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ABSTRACT 

 
Additive manufacturing processes, especially the FDM process (Fused Deposition Modeling), are used for 
prototyping or manufacturing complex geometries. The ease of using 3D scanners and printers made FDM 
process a must have in every tech-house or laboratory. To optimize it, the prototyping cost, the 
manufacturing time and the material consumption must be reduced. Thus, the process parameters that 
intervene in the quantity of material and the manufacturing time (platform and extruder temperature, layer 
thickness, number of shells and solid layers, infill pattern and density, print speed) have been analyzed. An 
experimental study using a statistical analysis and an optimal experimental plan Design-optimal have been 
made. In addition, a mathematical model adapted to the experimental results has been designed. The RSM 
(response surface method) has been used to optimize the model response and find the most suitable set of 
process parameters. Those inputs have been validated with the developed mathematical model. 

Keywords: Additive Manufacturing; Fused Deposition Modeling; Parameters Optimization; response 
surface method 

 
1. INTRODUCTION  
 

Additive manufacturing [1] processes produce 
parts by adding material, layer-by-layer [2], until 
obtaining a complete design. The first step in the 
production chain is designing a 3D part using an 
adequate software. The file must be saved as an stl 
format [3]. The stl format has been developed for 
the stereo lithography process. This process 
represents the origin of additive manufacturing; it 
has been developed by Dimitri Decoudu in the 80s. 
It is the most used file format in AM (additive 
manufacturing). It contains the information about 
the geometry and the part dimension, without taking 
into account the color, nor the texture or the other 
casual parameters found in other design formats. 
The file is then modified by a specific software that 
generates a g-code corresponding to the machine 

input format. This file contains the information 
about the machining process. Then the machine 
starts operating following the given data. The 
process is similar to 2D printers; the difference is in 
the third dimension that constitutes the part layer by 
layer. Many materials can be implemented in AM 
processes, such as plastics (PLA or ABS) [4-6] and 
metals (aluminum, titanium, steel, wax, ceramics or 
even glass). 

AM allows the rapid manufacturing of complex 
parts. With the high concurrence that characterizes 
our era, the need of cost effective and fast 
manufacturing processes is predominant. That is 
why many industries use AM to manufacture 
complex parts [7-10] in a short time notice, such as 
biomedical or automotive fields. 
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Figure 1: FDM manufacturing process 
There is a wide range of AM processes, 

depending on the material, the precision or the 
volume parts. There are SLS and SLM (selective 
laser sintering or melting) that fusion a powder bed 
to manufacture parts in metal or polymers [11-13]. 
There is SLA (stereo lithography apparatus) that 
uses a light cure to harden a local zone using 
different energy sources, such as laser [14,15]. The 
most used process is the FDM (fused deposition 
modeling) that producesparts in polymers [16-18]. 

The scope of our study is the FDM process, 
because it is the most used one, thus, the need of its 
optimization is of high importance. Figure 1 shows 
the manufacturing process; successive layers 
between 0.08 and 3 mm thickness constitute the 
part. The material is heated around 190°, then it is 
extruded from a nozzle with a diameter ranged 
between 0.4 and 1.2 mm. The used material is PLA 
or ABS with a diameter between 1.75 and 3mm. 
Once a layer is printed, the platform or the extruder 
moves following the z axis, to start printing the next 
layer. 

The FDM parameters play a predominant role in 
the finish surface, the dimension precision, the 
fabrication time and the mechanical properties of 
the produced part. Many studies have been made to 
optimize those parameters and achieve the most 
effective quality.  

Thrimurthulu et al. [19] conceived a 
mathematical model to optimize the manufacturing 
time. The predominant parameter in this model is 
the orientation of the part during the fabrication. 
The results have been compared to other published 
solutions, thus, the model has been validated. 
Vijay.B.Nidagundi [26] have studied the 
optimization of  FDM process parameters (Layer 
thickness, Orientation angle and fill angle) using 
Taguchi’s L9 orthogonal array and Taguchi’s S/N 
ratio. Analysis of variance has been used to check 
parameters effectiveness. Nancharaiah [20] studied 
the relationship between the manufacturing time 

and the process parameters using the design matrix 
of Taguchi (the orthogonal matrix L9) and the 
ANOVA (variance analysis) technique. The result 
is that the layer thickness and the gap between the 
nozzle and the platform are the most important 
parameters influencing the manufacturing time. 
Those parameters influences are 30.77% for the air 
gap and 66.57% for the layer thickness. The study 
also concluded that the optimal parameters are a 
layer thickness of 0.33mm and an air gap of 
0.02mm with a frame angle of 30°. Kumar and 
Regalla [21] made a factorial experience plan to 
analyze every parameter influence on the 
manufacturing time and the support material 
consumption. The studied parameters are the layer 
thickness, the orientation and the frame angle. The 
experimental study also showed that the most 
influencing parameters for time reduction are the 
layer thickness and the orientation of the part during 
the machining. However, the study did not conclude 
on the optimal parameters for time and material 
reduction. 

In this article, the parameters influences on the 
FDM process were studied using the D-optimal 
methodology for the experience plan. A 
mathematical model that links the influencing 
parameters has been formulated to verify the 
results. Then, the optimal parameters have been 
determined. 

2.  METHODOLOGY 
 

Figure 2 shows the studied sample dimensions. 
Those dimensions are defined from the ASTM 
D5418-07 [22] standard. Figure 3 shows the 
fabricated samples. The 3DP workbench (figure 4) 
has been used with a 0.6mm nozzle diameter and a 
2.85mm filament diameter of PLA (Polyacttic 
acid). The workbench is characterized by a 
1000*1000*500mm print volume and a 0.07mm 
resolution. The samples have been fabricated in the 
center of the building platform. The design 
software used is Catia V5. After converting the 
designed part into the STL format, Simplify3d 
software was used to generate the nozzle path and 
define the building parameters. 

 
Figure 2: Sample dimensions 
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Figure 3: Printed samples 

 
Eight parameters have been analyzed in this 

study. The choice and levels of these parameters 
were defined from literature and experiences made 
at a preliminary investigation [23-25]. Table 1 
shows the range limits. Due to the number of the 
studied parameters, an experience plan has been 
determined to limit the number of experiences. 
Design-Optimal experience plan was used due to its 
high precision with only 50 experiences at three 
levels for each one of the eight parameters 
(irregular experimental matrix). The efficiency of 
an experimental model depends on the precise 
measurements and the detailed plan of the 
experimental process. Design Optimal betters the 
model and lowers the influence of the design on the 
adjustment regression. This gave us a valid 
estimation on the variation response to develop an 
adequate relationship between studied parameters 
and the outputs. Table 2 shows the final design 
matrix. 

 
Figure 4: 3DP workbench used 

 
Table 1: Parameters and levels of varying Processing 

Parameters 
Symbols Factors Units Levels 

A Platform temperature ◦C 70 75 80 
B Extruder temperature ◦C 190 200 

210 
C Layer thickness mm 0.15 0.3 

0.45 
D Number of shells – 1 2 3 
E Infill density % 25 50 75 
F Print speed  mm/s 50 65 80 

G Infill pattern ’H=1 
D=2 L=3’ 

– H D L 

H Number of solid layers 
’U/L’ 

– 2 3 4 

 
 (A) Platform temperature is the bed 

temperature. 
 (B) Extruder temperature is the necessary 

temperature to melt the material. 
 (C) Layer thickness is the thickness of the 

extruded layer. It is based on the filament and 
the nozzle diameters (figure5-a). 

 (D) Number of shells is the number of outlines 
built around the outer and inner pattern (figure 
5-b).  

 (E) Infill density: is the percentage of the infill 
of the printed part. 

 (F) Print speed: is the printing velocity in 
mm/s. 

 (G) Infill pattern: is the internal structure of the 
print H: Honeycomb; D: Grid; L: Rectilinear 
(figure 5-c). 

 (H) Number of solid layers 'U / L': is the 
number of upper and lower layers (figure 5-d) 

 
Figure 5: Input parameters, (a) Layer thickness,     

(b) Number of   shells, (c) Infill pattern,  
(d) Number of solid layers 'U / L' 

 
3. ANALYSIS 
 

The material consumption and the manufacturing 
time have been analyzed following the variation of 
the parameters defined by D-optimal matrix. Table 
2 shows the response of the two outputs according 
to the parameters levels. Using the results of the 50 
experiences, the most adequate mathematical 
model, was determined. The graphical analysis and 
the regression have been studied with the 
MATLAB software. Four models (linear, 
interactions, purequadratic, and quadratic) have 
been analyzed to determine the most suitable model 
for our experimental results. Table 3 shows the 
resulted stats of the model. The quadratic one has 
the lower p-value and the lower Root mean squared 
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error, which means that the error distribution is 
lower than the other models. In addition, the R² and 
the adjusted R² are higher and are adapted to our 
response. Thus, the quadratic model is most 
suitable to show the relationship between the 
studied parameters and the outputs. 
3.1 Mathematical models: 

RSM (response surface methods) is a set of 
mathematical and statistical technics used to 

enhance and develop process variables. In our case, 
it was used to outline the relationship between the 
eight studied parameters and the two selected 
outputs. Here, the goal of the RSM is to optimize 
the outputs. Equation 1 shows the quadratic 
regression model used in this study. 

   

k
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i iii
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Table 2: D-Optimal Design Matrix And Collected Data

RUN Factors Responses 
A B C D E F G H T M 

1 80 210 0.45 3 25 80 L 4 3 2.27 
2 80 210 0.45 1 75 50 L 4 4 2.28 
3 70 190 0.15 3 75 65 H 4 7 1.78 
4 70 210 0.15 1 75 50 H 3 8 1.66 
5 80 190 0.15 3 25 80 H 4 5 1.5 
6 80 210 0.45 1 75 80 H 2 2 1.99 
7 80 190 0.45 3 75 50 D 4 3 2.27 
8 80 190 0.15 1 75 80 H 2 5 1.61 
9 70 210 0.15 3 25 50 L 4 8 1.52 
10 70 210 0.45 3 25 80 H 4 3 2.27 
11 70 200 0.45 1 25 50 D 4 4 2.28 
12 80 190 0.45 1 25 50 L 4 4 2.28 
13 70 210 0.15 1 75 80 L 2 5 1.74 
14 80 190 0.45 1 75 80 L 2 2 2.08 
15 80 190 0.45 1 75 50 H 2 3 1.99 
16 70 190 0.15 1 25 65 L 2 4 1.08 
17 70 190 0.45 2 25 50 H 3 3 2.02 
18 70 190 0.45 3 50 80 L 4 3 2.27 
19 70 190 0.15 3 75 50 L 2 8 1.83 
20 80 190 0.45 1 75 80 H 4 3 2.28 
21 80 190 0.3 3 25 50 L 2 4 1.64 
22 80 210 0.15 1 25 50 L 2 5 1.08 
23 80 190 0.15 1 50 50 H 4 7 1.48 
24 80 210 0.15 1 50 80 L 4 5 1.55 
25 70 210 0.45 2 75 80 D 4 3 2.28 
26 70 210 0.45 1 25 80 L 3 2 1.97 
27 70 210 0.45 1 25 50 H 2 3 1.65 
28 70 200 0.15 1 25 80 H 4 4 1.28 
29 70 200 0.15 3 75 80 L 3 6 1.86 
30 80 210 0.15 3 25 80 L 2 5 1.38 
31 70 190 0.45 3 25 80 L 2 2 1.84 
32 70 210 0.3 3 75 65 D 2 4 2.1 
33 75 190 0.15 2 25 80 L 4 5 1.42 
34 70 190 0.45 1 75 80 H 2 2 1.99 
35 70 200 0.45 2 50 50 L 2 3 1.93 
36 80 210 0.15 3 75 50 H 2 8 1.71 
37 80 200 0.15 2 75 65 L 4 7 1.85 
38 80 210 0.45 3 25 50 D 2 3 1.89 
39 70 210 0.45 3 75 50 H 4 3 2.27 
40 75 210 0.45 1 50 65 H 4 3 2.28 
41 75 200 0.15 3 25 50 H 2 7 1.35 
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42 70 210 0.15 2 50 80 H 2 5 1.47 
43 75 210 0.45 3 75 50 L 2 3 2.13 
44 80 210 0.15 1 25 65 H 3 4 1.18 
45 75 200 0.3 3 50 80 D 3 3 1.97 
46 75 210 0.15 3 75 80 H 4 6 1.78 
47 80 190 0.45 3 75 80 H 2 2 2.06 
48 70 190 0.3 1 75 50 L 4 5 2.08 
49 80 190 0.45 1 25 80 H 2 2 1.65 
50 80 210 0.3 2 25 50 H 4 4 1.87 

 
Table 3: The Statistical Summary Of The Models. 

Response Model P-value R2 R2 Adj Root 
Mean 

Squared 
Error 

Precision Remarks 

T Linear 5.4*  0.67 0.624 0.0385 Adequate  
Interactions 7.32*  0.887 0.809 0.0275 Adequate  
Purequadratic 6.33*  0.628 0.576 0.0409 Adequate  
Quadratic 4.34*  0.976 0.937 0.0157 Adequate Selected 

M Linear 5.14*  0.861 0.821 0.0265 Adequate  
Interactions 5.14*  0.861 0.821 0.0265 Adequate  
Purequadratic 3.31*  0.906 0.865 0.023 Adequate  
Quadratic 5.14*  0.984 0.957 0.013 Adequate Selected 

 
 Y is the predicted response 
 k is the number of variable 
 Xi and Xj are the coded variables 

 0 is the constant of the regression equation 

 ii  is the interactive coefficient 

 ij  is the square term of each variable 

 ε is the random measurement error 
Equation 2 shows the formulation of the 

quadratic model: 
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After defining the coefficients, the 
mathematical model has been developed. Here 
are the final models for the manufacturing time T 
and the material consumption M. 
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3.2 Checking out the data and the developed 

model adequacy: 
 

Normal probability curves have been used to 
check the regression model validity. Figure 6 a-b 
shows the normal probability curves for T 
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(manufacturing time) and M (material 
consumption). Results indicate that the residuals 
are aligned and follows a normal distribution. In 
addition, the errors are distributed normally. 
Thus, the developed model used in equations 3-4 
is adapted to the experimental values. 
 

As shown in figure 7 a-b, the model predicted 
values which are in total correlation with the 
experiments results. This means that the model is 
highly reliable to determine the relationship 
between T, M and the eight studied parameters. 
 
4. RESULTS AND DISCUSSION 
 

To determine the relationship between the 
eight studied parameters and the two outputs (T 
and M), the followed process is to fix six inputs 
at the middle value, and check the graphical 3D 
response of the manufacturing time and the 
material consumption, while varying the studied 
parameter and the platform temperature. In the 
pre-study, the less influencing parameter was 
determined as the bed temperature, thus, a 
“platform temperature” was chosen as the 
varying input used in the seven parameters 3D 
graphs. 

 

 
Figure 6: Normal probability curves for T and M 

 

 
Figure 7: Models predicted values 

 
On the other hand, the 3D response allows 

determining the optimal inputs for a low T and 
M.  
Figures 8 and 9 show the interactive effect of the 
parameters effect on the studied outputs. 
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4.1 Influence of process parameters on the M 

(Material consumption): 
 

Figure 8 shows the effect of each process 
parameter on the material consumption response. 
The first observation is that the most influencing 
parameter is the C (layer thickness) of the graph 
b. The second parameter is the print speed (graph 
e). 

From graph a, the optimal inputs to reduce the 
M are A = 70°C and B = 190°C. In addition, it 
can be observed that the influence of the extruder 
temperature is low. Graph b indicates that the 
optimal condition is at a layer thickness of 
0.15mm. It can be observed that the thicker the 
layer, the more material is consumed. Secondly, 
due to the negligible effect of the platform 
temperature, the graph shows that the C is a lot 
more influencing on the M rather than the A. 
Graph c shows that the number of shells has a 
low influence on the M. Also, the optimal 
condition is at one shell. This is logical because 
the less contour is done, the less material is 
consumed. Graph d outlines that the infill density 
at 25 % and 80°C is optimal to reduce M. Less 
density means less material. Graph e proves the 
small influence of the printing speed on the 
material consumption. The optimal conditions 
are at 50mm/s and 70°C. Graph f indicates that 
the optimum infill pattern is the honeycomb (H) 
at 70°C. Graph g shows the less upper and lower 
solid layers are printed, the less material is spent 
for manufacturing. The optimum is then at 2 
layers, which is the minimum in this study. 
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Figure 8: Parameters influence on the Material 

consumption 
 
4.2 Influence of process parameters on the T 

(manufacturing time): 
 

Figure 9 shows the effect of each process 
parameter on the manufacturing time response. 
The first observation is that the most influencing 
parameter is the C (layer thickness) as seen in the 
graph b. The second parameter is the print speed 
(graph e). From graph a, the optimal inputs to 
reduce the T are A = 80°C and B = 210°C. In 
addition, it can be observed that the influence of 
the nozzle temperature is low. Graph b indicates 
that the optimal condition is at a layer thickness 
of 0.45mm. It can also be observed that the 
thicker the layer, the less printing time is 
necessary. Secondly, the graph shows that the C 
is a lot more influencing on the T than the 
platform temperature A. Graph c proves that the 
number of shells has a low influence on the T, 
and the optimal condition is at one shell and a 
bed temperature of 80°C. This is logical because 
the less contour is done; the less time is spent for 
printing.  Graph d shows that the infill density at 
25 % and 80°C is optimal to reduce T. Graph e 
indicates an absence of influence of the bed 
temperature when compared to the F (printing 
speed); this indicates the high influence of the F 
on manufacturing time. The more velocity is 

used, the less time is spent. The optimum 
condition is at the higher speed which is 80 
mm/s. Graph f outlines that the optimum infill 
pattern is the honeycomb (H) at 80°C. Graph g 
shows the less upper and lower solid layers are 
printed, the less time is spent manufacturing. The 
optimum is then at 2. 
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Figure 9: Parameters influence on the manufacturing 

time 
4.3 Optimal conditions: 

From the experience plan the optimum inputs 
have been determined to lower the 
Manufacturing cost of the FDM process. Here is 
a summary of the retrieved data. For the Material 
consumption, the optimum is at: 
• A=70°C 
• B=190°C 
• C=0.15mm 
• D= 1 
• E= 25%  
• F= 50mm/s 
• G=1 
• H=2 
Using the mathematical model, the minimum 
material consumption obtained with these inputs 

is 0.94g. The optimum inputs have been used to 
print five samples and check the validity of the 
mathematical model result. Table 4 shows the 
printed samples weight. 
 

Table 4: printed samples weight. 
Sample Weight (g) 

1 0.935 
2 0.939 
3 0.948 
4 0.951 
5 0.932 

Average 0.941 
The average samples weight using the optimum 
inputs is 0.941g. Therefore, the mathematical 
model results have been validated 
experimentally.  
For the Manufacturing time optimum, the inputs 
are: 
• A=80°C 
• B=210°C 
• C=0.45mm 
• D= 1 
• E= 25%  
• F= 80mm/s 
• G=1 
• H=2 
Using the mathematical model, the minimum 
manufacturing time obtained with these inputs is 
1min40s (1.66min). 
The optimum inputs have been used to print five 
samples and check the validity of the 
mathematical model result. Table 5 shows the 
printed samples manufacturing time. 
 

Table 5: printed samples manufacturing time 
Sample T (min) 

1 1.62 
2 1.64 
3 1.7 
4 1.67 
5 1.71 

Average 1.67 
The average samples manufacturing time using 
the optimum inputs is 1.67min. Therefore, the 
mathematical model results have been validated 
experimentally. 
 
5. CONCLUSION 
 

The most used Additive manufacturing 
process is the fused deposition modeling. In this 
study, the process parameters optimization has 
been studied to benefit at the most from the 
process advantages at a low cost. The cost of 
machining is directly linked to material 
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consumption and manufacturing time. Therefore, 
those have been the principal outputs of our 
system. On the other hand, the influent process 
parameters (platform and extruder temperature, 
layer thickness, number of shells and solid 
layers, infill pattern and density, print speed) 
have been the variables of the study. First of all, 
samples have been printed following the 
appropriate standard. Then, a D-optimal 
experience plan has been set and carried on to 
check the output response of variables. Secondly, 
a mathematical model adapted to the experiment 
has been developed to find the best inputs. The 
response surface method has been used to find 
the lower possible manufacturing time and 
material consumption. The results have been 
checked out with a new set of experiments. 

 
The lower achievable sample weight is 0.94g; 

this optimum has been reached using a bed 
temperature of 70°C and an extruder heated at 
190°C. The most influent parameter was 
logically the layer thickness at its lower value, 
which is 0.15mm. One shell was used with a 
25% infill percentage and a 50mm/s speed, 
following a honeycomb pattern with a minimum 
number of solid layers (2). 

 
The lower achievable sample manufacturing 

time is 1min40s; this optimum has been reached 
using a bed temperature of 80°C and an extruder 
heated at 210°C. The most influent parameter 
was logically the layer thickness at its biggest 
value, which is 0.45mm. One shell was used with 
a 25% infill percentage and 80mm/s speed, 
following a honeycomb pattern with a minimum 
number of solid layers (2). 

 
This article offers optimal data input for FDM 

process parameters to lower the printing cost, by 
lowering the manufacturing time and the 
material consumption. 
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