Dumitru
Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg.
"Ssd: Single shot multibox detector."
In European conference on computer vision,
pp. 21-37. Springer, Cham, 2016.

[6] Lin, Tsung-Yi, Piotr Dollár, Ross Girshick,
Kaiming He, Bharath Hariharan, and Serge
Belongie. "Feature pyramid networks for
object detection." In Proceedings of the IEEE
conference on computer vision and pattern
recognition, pp. 2117-2125. 2017.

[7] Fu, Cheng-Yang, Wei Liu, Ananth Ranga,
Ambrish Tyagi, and Alexander C. Berg.
"Dssd: Deconvolutional single shot
detector." arXiv preprint
arXiv:1701.06659 (2017).

[8] Simonyan, Karen, and Andrew Zisserman.
"Very deep convolutional networks for large-
scale image recognition." arXiv preprint
arXiv:1409.1556 (2014).

[9] Ren, Shaoqing, Kaiming He, Ross Girshick,
and Jian Sun. "Faster r-cnn: Towards real-
time object detection with region proposal
networks." In Advances in neural information
processing systems, pp. 91-99. 2015.

[10] Lundh, Fredrik. "An introduction to
tkinter." URL: www. pythonware.

Journal of Theoretical and Applied Information Technology
15th August 2020. Vol.98. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2923

com/library/tkinter/introduction/index.
htm (1999).

[11] Ketkar, Nikhil. "Introduction to pytorch."
In Deep learning with python, pp. 195-208.
Apress, Berkeley, CA, 2017.

[12] Russakovsky, Olga, Jia Deng, Hao Su,
Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang et al. "Imagenet large scale
visual recognition challenge." International
journal of computer vision 115, no. 3 (2015):
211-252.

[13] Geiger, Andreas, Philip Lenz, and Raquel
Urtasun. "Are we ready for autonomous
driving? the kitti vision benchmark suite."
In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3354-
3361. IEEE, 2012.

[14] Everingham, Mark, Luc Van Gool,
Christopher KI Williams, John Winn, and
Andrew Zisserman. "The pascal visual object
classes (voc) challenge." International
journal of computer vision 88, no. 2 (2010):
303-338.

[15] Redmon, Joseph, and Ali Farhadi.
"YOLO9000: better, faster, stronger."
In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp.
7263-7271. 2017.

[16] Cai, Zhaowei, Quanfu Fan, Rogerio S. Feris,
and Nuno Vasconcelos. "A unified multi-
scale deep convolutional neural network for
fast object detection." In European
conference on computer vision, pp. 354-370.
Springer, Cham, 2016.

[17] Li, Bo, Tianfu Wu, and Song-Chun Zhu.
"Integrating context and occlusion for car
detection by hierarchical and-or model."
In European Conference on Computer Vision,
pp. 652-667. Springer, Cham, 2014.

[18] Wu, Tianfu, Bo Li, and Song-Chun Zhu.
"Learning and-or model to represent context
and occlusion for car detection and viewpoint
estimation." IEEE transactions on pattern
analysis and machine intelligence 38, no. 9
(2015): 1829-1843.

[19] Chen, Zezhi, Tim Ellis, and Sergio A.
Velastin. "Vehicle detection, tracking and
classification in urban traffic." In 2012 15th
International IEEE Conference on Intelligent
Transportation Systems, pp. 951-956. IEEE,
2012.

[20] Cui, Jianzhu, Fuqiang Liu, Zhipeng Li, and
Zhen Jia. "Vehicle localisation using a single
camera." In 2010 IEEE Intelligent Vehicles
Symposium, pp. 871-876. IEEE, 2010.

[21] Slimani, Ibtissam, Abdelmoghit Zaarane,
Abdellatif Hamdoun, and Issam Atouf.
"Traffic surveillance system for vehicle
detection using discrete wavelet
transform." Journal of Theoretical & Applied
Information Technology 96, no. 17 (2018).

[22] Zhou, Yi, Li Liu, Ling Shao, and Matt Mellor.
"DAVE: A unified framework for fast vehicle
detection and annotation." In European
Conference on Computer Vision, pp. 278-
293. Springer, Cham, 2016.

[23] NGUYEN, HOANH. "A MULTI-SCALE
DEEP LEARNING NETWORK FOR
VEHICLE DETECTION." Journal of
Theoretical and Applied Information
Technology 97, no. 24 (2019).

[24] Dong, Zhen, Yuwei Wu, Mingtao Pei, and
Yunde Jia. "Vehicle type classification using
a semisupervised convolutional neural
network." IEEE transactions on intelligent
transportation systems 16, no. 4 (2015):
2247-2256.

[25] Hu, Xiaowei, Xuemiao Xu, Yongjie Xiao,
Hao Chen, Shengfeng He, Jing Qin, and
Pheng-Ann Heng. "SINet: A scale-insensitive
convolutional neural network for fast vehicle
detection." IEEE transactions on intelligent
transportation systems 20, no. 3 (2018):
1010-1019.

[26] Howard, Andrew G., Menglong Zhu, Bo
Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and
Hartwig Adam. "Mobilenets: Efficient
convolutional neural networks for mobile
vision applications." arXiv preprint
arXiv:1704.04861 (2017).

[27] Sandler, Mark, Andrew Howard, Menglong
Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. "Mobilenetv2: Inverted residuals and
linear bottlenecks." In Proceedings of the
IEEE conference on computer vision and
pattern recognition, pp. 4510-4520. 2018.

[28] Zhang, Xiangyu, Xinyu Zhou, Mengxiao Lin,
and Jian Sun. "Shufflenet: An extremely
efficient convolutional neural network for
mobile devices." In Proceedings of the IEEE
conference on computer vision and pattern
recognition, pp. 6848-6856. 2018.

[29] Ma, Ningning, Xiangyu Zhang, Hai-Tao
Zheng, and Jian Sun. "Shufflenet v2: Practical
guidelines for efficient cnn architecture
design." In Proceedings of the European
Conference on Computer Vision (ECCV), pp.
116-131. 2018.

