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ABSTRACT 
 

Code smells are symptoms of poor software design and implementation choices. Previous empirical studies 
have underlined their negative effect on software comprehension, fault-proneness and maintainability. A 
number of approaches have been proposed to identify the existence of code smells in the source code; recent 
studies have shown the potential of machine learning models in this context. However, previous approaches 
did not exploit the lexical and syntactical features of the source code; they instead modelled the source code 
using software metrics only. This paper proposes an approach for detecting the occurrence of the God class 
smell which utilizes both, the source code textual features and metrics to train three deep learning networks 
(i) Long short term memory, (ii) Gated recurrent unit and (iii) Convolutional neural network. We proposed 
utilizing deep leaning networks as they are reported to outperform traditional machine learning models in 
several domains including software engineering. To assess the proposed approach, a dataset for the God class 
smell was built using source codes acquired from the “Qualitas Corpus”. Experimental results demonstrated 
that, the three deep learning networks outperformed three traditional machine learning models: Naïve Bayes, 
Random forests and Decision trees. Additionally, of the three deep learning networks the Gated recurrent 
unit model is the superior in this context. Furthermore, combining both, the source code metrics and textual 
features enhanced the accuracy of detecting the God class smell. 

Keywords: code smells, deep learning, God class, software maintenance, CNN, LSTM, GRU, VSM, IR, text 
mining 

1. INTRODUCTION 

During the software maintenance phase, the 
system keeps evolving and changing due to (i) the 
request for feature enhancement, (ii) arise of new 
requirements, or (iii) bug fixing [1]. Owing to the 
imposed time constraints and/or the lack of 
resources, the developers usually do not look for 
good design solutions before applying the required 
modifications. This may lead to the introduction of 
the so called technical debt [2].  
The term “code smell” was coined by Fowler [3] as 
the code structure that requires (“screaming for”) 
refactoring. Later, other researchers defined the 
code smells as indicators of design problems and/or 
poor coding practices [4]. For example, the “God 
class” smell refers to the case in which a class 
implements a great deal of the system functionalities 
[3]; it is a complex class that incorporates a high 
number of instance methods and variables. God 
class smell occurs as a consequence of violating the  
principle of “Single Responsibility”. Flower [3] 
presented twenty two code smells, as well as their 
characteristics and effects. These smells are low-

level design problems in the source code; some of 
them were defined on the class level (e.g. God class 
and Data class), while others were defined on the 
method levels (e.g. Long method). Generally 
speaking, the presence of many code smells in the 
software hinders its comprehension [5], as well as 
its evolution and maintainability [6, 7]. So it is 
important to identify the existence of the smells in 
order to get the source code refactored.  

There has been an ongoing research in this 
area, on one hand research studies were conducted 
with the aim of understanding when the code 
smells are introduced and how do they evolve in 
the software systems [8-11]. On the other hand, 
several approaches have been proposed in the 
literature for detecting the code smells. The early 
approaches are rule-based approaches [12-17] that 
characterize the symptoms of the code smells in 
order to detect them, they include the following 
phases: Firstly, a collection of software metrics 
(e.g. Complexity, source line of codes (SLOC)) are 
identified and computed, then threshold values are 
determined and applied upon the metrics, finally a 
set of rules are defined to differentiate between 
smelly and non-smelly code components. These 
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approaches differ from each other in: (i) the 
utilized metrics which depend on the code smell 
under investigation and (ii) the way of combining 
these metrics together (rules) to identify the smells; 
for example, such a combination can be 
implemented using simple AND/OR operators 
[12]. Although, these approaches showed 
reasonable accuracy, they suffer a number of 
limitations that might preclude their use in practice 
[18,19]. Most importantly, these approaches 
require the specification of the threshold values, 
taking into considerations that the thresholds 
greatly influence the accuracy [18]. Additionally, 
the agreement between these approaches is low 
[20]. Some research studies showed that using 
historical data can improve the accuracy of smell 
detection [21,22]. Some researchers proposed 
formulating the problem of the code smell 
detection as an optimization problem, then applied 
search algorithms, to solve it, such as Parallel 
Collaborative search algorithms [23], Competitive 
Co-evolutionary search [24] and Genetic 
Programming [25]. 

Recent approaches utilized machine learning 
(ML) supervised learning techniques for smell 
detection [26-34] to overcome the limitations of 
the rule-based approaches. ML-approaches are 
based on training a supervised model using data 
from the same software project or from another 
project. The source code components are modeled 
using metrics, same as the heuristic-based 
approaches, however ML-approaches do not 
require threshold specifications. They learn from 
the data to classify a given code component as 
smelly or non-smelly. However, previous ML-
approaches did not benefit from the textual 
features of the source code. To our knowledge only 
two studies leveraged the textual features of the 
source code and the deep learning neural networks 
for code smell detection [35,36]. Liu et al. [35] 
trained a Convolutional neural network (CNN) for 
detecting the Feature envy smell; while, Fakhoury 
et al. [36] trained a CNN for detecting linguistic 
smells.  

1.1. Aims and Contributions 

This work aims at identifying the existence of 
the God class smell in the source code through 
extracting the textual features of the source code in 
addition to its characteristics in terms of software 
metrics. These hybrid features will be used to train 
three deep learning networks: (i) Long short term 
memory (LSTM) [37], (ii) Gated recurrent unit 
(GRU) [38] and (iii) Convolutional neural network 
(CNN) [39].  

We proposed utilizing these three models as 
each of them proved its effectiveness in the context 
of natural language related tasks [40-45]; and the 
source code is a special type of text. Furthermore, 
each of these three deep learning architectures 
works in a different way. The CNN is able to learn 
the local features of the input text while both of the 
LSTM and GRU are able to learn dependencies 
among a sequence of terms and generates a vector 
representation; but GRU has simpler structure than 
the LSTM. There is no decisive conclusion in the 
literature which deep learning model is the best for 
the text classification task. This is the reason, in 
this paper we experimented with the three models.  

We selected the God class smell to detect, as 
the study conducted by Palomba et al. [46] 
demonstrated that the smells characterized by 
complex and/or long code (e.g. God class) are 
highly dispersed. Additionally, the smelly classes 
have a higher probability to change and fault-
proneness than non-smelly classes.  

1.2. Research Questions 

This paper aims at answering the following 
research questions: 

RQ1: Is it possible for the source code textual 
features to be an alternative to the source code 
metrics in detecting the God class smell? 

RQ2: How effective are the proposed three deep 
learning neural networks in detecting the God class 
smell in comparison to traditional machine 
learning techniques? 

RQ3: Does the combination of source code 
textual features and metrics boost the performance 
of the deep learning networks in detecting the God 
class smell?  

The rest of the paper is structured as follows: 
Section 2 introduces deep learning neural 
networks, Section 3 summarizes the previous work 
that employed machine learning techniques to 
identify code smells in the source code. Section 4 
discusses the proposed methodology. While 
section 5 discusses the experiments and results. 
Finally, section 6 concludes the paper and presents 
further possible extensions.  

2. DEEP LEARNING NEURAL NETWORKS 

Deep learning neural networks [47] is a recent 
field in machine learning that has been reported to 
achieve a remarkable performance in the area of 
vision. Nevertheless, they have been used 
extensively for tackling various classification and 
prediction problems. The widely used deep 
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learning architectures in the literature are CNNs 
and RNNs; which are introduced in the following 
subsections.  

2.1. Convolutional Neural Networks (CNNs) 

CNNs are inspired by the hierarchical 
organization of the visual cortex and have been 
proven effective for text classification same as they 
are effective for image analysis [40,41]. In text 
classification applications the text is supplied to 
the CNN using one of two forms. The first form is 
a 1D vector obtained from a model like the vector 
space model (VSM) [48]; in this case the CNN is 
called one-hot CNN. The other form is the 2D 
matrices obtained from one of the word embedding 
models [49]. Although the VSM representation 
does not represent the semantic relations 
efficiently but it is more robust to data sparsity and 
speeds up the training by having fewer parameters.  

To explain how CNN is used for text 
classification, let’s consider a sentence of length 𝑙 
words that is represented using a 1D vector as 
follows: 

𝑥ଵ:௟ ൌ  𝑥ଵ, 𝑥ଶ … … . 𝑥௟  (1) 

Where, 𝑥௜:௝ is a window of words starts from word 
𝑖  to word 𝑗 ; 𝑥௜ is a value represents the 
weight/importance of the word 𝑖  to the sentence 
𝑥ଵ:௟.The convolution operation involves applying a 
filter to windows of size 𝑛 words to produce new 
features [40]. Assume a new feature 𝑐௜ that is 
generated from applying a filter over a window of 
words 𝑥௜:௜ା௡ିଵ will be calculated using equation 2: 

𝑐௜ ൌ 𝑓ሺ𝑤. 𝑥௜:௜ା௡ିଵ ൅ 𝑏ሻ  (2) 

Where, 𝑓 is a non-linear function and 𝑏 is a bias 
term. The filter is applied to every possible 𝑛 
words window. Consequently, a feature map C of 
size ሺ𝑙 െ 𝑛 ൅ 1ሻ is produced, and defined as 
follows:  

C = {𝑐ଵ, 𝑐ଶ, … … . 𝑐௟ି௡ାଵ}  (3) 

A max-pooling operation is then applied to the 
feature map C to capture the key features. So, the 
max- pooling layer reduces the dimensionality of 
the feature map; consequently, it is considered a 
feature selection operation. Usually, the CNN 
utilizes multiple filters with varying window sizes 
(kernels) to produce different features. 

Finally, the output of the max-pooling layer is 
passed to a dense Softmax layer, whose output is 
probabilities of the class labels, Fig. 1 depicts a 
sample CNN network encompasses two 
convolutional layers. 

 

2.2. Recurrent Neural Networks (RNNs) 

RNN [47] is another deep learning neural 
network that has been proven to be effective in 
processing sequential data like text; due to its 
capability to dynamically “memorize” information 
provided in previous states and incorporate them to 
a current state. The RNN computational units are 
connected in a directed cycle such that at each time 
step t, each unit gets two inputs: (1) the current 
time step Xt , (2) the hidden state of the same unit 
from previous time step ht-1 , and returns the new 
hidden state ℎ௧, as depicted by Fig. 2; ℎ௧  is 
calculated using Equation (4).  

ℎ௧ ൌ 𝑓ሺ𝑋௧ , ℎ௧ିଵሻ   (4) 

Where, ℎ଴ is usually initialized as a vector of Zeros 
and 𝑋௜ could be a 1D or 2D vector. 𝑓 is a recursive 
function; the simplest recursive function is 
implemented using equation 5 as follows: 

ℎ௧ ൌ 𝑡𝑎𝑛ℎሺ𝑊௫𝑋௧ , 𝑈௛ℎ௧ିଵሻ (5) 

Where, 𝑊௫, 𝑈௛ are weight matrices. 

However, the simple recursive function given by 
equation 5 suffers from the problem of vanishing 
gradient, so more complicated recursive functions 
were recommended in the literature, e.g. LSTM 
[37] and GRU [38].  

 

2.3. Long Short Term Memory (LSTM) 

LSTM is one of the recent variants of RNN, 
which is able to preserve long-term dependencies. 
Furthermore, LSTM has been found to perform 
reasonably well on various data sets within the 
context of applications that exhibit sequential 
patterns, such as: (i) text classification [43], (ii) 
language translation [42] and (iii) source code 
clone detection [44]. The LSTM computational 
unit comprises a memory cell and three gates: (i) 
an input gate, (ii) an output gate and (iii) a forget 
gate, as depicted by Fig. 3(a). The three gates 
control the flow of information into and out of the 
cell; where, each gate is composed of a sigmoid 
layer and a pointwise multiplication operation. 
This structure enables the LSTM to overcome the 
vanishing gradient problem. The inputs to the 
LSTM unit at time step t are: ht-1, ct-1, ct, the outputs 
are: ct, ht and they are updated by equations 6-11 
as follows: 

𝑖௧ ൌ  σሺ 𝑊௜𝑋௧ ൅ 𝑈௜ℎ௧ିଵ  ൅ 𝑏௜ሻ  (6) 
𝑜௧ ൌ  σሺ𝑊௢ 𝑋௧ ൅ 𝑈௢ℎ௧ିଵ  ൅ 𝑏௢ሻ  (7) 
𝑓௧ ൌ  σ൫𝑊௙ 𝑋௧ ൅ 𝑈௙ℎ௧ିଵ  ൅ 𝑏௙൯  (8) 
𝑐௧෥ ൌ  tanhሺ 𝑊௖ 𝑋௧ ൅ 𝑈௖ℎ௧ିଵ ൅ 𝑏௖ሻ  (9) 
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  𝑐௧ ൌ ሺ 𝑖௧ʘ 𝑐௧෥ ሻ ൅ ሺ𝑓௧ ʘ 𝑐௧ିଵሻ   (10) 

 ℎ௧ ൌ 𝑜௧ʘ𝑡𝑎𝑛ℎሺ𝑐௧ሻ   (11) 

Where, 𝑖௧, 𝑓௧ 𝑜௧ are the input, forget and output 
gates. 𝑐௧෥ ,  𝑐௧ are the candidate and new memory 
cell content. ht is the activation. σ is the logistic 
sigmoid function, ⊙ is the pointwise vector 
multiplication. h0, c0 are usually initialized to 
zeros. 
 
2.4. Gated Recurrent Unit (GRU) 

GRU is a variant to the LSTM which has simpler 
structure, yet is still able to preserve long term 
dependencies. Furthermore, GRU has achieved 
competitive performance with LSTM for many 
natural language tasks [38], [42].  

GRU computational unit merges the LSTM 
forget and input gates into a single gate, and 
merges the memory cell state and hidden state, in 
addition to other changes, as depicted by Fig. 3(b). 
The GRU unit output at a time step t is updated 
using equations 12-15 as follows: 

𝑟௧ ൌ  σሺ 𝑊௥𝑋௧ ൅ 𝑈௥ℎ௧ିଵ ሻ   (12) 
𝑧௧ ൌ  σሺ𝑊௭ 𝑋௧ ൅ 𝑈௭ℎ௧ିଵ ሻ   (13) 
ℎ௧
෩ ൌ  tanhሺ 𝑊௛ 𝑋௧ ൅ 𝑈௛ሺ𝑟௧ ʘℎ௧ିଵሻ  (14) 
ℎ௧ ൌ ሺ 1 െ 𝑧௧ሻʘℎ௧ିଵ ൅ 𝑧௧ʘ ℎ௧

෩ ሻ  (15) 
 

Where, 𝑟௧, 𝑧௧ are the update and the reset gates; ht 

,ℎ௧
෩ : are the activation and the candidate activation. 

 

Fig. 1: A sample CNN network. 

 

Fig. 2: An unrolled RNN neural network unit. 

 

(a) 

 

(b) 

Fig.:. (a) LSTM unit, (b) GRU unit. 

 

3. LITERATURE REVIEW 

Artificial intelligence techniques drew the 
attention of software engineering researchers and 
were employed with a multitude of problems 
including: bug triage, effort estimation, next release 
problem and code smells detection [26-36], [50-57]. 
This section summarizes the early approaches for 
code smells detection that utilized machine learning 
techniques. The idea of using machine learning for 
code smell detection was originally suggested by 
Kreimer [27]; the author utilized the Decision trees 
in detecting the Blob and Long method code smells. 
Kreimer used metrics composed of the number of 
variables, number of methods, and number of 
sentences as decision criteria for the Blob detection. 
Later on, Amorim et al. [28] extended the work of 
Kreimer [27] to detect 12 anti-patterns. Khomh et al. 
[29] proposed the Bayesian detection expert 
(BDTEX) which is a metric based approach to build 
Bayesian Belief Networks using the definitions of 
the smells. This approach provides the probability 
of occurrence of a certain smell instead of 
classifying the code as smelly or non-smelly. The 
authors validated their approach on three smells 
which are: God class, Functional decomposition, 
and Spaghetti code smells. Maiga et al. [30] 
proposed using Support Vector Machines classifiers 
for detecting four smells: God class, Functional 
decomposition, Spaghetti code, and Swiss army 
knife. The authors used the PADL meta-model [31] 
to compute 60 structural metrics to identify the God 
class. Fontana et al. [32] built a massive dataset and 
conducted a large study to compare among 16 
different machine learning algorithms for the 
detection of four smells: Data class, God class, 
Feature envy, and Long method. They conducted 
their experiments on 74 software systems from the 
Qualitas Corpus dataset [58]. They computed a set 
of independent metrics and used them as input 
features to the different machine learning 
techniques. Furthermore, their datasets were 
balanced using an under-sampling technique to 
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avoid the poor classification performances 
commonly reported from machine learning models 
on imbalanced datasets. Their study showed that the 
J48 decision tree is the superior technique in 
detecting each of the God class and the Feature envy 
smells. Di Nucci et al. [33] replicated the study of 
[32] after merging their datasets together to make 
the datasets more realistic. Di Nucci et al. [33] 
showed empirically that the performance reported in 
[32] could be attributed to the unrealistic datasets 
(balanced and each data set has only one smell) not 
to the capabilities of the machine learning 
techniques.  

More recently, Liu et al. [35] trained a CNN 
model to detect the Feature envy. They fed the CNN 
with the name of the feature, the feature’s enclosed 
class and the target class. The CNN is also fed with 
a numerical metric which is the distances between 
the feature and its enclosing class and the feature 
and its target class. Fakhoury et al. [36] trained CNN 
for detecting linguistic smells. Nevertheless, 
Fakhoury found out that some regular machine 
learning techniques like Support vector machine can 
achieve the same performance of the CNN in 
detecting the linguistic code smells.  
 
3.1. Difference from previous work 

The work in this paper is different from the work 
of [35] and [36] in the following: 

(1) The smell under study in this work is the God 
class smell. 

(2) We utilized hybrid features comprised of 
source code textual features and metrics. 

(3) We compared among the performance of three 
deep learning neural networks: (i) LSTM, (ii) 
GRU and (iii) CNN in order to identify the most 
suitable network for detecting the occurrence of 
the God class smell. 

4. METHODS AND TOOLS 

4.1. Dataset Building 

The dataset used to assess our approach was 
built on the dataset compiled by Fontana et al. [32]. 
This dataset is a fragment of the software systems 
encompassed in the Qualitas Corpus (QC) [58]. 
QC is widely used in empirical software 
engineering studies as it has a massive collection 
of software systems, written in Java code, which 
are developed in various domains and have 
different sizes. Fontana et al. [32] used QC to 
develop a massive dataset for the code smell 
detection problem by modelling a 74 systems (out 

of 111 systems) in terms of a set of object-oriented 
metrics. The software metrics utilized model six 
aspects of the software which are: (i) size, (ii) 
cohesion, (iii) coupling, (iv) inheritance, (vi) 
encapsulation and (vii) complexity. For each 
system a 61 source code metrics were computed 
for the class level code smells (God class and Data 
class) and 82 for the method level smells (Feature 
envy and Long Method). The metrics were 
computed using the DFMC4J tool. Then the 
authors labelled the data instances using a set of 
code smells detection tools (including: iPlasma, 
PMD and AntiPattern) in addition to a manual 
validation by three experts. Afterwards, a balanced 
dataset was generated for each of the four code 
smell types; such that each dataset contains 1/3 
smelly samples and the rest 2/3 are non-smelly 
samples. Each dataset has a size equal to 420 
instances. 

We merged the God class dataset with the Data 
class one, as recommended by Di Nucci et al. [33], 
to make the God class dataset more realistic. As, 
the resulting dataset includes more than one smell 
and less proportion of smelly instances with God 
class.  

To serve the aim of this paper we acquired the 
source code of the software systems encompassed 
by this dataset from the QC to extract their textual 
features. However, during the process of accessing 
the source codes some software systems were 
unreachable; consequently, we reconstructed a 
data set consisting of 684 instances (out of the 
original 840 instances) with 554 non-smelly 
instances and 130 smelly instances.  

 

4.2. Proposed Approach 

Fig. 4 shows the phases of the proposed 
methodology for God class detection. It starts with 
pre-processing the source code corpus using the 
natural language processing (NLP) techniques to 
extract the textual features. Also, the source code 
is characterized using suitable software metrics for 
detecting the occurrence of God class smell. 
However, this part is not implemented in this 
paper, as explained in the dataset collection 
section; we used Fontana et al. [32] metric features. 
The two sets of features are combined and utilized 
to train three deep learning neural networks. The 
following subsections discuss each of these phases 
in detail. 

4.2.1. Source code pre-processing 

This section discusses the pre-processing of the 
source code to extract its textual features, taking 
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into consideration the language keywords. Then, 
convert these textual features into numerical form 
that is suitable to be passed to the machine learning 
models. Source code is not simply a plain text it 
contains multiple aspects of information such as 
tokens and control flows. In this work we consider 
only the tokens.  

The pre-processing process compromises two 
consecutive tasks: (i) tokenization then (ii) 
vectorization. Javalang library [59] was used for 
the tokenization; it is a python library that provides 
a Lexer and a Parser to the Java code. Whereas, 
NLTK [60] was used for the vectorization.  

Tokenization: Each class is parsed to generate 
its sequence of tokens. Tokens are considered the 
smallest form of data that can be interpreted by a 
compiler than a representation to the programming 
language elements such as reserved word. All the 
identifiers are parsed into a sequence of tokens 
according to the camelCase and underscore 
heuristics. For example, a method name “listFiles” 
or “list_files” will be parsed into the tokens “list” 
and “files”. Finally, all the tokens are normalized 
through transferring them into lowercase. 

Vectorization: A vector space model [48], [51-
55] was built, where each class is represented as a 

1D vector. All the vectors have equal size equal to 
the number of unique tokens in the dataset. Each 
value in the vector represents the weight of the 
corresponding token for the class. The term 
frequency-inverse document frequency (TF-IDF) 
weighing scheme was used in this work [48] and is 
computed by equation `16 

𝑡𝑓 െ 𝑖𝑑𝑓௜,௝ ൌ  
௧௙೔,ೕ

௡
𝑙𝑜𝑔

஽

ௗ௙೔
 (16) 

Where, 𝑡𝑓 െ 𝑖𝑑𝑓௜,௝ is the TF-IDF of token i in class 
j, 𝑡𝑓௜,௝ is the number of times token i appears in 
class j, 𝑛 is the total number of unique tokens in 
the source code dataset, 𝐷 is the total number of 
classes in the dataset, 𝑑𝑓௜ is the number of classes 
that include the token i. 
 

4.2.2. Proposed Deep Learning Architectures 

The deep learning architectures utilized in this 
paper were supplied with the one-hot encoded 
vectors generated by the pre-processing phase. 
Keras [61] was used in the implementation; the 
following subsections explain the configuration of 
each utilized architecture. 

 
 

 

Fig. 4:  Proposed methodology for God class detection. 

 

 

CNN ARCHITECTURE 

Fig. 5(a) depicts the architecture of the CNN 
architecture utilized in this paper. It consists of a 
stack of convolution stages, for feature selection, 
followed by a stack of dense layers for 
classification. Each convolution stage starts with a 
convolution layer followed by a batch 
normalization layer then a max pooling layer. The 
convolution layer applies a set of filters on the 
input sequence and produces the feature map 
which represents an input to the max pooling layer. 

Max-pooling reduces the dimensionality of the 
feature map by half. We experimented with 
different depths of the convolution stack stages, 
different values to the filters and kernels; table I 
Summarizes the CNN parameters used in the 
experiments.  

The output of the last max pooling layer is 
connected to a dropout layer. Dropout performs 
regularization by ignoring some random nodes 
during training to prevent over-fitting. In our 
experiments we set the dropout rate to be equal to 
0.5 which means that the nodes to be ignored are 
randomly selected with probability equal to 0.5.  

The output of the last dropout layer is fed into a 
dense layer which consists of a fully connected 
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multi-perceptron neural network that works as a 
classifier.  

We used a stack of two dense layers. The first 
dense layer with 32 units and Relu activation; 
followed by the second dense layer with number of 
outputs set to equal one, in order to make 
predictions on whether the God class smell 
occurs/does not occur in a given source code. This 
layer uses the sigmoid activation function in order 
to produce a probability within the range of 0 to 1. 
Cross entropy or log loss is the loss function we 
utilized as it is proved effectiveness with the binary 
classification problems. Finally, we set the 
maximum number of epochs to equal 100.  

LSTM/GRU ARCHITECTURES 

Fig. 5(b) depicts the architecture of the utilized 
LSTM/GRU models which consists of a stack of 
LSTM/GRU layers, dropout layer then a dense 
layer. The LSTM/GRU layer learns a 
representation for each source code class. We set 
the regular dropout (dropout layer) to 0.5, while 
the recurrent dropout parameters of the 
LSTM/GRU layer to 0.1. The recurrent dropouts 
drop the connections between the recurrent units 
along with dropping units at inputs and/or outputs. 
We experimented with different values to the 
LSTM/GRU units (32,64). The dense layer is same 
as the one used with the CNN architecture. Table 
II Summarizes the LSTM/GRU parameters used in 
the experiments. 

 

Fig. 5: (a) Proposed CNN architecture, (b) Proposed 
LSTM/GRU architecture. 

 

 
 

Table I: CNN architecture parameters. 

# of convolution 
stages 

1,2,3 

# of filters 32,64 
Kernel sizes 2,3 
# of Dense layers 2 
Drop out rate  0.5 
Loss fn. Binary cross 

entropy 
# of epochs 100 

 

Table II: LSTM/GRU architecture parameters. 

# of LSTM/GRU 
layers 

1,2,3 

# of units 32,64 
Regular drop out 
rate 

0.5 

Recurrent drop out 
rate 

0.1 

# of Dense layers 2 
Loss fn. Binary cross 

Entropy 
# of epochs 100 

4.2.3. Traditional Machine Learning Models 

For the purpose of comparison, we 
implemented three traditional machine learning 
models, that are reported in the related work of 
having high classification performance for 
smelly/non-smelly source code; these models are: 
(i) Naïve bayes, (ii) C4.5 decision trees and (iii) 
Random forests. Scikit-learn [62] was used for the 
implementation of these models. 

Decision trees: is a supervised machine 
learning technique that creates a flow chart like 
model which is capable of classification, through 
learning some decision rules inferred from the data 
features. 

Random Forests: is a classifier that builds 
several decision trees which forms a forest of 
random classifiers, each one uses a specific subset 
of the input features. Each tree gives a 
classification (vote). The class that is having the 
most votes among all the trees in the forest, is 
selected.  

Naïve bayes: is a probabilistic classifier that is 
based on Bayes’ theorem. However, it presumes 
that the input features are independent among each 
other”. 
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4.3. Performance Metrics 

The performance of our approach was assessed 
using the popular metrics in evaluating the binary 
classifiers, which are: Precision, Recall and F-
measure metrics.  

Precision is defined as the percentage of the 
correctly identified code smells to the total 
detected code smells; it is given by (17). 

Precision ൌ  
୘୔ 

୘୔ା ୊୔
  (17) 

Where, TP (true positives) represents the number 
of smelly instances that are correctly detected, FP 
(false positives) represents the number of non-
smelly instances that are incorrectly identified as 
smelly. 

Recall is defined as the percentage of the 
correctly identified code smells to the total number 
of the actual code smells; it is given by (18). 

Recall ൌ  
୘୔ 

୘୔ା ୊୒
         (18) 

Where, FN (false negatives) represents the set of 
smelly instances that are missed. 

F-measure: the harmonic mean of the 
precision and recall metrics, it represents a balance 
between their values. It is given by (19). 

F െ measure ൌ 2 ∗ 
୔୰ୣୡ୧ୱ୧୭୬∗୰ୣୡୟ୪୪ 

୔୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪
      (19) 

 

5. EXPERIMENTS AND RESULTS 

We designed the experiments to answer the 
previously mentioned research questions, as 
follows: 

Answer to RQ1: Is it possible for textual 
features to be an alternative to the source code 
metrics for detecting the occurrence of God 
class smell? 

The aim of this question is to evaluate the 
performance of the deep learning architectures and 
the traditional classifiers when they are trained 
using each of the two sets of features, metrics and 
textual, individually. So, we run two sets of 
experiments, in the first set we utilized the 61 
software metrics recommended by Fontana et al. 
[32] as the input features to the classifiers, while in 
the second set we used the extracted textual 
features. Table III and Fig. 6 depict the results of 
all the experiments. As could be observed from 
Fig. 6, that CNN, NB, RF, C4.5 suffered drop in 
their performance when utilized the textual 
features; their F-measures dropped by 7%, 4%, 7% 
and 5% respectively. While the GRU and the 

LSTM could almost maintain the same 
performance across the two sets of metrics, their F-
measures dropped only by 2% and 1% 
respectively.  

Conclusion: The selection of the classifier is so 
important when utilizing the textual features 
instead of the metrics for detecting the God class 
smell. Some classifiers can maintain almost the 
same classification performance across the two 
sets of features while others suffer drop in the 
performance when replacing the metrics with the 
textual features. Maybe including more textual 
features of the source code (e.g. the parse tree) or 
using embedding vectors, instead of the VSM 
model, enhance the performance of the classifiers.  

Answer to RQ2: How effective are the three 
deep learning neural networks in detecting the 
God class smell in comparison to traditional 
classifiers?  

As observed from Figs. 7 and 8 that the three 
deep learning architectures are superior to the NB, 
RF and C4.5 regardless of the type of features used 
in the training. However, the CNN achieved the 
lowest performance across the three deep learning 
architectures. While The GRU is the superior 
model; GRU could achieve an improvement equal 
to 12% (using metrics), 14% (using textual) over 
the NB (the superior traditional classifiers). 

Conclusion: Generally, deep learning 
architectures could achieve better results than 
traditional machine learning models in detecting 
the God class. Furthermore, the GRU is the 
superior model in this context. 

Answer to RQ3: Does the combination of the 
source code textual features and metrics boost 
the performance of the deep learning networks 
in detecting the occurrence of the God class 
smell?  

The aim of this question is to assess the 
performance of the proposed methodology, 
utilizing hybrid features (combination of the 
metrics and textual) in training the deep learning 
architectures. We trained each of the three 
proposed deep learning architectures using the 
hybrid features; Table IV and Fig. 9 depict the 
results of the experiments. As could be observed 
utilizing the hybrid features boosted the 
performance of the LSTM and GRU, while the 
performance of the CNN was declined. Moreover, 
GRU is the superior architecture.  

Conclusion: Utilizing more features does not 
always boost the performance of the deep learning 
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architectures. In our context, it boosted the 
performance of each of the LSTM and the GRU 
while harmed the performance of the CNN. 

Table III: Performance comparison among deep 
learning architectures and three traditional machine 
learning techniques in detecting the God class smell. 

Approach P R F 

LSTM Metrics 90% 86% 88% 

Textual 89% 86% 87% 

GRU Metrics 91% 88% 89% 

Textual 89% 87% 87% 

CNN Metrics 84% 86% 87% 

Textual 80% 82% 80% 

Naïve 

Bays 

Metrics 82% 74% 77% 

Textual 79% 68% 73% 

Random 
forest  

Metrics 58% 62% 59% 

Textual 49% 56% 52% 

C4.5 

 

Metrics 60% 64% 61% 

Textual 61% 52% 56% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 6: Comparison among the F-measure of the six classifiers when trained using metrics or textual features. 

 

Fig. 7: Performance of the six classfiers trained using the source code metrics only. 
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Fig. 8: Performance of the six classifiers trained using the source code textual features only. 

Table IV: Performance of the proposed deep 
learning architectures trained using three set of 

features: metrics, textual and hybrid. 

Approach P R F 

LSTM Metrics 90% 86% 88% 

Textual 89% 86% 87% 

Hybrid 93% 90% 91% 

GRU Metrics 91% 88% 89% 

Textual 89% 87% 87% 

Hybrid 94% 91% 92% 

CNN Metrics 84% 86% 87% 

Textual 80% 82% 80% 

Hybrid 81% 83% 81% 

 

Fig. 9.: F-measure of the three deep learning 
architectures trained using three set of features: 

metrics, textual and hybrid. 

6. CONCLUSION 

The paper proposed a methodology for 
detecting the occurrence of the God class smell in 
the source code. The proposed methodology 
leveraged both of the characteristics (textual and 

metrics) of the source code and the capabilities of 
the deep learning architectures. To achieve our 
purpose, we built a dataset for the God class smell 
in source codes acquired from the “Qualitas 
Corpus” repository. The textual features of the 
source code were extracted using the natural 
language processing techniques, then integrated 
with the 61 metrics features computed by Fontana 
et al. [32]. Three deep learning architectures 
(CNN, LSTM and GRU) were trained using three 
different types of the source code features (metrics, 
textual features and hybrid metrics-textual 
features). Moreover, three traditional machine 
learning techniques (NB, RF, C4.5) from the 
literature were trained, to compare their 
performance with the proposed deep learning 
architectures. It was found that the performance of 
the three deep learning architectures is superior to 
the traditional machine learning techniques; and 
the GRU is the superior model. Furthermore, each 
of the GRU and the LSTM could maintain almost 
the same performance when trained using metrics 
or textual features only; while the CNN and the 
traditional machine learning techniques suffered a 
drop in their performance when trained using the 
textual features. It is noteworthy that the GRU and 
the LSTM achieved their best performance when 
they were trained using the hybrid features; while 
the best performance of the CNN was achieved 
when trained using the metrics features only.  

As an extension to this work, the accuracy of 
detecting the God class could be boosted through 
utilizing other deep learning architectures like the 
hybrid CNN-RNN architecture; in addition to, 
representing the textual features of the source code 
using techniques other than the VSM (e.g. word 
embedding). Furthermore, datasets for other code 
smells could be built such that the proposed 
technique can be extended to detect the 
occurrences of other code smells. 
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