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ABSTRACT 
 

Single Shot Multibox Detector (SSD) is the leading one-stage object detection method. However, the process 
of detecting objects at different scales with different levels of semantic information makes it difficult to fuse 
high-level features from deeper convolution layers with low-level features from shallower convolution layers. 
To mitigate the fusion process of different feature layers and create enhanced semantic information feature 
maps, this paper proposes a lightweight and efficient multi-feature fusion module. The proposed multi-feature 
fusion module includes concatenation operation to concatenate the features at different scales in a simple and 
efficient way, point-wise convolution layer to reduce the feature dimension, and bilinear interpolation to 
upsample the size of feature maps. Furthermore, ESPv2 network, a lightweight and efficient deep 
convolutional neural architecture, is adopted as the base network for generating base convolution layers from 
input image. The proposed multi-feature fusion module and base network make a significant improvement in 
both detection accuracy and inference speed. Experimental results on KITTI dataset show that the proposed 
model outperforms SSD in terms of detection accuracy while maintaining inference speed. In addition, an 
embedded system implemented on an NVIDIA Jetson TX2 is used for detecting cars in traffic scenes that 
shows the effectiveness of the proposed detector. 

Keywords: Car Detection, Convolutional Neural Network, Intelligent Transportation System, Object 
Detection, Embedded System 

 
1. INTRODUCTION 
 
1.1 Car Detection 

Vision-based car detection, which uses a 
camera to acquire visual information from the 
driving environment, is an important part of an 
advanced driver assistance system. Using a camera 
as sensor to capture image, the information 
contained in images is abundant, including lanes, 
vehicles, pedestrians, and traffic lights, which helps 
the system to adapt to different difficult conditions. 
In addition, a camera is cheaper than other sensors, 
such as radar and lidar. With these advantages, 
vision-based car detection has attracted the attention 
of researchers. Many car detection methods have 
been proposed in recent years. Traditional methods 
are usually based on hand craft feature such as 
colour, shape, energy, and so on to locate cars in 
image. Li et al. [17] proposed a method of learning 
reconfigurable hierarchical and-or models to 
integrate context and occlusion for car detection. Wu 
et al. [18] learnt the structure of the and-or model 

with three components, and the model parameters 
are jointly trained using Weak-Label Structural 
SVM. Chen et al. [19] proposed a method based on 
background Gaussian Mixture Model and shadow 
removal method to deal with sudden illumination 
changes and camera vibration. Cui et al. [20] used 
Haar and Adaboost algorithm to detect the vehicle, 
and a simplified Lucas-Kanade algorithm was used 
to remove false positive detection. Slimani et al. [12] 
proposed to use two-dimensional discrete wavelet 
transform for extracting features from the images, 
and background subtraction followed by the 
connected components method to detect vehicles. 

Recently, deep convolutional neural network 
(CNN)-based methods have become the leading 
method for high quality general object detection. 
Faster region-based convolutional neural network 
[9] defined a region proposal network (RPN) for 
generating region proposals and a network using 
these proposals to detect objects. RPN shares full-
image convolutional features with the detection 
network, thus enabling nearly cost-free region 
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proposals. This method has achieved state-of-the-art 
detection performance and become a commonly 
employed paradigm for general object detection. 
SSD detector [5] predicted category scores and box 
offsets for a fixed set of default bounding boxes 
using small convolutional filters applied to different 
scales from feature maps of different scales, and 
explicitly separate predictions by aspect ratio. SSD 
achieved high inference speed with comparable 
performance compared with other state-of-the-art 
methods. Most of recent state-of-the-art deep 
learning models target general object detection 
including cars. To better handle the detection 
problem of vehicles in complex conditions, Zhou et 
al. [22] proposed a fast vehicle proposal network for 
vehicle-like objects extraction, and an attribute 
learning network aiming to verify each proposal. 
The author in [23] proposed a multi-scale feature 
map generation module to fuse different convolution 
layers at different scales of the base network. In 
addition, the information surrounding a given object 
proposal was exploited to enhance the feature 
representation of proposals. Dong et al. [24] 
proposed a vehicle type classification method using 
a semi-supervised convolutional neural network 
from vehicle frontal-view images.  Hu et al. [25] 
proposed a scale-insensitive convolutional neural 
network for fast detecting vehicles with a large 
variance of scales. Deep CNN-based car detection 
methods have achieved great success in recent years. 
However, real-time car detection in driving 
environment is still very challenging. One of the 
main challenges is that CNN models are sensitive to 
scales while it is quite common that in-car videos or 
transportation surveillance videos contain vehicles 
with a large variance of scales. Current methods are 
based on modifying the popular CNN detectors to 
enhance the performance of detection results.  These 
methods focus on making the network fit different 
scales by utilizing input images with multiple 
resolutions. However, these methods introduce 
expensive computational overhead and thus are still 
incapable of fast vehicle detection, which is essential 
for autonomous driving systems, real time 
surveillance and prediction systems. 
 
1.2 Lightweight Deep Convolutional Neural 

Network (CNN) Architecture 
Recent deep CNN-based architectures 

require a large amount of computational cost. While 
these architectures achieved high performance on 
high-end hardware machines, they are too expensive 
for resource constrained devices such as mobile 

devices and embedded computers. It is required that 
the deep CNN architecture should be lightweight and 
efficient while achieving comparable accuracy to 
implement on resource constrained devices. Thus, 
many enhanced networks for mobile devices have 
been introduced recently. Mobilenets [26] used 
depth-wise separable convolutions that factor a 
convolution into two steps to reduce computational 
complexity: depth-wise convolution that performs 
light-weight filtering by applying a single 
convolutional kernel per input channel and 
pointwise convolution that usually expands the 
feature map along channels by learning linear 
combinations of the input channels. Mobilenetsv2 
[27] proposed a lightweight network based on an 
inverted residual structure where the shortcut 
connections are between the thin bottleneck layers. 
The intermediate expansion layer uses lightweight 
depthwise convolutions to filter features as a source 
of non-linearity. Shufflenet [28] and Shufflenet v2 
[29] proposed new architecture that utilizes two new 
operations, pointwise group convolution and 
channel shuffle, to greatly reduce computation cost 
while maintaining accuracy. 
 
2. METHODOLOGY 
 

The proposed approach is based on SSD 
detector [5], which includes a base network for 
generating convolution layers and a detection 
subnetwork for locating objects at different layers. In 
this paper, a lightweight and efficient structure is 
adopted as the base network, which significantly 
improves inference speed while maintaining 
accuracy. Furthermore, a multi-feature fusion 
module is designed to fuse low-level feature map 
and high-level feature map, thus enhancing detection 
accuracy. The following subsections will elaborate 
each module in detail. 
 
2.1 The Feature Extraction Subnet 

This section elaborates the structure of the 
feature extraction subnet. To increase inference 
speed of the proposed model on embedded system 
and improve the detection performance, ESPNetv2 
[1] is adopted as the base network for feature 
extraction. ESPNetv2 is a lightweight structure that 
can be easily deployed on mobile devices with 
limited hardware parts. The core of ESPNetv2 is the 
EESP unit and the Strided EESP unit, which 
combine group point-wise convolution layers and 
depth-wise dilated separate convolution layers. The 
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Figure 1: The Structure of The EESP Unit.

structure of the EESP and Strided EESP units are 
illustrated in the next sub-sections. 
 
2.1.1 The EESP Unit 

The EESP unit (Extremely Efficient Spatial 
Pyramid of Depth-wise Dilated Separable 
Convolutions), which is motivated by the ESPNet 
architecture [2], is specifically designed for mobile 
devices. Figure 1 shows the structure of the EESP 
unit. In the EESP unit, the high-dimensional input 
feature maps are first projected into low-dimensional 
space by using a 1×1 group point-wise convolution 
layer. The representations in low-dimensional 
feature maps are then learned in parallel by using 
3×3 depth-wise dilated separable convolution layers 
with different dilation rates. Depth-wise dilated 
separable convolutions are efficient and can learn 
representations from large effective receptive fields. 
Depth-wise dilated separable convolutions apply a 

lightweight filtering by factoring a standard 
convolution into two layers: depth-wise dilated 
convolution layer and point-wise convolution layer. 
Note that different dilation rates in each branch 
allow the EESP unit to learn the representations from 
a large effective receptive field, thus enhancing the 
detection performance. By learning the 
representations in a low-dimensional space, the 
EESP units are efficient with small computational 
costs. In addition, the feature maps generated by 
depth-wise dilated separable convolution layers are 
fused by using the computationally efficient 
hierarchical feature fusion method [2] to remove the 
gridding artifacts caused by dilated convolutions. 
 
2.1.2 The Strided EESP Unit 

The Strided EESP Unit was designed to learn 
representations efficiently at multiple scales. Figure 
2 shows the structure of the Strided EESP unit. As 
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Figure 2: The Structure of The Strided EESP Unit.

shown, depth-wise dilated separable convolutions in 
the EESP unit is replaced by depth-wise dilated 
separable convolutions with stride = 2. In addition, 
an average pooling layer with kernel size 3×3 and 
stride = 2 is adopted after input feature maps to 
reduce the dimensions of input feature map, and 
concatenation operation is used instead of element-
wise addition operation to fuse input feature map and 
feature map generated by depth-wise dilated 
separable convolutions. Furthermore, to preserve 
spatial information during down-sampling and 
convolution operations and learn representations 
efficiently, an efficient long-range shortcut 
connection between the input image and the current 
down-sampling unit is added in each of the Strided 
EESP unit. In this connection, the input image is first 
down-samples to the same size of that of the feature 
map by using a 3×3 average pooling layer with stride 
= 2. The representations are then learned by using a 

stack of two convolutions: a standard 3×3 
convolution that learns the spatial representations 
and a 1×1 point-wise convolution that learns linear 
combinations between the input, and projects it to a 
high-dimensional space. 
 
2.1.3 The Feature Extraction Subnet 

Architecture 
The feature extraction subnet is based on 

ESPNetv2 architecture, which is built on the EESP 
units and the Strided EESP units. Figure 3 illustrates 
the architecture of the feature extraction subnet. At 
each spatial level, the feature extraction subnet 
repeats the EESP unit several times to increase the 
depth of the network. In the EESP units and the 
Strided EESP units, batch normalization [3] and 
PReLU [4] are added after every convolutional layer 
with an exception to the last group-wise 
convolutional layer where PReLU is applied after 
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Figure 3: The Architecture of The Feature Extraction Subnet.

element-wise sum operation. To maintain the same 
computational complexity at each spatial-level, the 
feature maps are doubled after every down-sampling 
operation. 
 
2.2 Multi-Feature Fusion Module 

The original SSD detector [5] adopted feature 
maps at different convolution layers of the base 
network to directly generate object detection results. 
This approach makes SSD detector lack the 
capability to capture both the local detailed features 
and global semantic features. FPN [6] and DSSD [7] 
proposed to fuse low-level feature maps at shallower 
convolution layers with high-level feature maps at 
deeper convolution layers to improve the semantic 
information of each feature map. These approaches 
showed better detection performance compared with 
the original SSD framework. However, these 
approaches require multiple feature merging 
processes, thus increasing computational cost. To 
increase detection accuracy and maintain 
computational cost, this paper proposes a 
lightweight and efficient multi-feature fusion 
module. Figure 4 illustrates the structure of the 
proposed multi-feature fusion module. In original 
SSD detector, VGG-16 [8] is used as the base 
network. SSD used Conv4_3, Fc_7 of the base 
network and newly added layers, including 
Conv6_2, Conv7_2, Conv8_2, and Conv9_2 layer, 
to generate object detection results by the detection 
subnetwork. The corresponding feature size of these 
layers is 38×38, 19×19, 10×10, 5×5, 3×3 and 1×1. In 
this paper, the feature extraction subnet is designed 
to generate convolution layers. The multi-feature 
fusion module takes feature maps at layer 3, layer 5 
and layer 7 as the input feature maps. The size of 
feature map at layer 3 is set as the basic feature map, 
which is 38×38×256. Next, in order to concatenate 
the features with different scales in a simple and 

efficient way, a 1×1 standard convolution layer is 
adopted after layer 5 and layer 7 to reduce the feature 
dimension firstly. Then bilinear interpolation is used 
to upsample the size of these feature map to the same 
size with feature map at layer 3. In this way, all the 
features have the same size on spatial dimension. 
Finally, concatenation operation is adopted to merge 
different feature maps together and generate fused 
feature map. Based on the fused feature map, this 
paper adds several convolution layers, including 
Conv8_2, Conv9_2, Conv10_2, Conv11_2, and 
Conv12_2, as in SSD. The size of feature maps 
generated by these convolution layers is 38×38, 
19×19, 10×10, 5×5, 3×3 and 1×1 respectively. All 
these feature maps are fed to the detection 
subnetwork as in SSD. 
 
2.3 Training 

This paper follows the same training policy 
as in SSD. First, this paper matches a set of default 
boxes to target ground truth boxes. For each ground 
truth box, this paper matches it with the best 
overlapped default box and any default boxes whose 
Jaccard overlap is larger than 0.5. Among the non-
matched default boxes, this paper selects certain 
boxes as negative samples based on the confidence 
loss so that the ratio with the matched ones is 3:1. 
Then this paper minimizes the joint localization loss 
and confidence loss. 
 
2.3.1 Loss Function 

The binary logistic loss is used here for box 
classification, and smooth L1 loss [9] is employed 
for box regression. The multi-task loss function used 
for training network is defined as follow: 

 
𝐿 ൌ

ଵ

ேಾ
∑ 𝐿௦ሺ𝑦, 𝑦

ᇱሻேಾ
ୀଵ 

ଵ

ேು
∑ 𝐿ሺ𝑟, 𝑟

ᇱሻேು
ୀଵ  (1) 
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Figure 4: The Structure of The Proposed Multi-Feature Fusion Module.

where 𝑁ெ is the size of default boxes; 𝑁 is the 
number of matched default boxes; 𝑦 is the predicted 
probability of box 𝑖 being a car; 𝑦

ᇱ is the 
corresponding ground-truth label (1 for positive box, 
0 for negative box); 𝑟 is the predicted coordinate 
offsets (x , y , w, h ) for box 𝑖; 𝑟

ᇱ is the associated 
offsets for box 𝑖 relative to the ground-truth. 
In (1), the binary logistic loss 𝐿௦ is defined as 
follow: 

𝐿௦ሺ𝑦, 𝑦
ᇱሻ ൌ െlog ሺ𝑓

௬
ᇲ

ሻ  (2) 
 

and the smooth L1 loss is defined as follow: 
 

𝐿ሺ𝑟, 𝑟
ᇱሻ ൌ 0.25 ∗ 𝑠𝑚𝑜𝑜𝑡ℎଵሺ𝑟 െ 𝑟

ᇱሻ (3) 
 
where  

𝑠𝑚𝑜𝑜𝑡ℎଵሺ𝑥ሻ ൌ ൜
0.5𝑥ଶ            𝑖𝑓 |𝑥| ൏ 1

|𝑥| െ 0.5        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 
2.3.2 Choosing Default Boundary Boxes 

SSD defines a scale value for each feature 
map layer. The layer Conv4_3 detects objects at the 
smallest scale 0.2 and then increases linearly to the 
rightmost layer at a scale of 0.9. Combining the scale 
value with the target aspect ratios, the width and the 
height of the default boxes can be computed. For 
layers making 6 predictions, SSD starts with 5 target 
aspect ratios: 1, 2, 3, 1/2 and 1/3. Then the width and 
the height of the default boxes are calculated as 
follows: 

𝑤 ൌ 𝑠𝑐𝑎𝑙𝑒. √𝑟𝑎𝑡𝑖𝑜  (5) 
 

ℎ ൌ
௦

√௧
   (6) 

 
This paper has made a minor change in the prior box 
aspect ratio setting. Scene cars have rectangle shape 
or square shape, this paper uses three aspect ratios: 
1, 2, 1/2 and uses these aspect ratios at every 
prediction layer. 

 
2.3.3 Hard Negative Mining 

As discussed above, there are much more 
negative matches than positive matches. This creates 
a class imbalance which hurts training. Thus, instead 
of using all the negative boxes, these negative boxes 
are sorted by their calculated confidence loss. As in 
SSD, this paper picks the negative boxes with the top 
loss and makes sure the ratio between the picked 
negative boxes and positive boxes is at most 3:1. 
This leads to a faster and more stable training. 
 
2.3.4 Data Augmentation 

Data augmentation is important in improving 
accuracy of the network. To handle variants in 
various object sizes and shapes, each training image 
is randomly sampled by one of the following 
options: Use the original; sample a patch with IoU of 
0.1, 0.3, 0.5, 0.7 or 0.9; randomly sample a patch. 
The sampled patch will have an aspect ratio between 
1/2 and 2. Then it is resized to a fixed size and this 
paper flips one-half of the training data. 
 
3. EXPERIMENTS AND RESULTS 
 
3.1 Dataset 

To evaluate the detection performance of the 
proposed method, this paper conducts experiments 
on the KITTI dataset [13]. KITTI dataset is a large 
public dataset for evaluating the performance of 
different vehicle detection methods. It contains 
various scales of vehicles in different traffic scenes. 
The size of images in this dataset is 3840×1280 
pixels. The dataset consists of 7481 images for 
training and 7518 images for testing. According to 
size, occlusion and truncation of vehicles in images, 
the dataset is classified into three difficulty level 
groups: easy, moderate and hard. Table 1 presents 
detailed information of each group. 
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Table 1: Detailed Information of Each Group. 

Group Detailed information 

 Height Occlusion Truncation 

Easy > 40 pixels Fully visible < 15% 

Moderate > 25 pixels Partly occluded < 30% 

Hard > 25 pixels Difficult to see < 50% 

3.2 Evaluation Metrics 
Precision and recall are usually used in the 

evaluation process of an object detection approach. 
The precision represents the proportion of the 
correctly detected cars in the predicted cars, and the 
recall represents the proportion of the correctly 
detected cars in all dataset. The precision and recall 
metrics are computed as follows: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
ேು

ேುାேಷು
  (7) 

𝑟𝑒𝑐𝑎𝑙𝑙 ൌ
ேು

ேುାேಷಿ
   (8) 

 
where 𝑁் represents the number of true positives, 
which indicates the number of the correctly detected 
cars. 𝑁ி represents the number of false positives, 
which indicates the number of the error detected cars 
(misjudge the background as a target). 𝑁ிே 
represents the number of false negatives, which 
indicates the number of miss detected cars. If the IoU 
between the predicted bounding box and the ground 
truth bounding box exceeds 0.5, the detection is 
regarded as true positive, otherwise, as a false 
positive. The IoU between the predicted bounding 
box (𝐵) and the ground truth bounding box (𝐵ீ) is 
defined as follow: 
 

𝐼𝑜𝑈 ൌ
ሺು∩ಸሻ

ሺು∪ಸሻ
   (9) 

 
If there are multiple predicted bounding 

boxes overlap the same ground truth bounding box, 
then only one is considered as true positive, while 
others are considered as false positive. The higher 
precision rate and recall rate, the better detection 
performance. However, the precision rate is usually 
balanced against the recall rate. When the recall rate 
increases, the precision rate will decrease 
accordingly. Therefore, the average precision (AP) 
of the precision-recall curve is usually used to 
evaluate the detection performance. The AP is the 
area under the precision-recall curve. Here, the 
average precision is obtained by calculating the 
average value of the corresponding precision when 
the recall rate changes from 0 to 1. In this paper, the 
average precision is calculated by the method used 

in the PASCAL VOC Challenge [14], which 
calculates the average precision by taking the mean 
of the precision rate of the points at all different 
recall rates on the P-R curve. Furthermore, the 
inference speed is calculated to compare the 
effectiveness of different methods. 
 
3.3 Implementation Details 

The proposed approach is implemented on a 
Window system machine with CPU Core i7-8700 
@3.2GHz, GPU NVIDIA GTX 1080, RAM @ 
12GB DDR4. The code is written in Python with 
Pytorch deep learning library [11]. In addition, 
tkinter library [10] is adopted to create graphical user 
interface. 
For the base network, all the proposed experiments 
are all based on ESPNetv2 [1], which is pre-trained 
on the ImageNet 1000-way classification dataset 
[12]. This paper removes all the layers after layer 7 
of the ESPNetv2. All of the raw features are 
converted to 256 channels with a 1×1 convolutional 
layer. Feature maps from layer 5 and layer 7 are 
upsampled to 38×38 by bilinear interpolation. Then 
the transformed feature maps are concatenated 
together followed by a batch normalization layer to 
normalize the feature values. Then several down-
sampling blocks (including one 3×3 convolutional 
layer with stride 2 and one ReLU layer) are 
appended one by one to generate the pyramid 
features. This paper trains the proposed network 
with batch size 32 for 120k iterations. The initial 
learning rate is set to 0.001 and then divided by 10 at 
step 80k, 100k and 120k. Following the training 
strategy in SSD, the weight decay is set to 0.0005. 
This paper adopts SGD with momentum 0.9 to 
optimize the proposed network. 
 
3.4 Results on KITTI Dataset 

To evaluate the detection performance of the 
proposed method, this paper conducts experiments 
on KITTI dataset and compare the detection results 
with that of recent methods, including Faster R-CNN 
[9], SSD [5], YOLOv2 [15], and MS-CNN [16]. 
Faster R-CNN introduced a Region Proposal 
Network (RPN) that shares full-image convolutional 
features with the detection network, thus enabling  
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Table 2: Performance Comparison of Recent Methods and Proposed Method on KITTI Dataset. 

Method AP (%) Inference time (s) 

 Easy Moderate Hard  

Faster R-CNN [9] 87.90 79.11 79.19 2 

SSD [5] 83.89 67.17 59.09 0.06 

YOLOv2 [15] 28.37 19.31 15.94 0.02 

MS-CNN [16] 90.46 88.83 74.76 0.4 

E-SSD 89.24 77.60 70.02 0.06 

 
Figure 5: Examples of Detection Results of The Proposed Method on KITTI Dataset.

nearly cost-free region proposals. The RPN is a fully 
convolutional network that simultaneously predicts 
object bounds and objectness scores at each position. 
SSD proposed a method for detecting objects in 
images using a single deep neural network. YOLOv2 
proposed various improvements to the YOLO 
detection method and achieved significant 
improvement over YOLO. MS-CNN proposed to 
use the proposal sub-network to perform detection at 

multiple output layers, so that receptive fields match 
objects of different scales.  

Table 2 presents the comparison of detection 
results. As shown, the proposed approach 
outperforms SSD in all three difficult level groups. 
More specific, the proposed method improves the 
AP by 5.35%, 10.43%, and 10.93% in easy, 
moderate, and hard group respectively compared 
with SSD. These results show that the multi-feature 
fusion module based on efficient network has 
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Figure 6: Image of The NVIDIA Jetson TX2 Embedded Board (Left) and Developer Board (Right).

Table 3: Technical Specifications of The NVIDIA Jetson TX2 Embedded Board. 

Components Specification 

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU 
Quad-Core ARM® Cortex®-A57 MPCore 

GPU 256-core NVIDIA Pascal™ GPU architecture with 256 
NVIDIA CUDA cores 

Memory 8GB 128-bit LPDDR4 Memory 
1866 MHx - 59.7 GB/s 

Operating system Ubuntu Linux 14.04 LTS 

Camera 5MP CSI camera module (with Omnivision OV5693) 

Connectivity 802.11a/b/g/n/ac 2×2 867Mbps WiFi 

Storage 32GB eMMC 5.1 

Table 4: Running Time of The Proposed Detector and Other Detectors on NVIDIA Jetson TX2. 

Model Base network Running time (s) 

Faster R-CNN VGG-16 - 

SSD VGG-16 - 

E-SSD ESPNetv2 0.125 

improved the detection accuracy of the proposed 
model. Moreover, compared with YOLOv2, the 
proposed method surpasses in all difficult level 
groups. Comparing with Faster R-CNN, the 
proposed method achieves better result in easy group 
and comparable results in moderate and hard group. 
For the inference speed, E-SSD maintains the same 
speed as SSD detector. E-SSD takes 0.06 second for 
processing an image. This result shows the efficient 
of the base network and the feature fusion module. 
YOLOv2 achieves the best inference time with only 
0.02 second. However, YOLOv2 shows the worst 
detection accuracy. According to the detection 

results in Table 2, it can be observed that MS-CNN 
achieves the best detection accuracy in all difficult 
level groups. However, MS-CNN has the second 
longest inference time with 0.4 second, which is 
about seven times E-SSD. Figure 5 shows some 
examples of detection results of the proposed 
method on KITTI dataset. As shown, the proposed 
method can detect cars with different scales in 
difficult environment conditions. 
3.5 Application in Embedded System 

To evaluate the effectiveness of the proposed 
model in embedded systems, this paper implements 
the proposed model on embedded board for cars 
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detection. For the hardware components of the 
proposed embedded system, this paper uses the 
fastest, most power-efficient embedded AI 
computing device, the Jetson TX2 board. Figure 6 
shows the image of the development board, and 
Table 3 presents the main technical specifications of 
the board. The Jetson TX2 device is a technology 
developed by NVIDIA in the embedded system 
category. This device delivers the performance 
required for the latest visual computing applications, 
especially in deep learning. It is built based on 
NVIDIA Pascal-family GPU architecture with 256 
CUDA cores providing greater than 1TFLOPS of 
FP16 compute performance in less than 7.5 watts of 
power, 64-bit CPUs, and a 5MP CSI camera module. 
To run the proposed model on the NVIDIA Jetson 
TX2 device, this paper adopts the Pytorch deep 
learning framework [11] compiled for GPU and 
Python programming language. This paper explores 
the running of the proposed deep CNN architectures 
for car detection on the NVIDIA Jetson TX2 
embedded platform. In Table 4, this paper 
summarizes the running time of the proposed 
detector on NVIDIA Jetson TX2 and the 
performance of different deep architectures explored 
in the proposed work. According to Table 4, the 
proposed detector with ESPv2 architecture as the 
base network can process eight frames per second. 
In addition, as mentioned in Table 4, the NVIDIA 
Jetson TX2 embedded platform cannot run with the 
VGG16 deep architecture. Thus, the original Faster 
R-CNN and SSD detector cannot be implemented on 
the Jetson TX2 embedded platform. 
 
4. CONCLUSIONS 
 

This paper proposed a lightweight and efficient 
deep CNN-based detector for car detection based on 
SSD. In this paper, ESPNetv2, a lightweight and 
efficient architecture, is adopted as the base network, 
which significantly improves inference speed while 
maintaining accuracy. Furthermore, a multi-feature 
fusion module is designed to fuse low-level feature 
map and high-level feature map, thus enhancing 
detection accuracy. The proposed multi-feature 
fusion module and base network in this paper make 
a significant improvement in both detection 
accuracy and inference speed on car detection. 
Experimental results on KITTI dataset show that the 
performance of the proposed method outperforms 
SSD. In addition, an embedded system implemented 
on an NVIDIA Jetson TX2 is used for detecting cars 
in traffic scenes that shows the effectiveness of the 
proposed detector. 
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