
Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2684

DEEP HYBRID FEATURES FOR CODE SMELLS DETECTION

1ABEER HAMDY, 2MOSTAFA TAZY
1.2British University in Egypt, Faculty of Informatics and Computer Science, Egypt

E-mail: 1abeer.hamdy@bue.edu.eg, 2mostafa.wagih@bue.edu.eg

ABSTRACT

Code smells are symptoms of poor software design and implementation choices. Previous empirical studies
have underlined their negative effect on software comprehension, fault-proneness and maintainability. A
number of approaches have been proposed to identify the existence of code smells in the source code; recent
studies have shown the potential of machine learning models in this context. However, previous approaches
did not exploit the lexical and syntactical features of the source code; they instead modelled the source code
using software metrics only. This paper proposes an approach for detecting the occurrence of the God class
smell which utilizes both, the source code textual features and metrics to train three deep learning networks
(i) Long short term memory, (ii) Gated recurrent unit and (iii) Convolutional neural network. We proposed
utilizing deep leaning networks as they are reported to outperform traditional machine learning models in
several domains including software engineering. To assess the proposed approach, a dataset for the God class
smell was built using source codes acquired from the “Qualitas Corpus”. Experimental results demonstrated
that, the three deep learning networks outperformed three traditional machine learning models: Naïve Bayes,
Random forests and Decision trees. Additionally, of the three deep learning networks the Gated recurrent
unit model is the superior in this context. Furthermore, combining both, the source code metrics and textual
features enhanced the accuracy of detecting the God class smell.

Keywords: code smells, deep learning, God class, software maintenance, CNN, LSTM, GRU, VSM, IR, text
mining

1. INTRODUCTION

During the software maintenance phase, the
system keeps evolving and changing due to (i) the
request for feature enhancement, (ii) arise of new
requirements, or (iii) bug fixing [1]. Owing to the
imposed time constraints and/or the lack of
resources, the developers usually do not look for
good design solutions before applying the required
modifications. This may lead to the introduction of
the so called technical debt [2].
The term “code smell” was coined by Fowler [3] as
the code structure that requires (“screaming for”)
refactoring. Later, other researchers defined the
code smells as indicators of design problems and/or
poor coding practices [4]. For example, the “God
class” smell refers to the case in which a class
implements a great deal of the system functionalities
[3]; it is a complex class that incorporates a high
number of instance methods and variables. God
class smell occurs as a consequence of violating the
principle of “Single Responsibility”. Flower [3]
presented twenty two code smells, as well as their
characteristics and effects. These smells are low-

level design problems in the source code; some of
them were defined on the class level (e.g. God class
and Data class), while others were defined on the
method levels (e.g. Long method). Generally
speaking, the presence of many code smells in the
software hinders its comprehension [5], as well as
its evolution and maintainability [6, 7]. So it is
important to identify the existence of the smells in
order to get the source code refactored.

There has been an ongoing research in this
area, on one hand research studies were conducted
with the aim of understanding when the code
smells are introduced and how do they evolve in
the software systems [8-11]. On the other hand,
several approaches have been proposed in the
literature for detecting the code smells. The early
approaches are rule-based approaches [12-17] that
characterize the symptoms of the code smells in
order to detect them, they include the following
phases: Firstly, a collection of software metrics
(e.g. Complexity, source line of codes (SLOC)) are
identified and computed, then threshold values are
determined and applied upon the metrics, finally a
set of rules are defined to differentiate between
smelly and non-smelly code components. These

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2685

approaches differ from each other in: (i) the
utilized metrics which depend on the code smell
under investigation and (ii) the way of combining
these metrics together (rules) to identify the smells;
for example, such a combination can be
implemented using simple AND/OR operators
[12]. Although, these approaches showed
reasonable accuracy, they suffer a number of
limitations that might preclude their use in practice
[18,19]. Most importantly, these approaches
require the specification of the threshold values,
taking into considerations that the thresholds
greatly influence the accuracy [18]. Additionally,
the agreement between these approaches is low
[20]. Some research studies showed that using
historical data can improve the accuracy of smell
detection [21,22]. Some researchers proposed
formulating the problem of the code smell
detection as an optimization problem, then applied
search algorithms, to solve it, such as Parallel
Collaborative search algorithms [23], Competitive
Co-evolutionary search [24] and Genetic
Programming [25].

Recent approaches utilized machine learning
(ML) supervised learning techniques for smell
detection [26-34] to overcome the limitations of
the rule-based approaches. ML-approaches are
based on training a supervised model using data
from the same software project or from another
project. The source code components are modeled
using metrics, same as the heuristic-based
approaches, however ML-approaches do not
require threshold specifications. They learn from
the data to classify a given code component as
smelly or non-smelly. However, previous ML-
approaches did not benefit from the textual
features of the source code. To our knowledge only
two studies leveraged the textual features of the
source code and the deep learning neural networks
for code smell detection [35,36]. Liu et al. [35]
trained a Convolutional neural network (CNN) for
detecting the Feature envy smell; while, Fakhoury
et al. [36] trained a CNN for detecting linguistic
smells.

1.1. Aims and Contributions

This work aims at identifying the existence of
the God class smell in the source code through
extracting the textual features of the source code in
addition to its characteristics in terms of software
metrics. These hybrid features will be used to train
three deep learning networks: (i) Long short term
memory (LSTM) [37], (ii) Gated recurrent unit
(GRU) [38] and (iii) Convolutional neural network
(CNN) [39].

We proposed utilizing these three models as
each of them proved its effectiveness in the context
of natural language related tasks [40-45]; and the
source code is a special type of text. Furthermore,
each of these three deep learning architectures
works in a different way. The CNN is able to learn
the local features of the input text while both of the
LSTM and GRU are able to learn dependencies
among a sequence of terms and generates a vector
representation; but GRU has simpler structure than
the LSTM. There is no decisive conclusion in the
literature which deep learning model is the best for
the text classification task. This is the reason, in
this paper we experimented with the three models.

We selected the God class smell to detect, as
the study conducted by Palomba et al. [46]
demonstrated that the smells characterized by
complex and/or long code (e.g. God class) are
highly dispersed. Additionally, the smelly classes
have a higher probability to change and fault-
proneness than non-smelly classes.

1.2. Research Questions

This paper aims at answering the following
research questions:

RQ1: Is it possible for the source code textual
features to be an alternative to the source code
metrics in detecting the God class smell?

RQ2: How effective are the proposed three deep
learning neural networks in detecting the God class
smell in comparison to traditional machine
learning techniques?

RQ3: Does the combination of source code
textual features and metrics boost the performance
of the deep learning networks in detecting the God
class smell?

The rest of the paper is structured as follows:
Section 2 introduces deep learning neural
networks, Section 3 summarizes the previous work
that employed machine learning techniques to
identify code smells in the source code. Section 4
discusses the proposed methodology. While
section 5 discusses the experiments and results.
Finally, section 6 concludes the paper and presents
further possible extensions.

2. DEEP LEARNING NEURAL NETWORKS

Deep learning neural networks [47] is a recent
field in machine learning that has been reported to
achieve a remarkable performance in the area of
vision. Nevertheless, they have been used
extensively for tackling various classification and
prediction problems. The widely used deep

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2686

learning architectures in the literature are CNNs
and RNNs; which are introduced in the following
subsections.

2.1. Convolutional Neural Networks (CNNs)

CNNs are inspired by the hierarchical
organization of the visual cortex and have been
proven effective for text classification same as they
are effective for image analysis [40,41]. In text
classification applications the text is supplied to
the CNN using one of two forms. The first form is
a 1D vector obtained from a model like the vector
space model (VSM) [48]; in this case the CNN is
called one-hot CNN. The other form is the 2D
matrices obtained from one of the word embedding
models [49]. Although the VSM representation
does not represent the semantic relations
efficiently but it is more robust to data sparsity and
speeds up the training by having fewer parameters.

To explain how CNN is used for text
classification, let’s consider a sentence of length 𝑙
words that is represented using a 1D vector as
follows:

𝑥ଵ:௟ ൌ 𝑥ଵ, 𝑥ଶ … … . 𝑥௟ (1)

Where, 𝑥௜:௝ is a window of words starts from word
𝑖 to word 𝑗 ; 𝑥௜ is a value represents the
weight/importance of the word 𝑖 to the sentence
𝑥ଵ:௟.The convolution operation involves applying a
filter to windows of size 𝑛 words to produce new
features [40]. Assume a new feature 𝑐௜ that is
generated from applying a filter over a window of
words 𝑥௜:௜ା௡ିଵ will be calculated using equation 2:

𝑐௜ ൌ 𝑓ሺ𝑤. 𝑥௜:௜ା௡ିଵ ൅ 𝑏ሻ (2)

Where, 𝑓 is a non-linear function and 𝑏 is a bias
term. The filter is applied to every possible 𝑛
words window. Consequently, a feature map C of
size ሺ𝑙 െ 𝑛 ൅ 1ሻ is produced, and defined as
follows:

C = {𝑐ଵ, 𝑐ଶ, … … . 𝑐௟ି௡ାଵ} (3)

A max-pooling operation is then applied to the
feature map C to capture the key features. So, the
max- pooling layer reduces the dimensionality of
the feature map; consequently, it is considered a
feature selection operation. Usually, the CNN
utilizes multiple filters with varying window sizes
(kernels) to produce different features.

Finally, the output of the max-pooling layer is
passed to a dense Softmax layer, whose output is
probabilities of the class labels, Fig. 1 depicts a
sample CNN network encompasses two
convolutional layers.

2.2. Recurrent Neural Networks (RNNs)

RNN [47] is another deep learning neural
network that has been proven to be effective in
processing sequential data like text; due to its
capability to dynamically “memorize” information
provided in previous states and incorporate them to
a current state. The RNN computational units are
connected in a directed cycle such that at each time
step t, each unit gets two inputs: (1) the current
time step Xt , (2) the hidden state of the same unit
from previous time step ht-1 , and returns the new
hidden state ℎ௧, as depicted by Fig. 2; ℎ௧ is
calculated using Equation (4).

ℎ௧ ൌ 𝑓ሺ𝑋௧ , ℎ௧ିଵሻ (4)

Where, ℎ଴ is usually initialized as a vector of Zeros
and 𝑋௜ could be a 1D or 2D vector. 𝑓 is a recursive
function; the simplest recursive function is
implemented using equation 5 as follows:

ℎ௧ ൌ 𝑡𝑎𝑛ℎሺ𝑊௫𝑋௧ , 𝑈௛ℎ௧ିଵሻ (5)

Where, 𝑊௫, 𝑈௛ are weight matrices.

However, the simple recursive function given by
equation 5 suffers from the problem of vanishing
gradient, so more complicated recursive functions
were recommended in the literature, e.g. LSTM
[37] and GRU [38].

2.3. Long Short Term Memory (LSTM)

LSTM is one of the recent variants of RNN,
which is able to preserve long-term dependencies.
Furthermore, LSTM has been found to perform
reasonably well on various data sets within the
context of applications that exhibit sequential
patterns, such as: (i) text classification [43], (ii)
language translation [42] and (iii) source code
clone detection [44]. The LSTM computational
unit comprises a memory cell and three gates: (i)
an input gate, (ii) an output gate and (iii) a forget
gate, as depicted by Fig. 3(a). The three gates
control the flow of information into and out of the
cell; where, each gate is composed of a sigmoid
layer and a pointwise multiplication operation.
This structure enables the LSTM to overcome the
vanishing gradient problem. The inputs to the
LSTM unit at time step t are: ht-1, ct-1, ct, the outputs
are: ct, ht and they are updated by equations 6-11
as follows:

𝑖௧ ൌ σሺ 𝑊௜𝑋௧ ൅ 𝑈௜ℎ௧ିଵ ൅ 𝑏௜ሻ (6)
𝑜௧ ൌ σሺ𝑊௢ 𝑋௧ ൅ 𝑈௢ℎ௧ିଵ ൅ 𝑏௢ሻ (7)
𝑓௧ ൌ σ൫𝑊௙ 𝑋௧ ൅ 𝑈௙ℎ௧ିଵ ൅ 𝑏௙൯ (8)
𝑐௧෥ ൌ tanhሺ 𝑊௖ 𝑋௧ ൅ 𝑈௖ℎ௧ିଵ ൅ 𝑏௖ሻ (9)

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2687

 𝑐௧ ൌ ሺ 𝑖௧ʘ 𝑐௧෥ ሻ ൅ ሺ𝑓௧ ʘ 𝑐௧ିଵሻ (10)

 ℎ௧ ൌ 𝑜௧ʘ𝑡𝑎𝑛ℎሺ𝑐௧ሻ (11)

Where, 𝑖௧, 𝑓௧ 𝑜௧ are the input, forget and output
gates. 𝑐௧෥ , 𝑐௧ are the candidate and new memory
cell content. ht is the activation. σ is the logistic
sigmoid function, ⊙ is the pointwise vector
multiplication. h0, c0 are usually initialized to
zeros.

2.4. Gated Recurrent Unit (GRU)

GRU is a variant to the LSTM which has simpler
structure, yet is still able to preserve long term
dependencies. Furthermore, GRU has achieved
competitive performance with LSTM for many
natural language tasks [38], [42].

GRU computational unit merges the LSTM
forget and input gates into a single gate, and
merges the memory cell state and hidden state, in
addition to other changes, as depicted by Fig. 3(b).
The GRU unit output at a time step t is updated
using equations 12-15 as follows:

𝑟௧ ൌ σሺ 𝑊௥𝑋௧ ൅ 𝑈௥ℎ௧ିଵ ሻ (12)
𝑧௧ ൌ σሺ𝑊௭ 𝑋௧ ൅ 𝑈௭ℎ௧ିଵ ሻ (13)
ℎ௧
෩ ൌ tanhሺ 𝑊௛ 𝑋௧ ൅ 𝑈௛ሺ𝑟௧ ʘℎ௧ିଵሻ (14)
ℎ௧ ൌ ሺ 1 െ 𝑧௧ሻʘℎ௧ିଵ ൅ 𝑧௧ʘ ℎ௧

෩ ሻ (15)

Where, 𝑟௧, 𝑧௧ are the update and the reset gates; ht

,ℎ௧
෩ : are the activation and the candidate activation.

Fig. 1: A sample CNN network.

Fig. 2: An unrolled RNN neural network unit.

(a)

(b)

Fig.:. (a) LSTM unit, (b) GRU unit.

3. LITERATURE REVIEW

Artificial intelligence techniques drew the
attention of software engineering researchers and
were employed with a multitude of problems
including: bug triage, effort estimation, next release
problem and code smells detection [26-36], [50-57].
This section summarizes the early approaches for
code smells detection that utilized machine learning
techniques. The idea of using machine learning for
code smell detection was originally suggested by
Kreimer [27]; the author utilized the Decision trees
in detecting the Blob and Long method code smells.
Kreimer used metrics composed of the number of
variables, number of methods, and number of
sentences as decision criteria for the Blob detection.
Later on, Amorim et al. [28] extended the work of
Kreimer [27] to detect 12 anti-patterns. Khomh et al.
[29] proposed the Bayesian detection expert
(BDTEX) which is a metric based approach to build
Bayesian Belief Networks using the definitions of
the smells. This approach provides the probability
of occurrence of a certain smell instead of
classifying the code as smelly or non-smelly. The
authors validated their approach on three smells
which are: God class, Functional decomposition,
and Spaghetti code smells. Maiga et al. [30]
proposed using Support Vector Machines classifiers
for detecting four smells: God class, Functional
decomposition, Spaghetti code, and Swiss army
knife. The authors used the PADL meta-model [31]
to compute 60 structural metrics to identify the God
class. Fontana et al. [32] built a massive dataset and
conducted a large study to compare among 16
different machine learning algorithms for the
detection of four smells: Data class, God class,
Feature envy, and Long method. They conducted
their experiments on 74 software systems from the
Qualitas Corpus dataset [58]. They computed a set
of independent metrics and used them as input
features to the different machine learning
techniques. Furthermore, their datasets were
balanced using an under-sampling technique to

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2688

avoid the poor classification performances
commonly reported from machine learning models
on imbalanced datasets. Their study showed that the
J48 decision tree is the superior technique in
detecting each of the God class and the Feature envy
smells. Di Nucci et al. [33] replicated the study of
[32] after merging their datasets together to make
the datasets more realistic. Di Nucci et al. [33]
showed empirically that the performance reported in
[32] could be attributed to the unrealistic datasets
(balanced and each data set has only one smell) not
to the capabilities of the machine learning
techniques.

More recently, Liu et al. [35] trained a CNN
model to detect the Feature envy. They fed the CNN
with the name of the feature, the feature’s enclosed
class and the target class. The CNN is also fed with
a numerical metric which is the distances between
the feature and its enclosing class and the feature
and its target class. Fakhoury et al. [36] trained CNN
for detecting linguistic smells. Nevertheless,
Fakhoury found out that some regular machine
learning techniques like Support vector machine can
achieve the same performance of the CNN in
detecting the linguistic code smells.

3.1. Difference from previous work

The work in this paper is different from the work
of [35] and [36] in the following:

(1) The smell under study in this work is the God
class smell.

(2) We utilized hybrid features comprised of
source code textual features and metrics.

(3) We compared among the performance of three
deep learning neural networks: (i) LSTM, (ii)
GRU and (iii) CNN in order to identify the most
suitable network for detecting the occurrence of
the God class smell.

4. METHODS AND TOOLS

4.1. Dataset Building

The dataset used to assess our approach was
built on the dataset compiled by Fontana et al. [32].
This dataset is a fragment of the software systems
encompassed in the Qualitas Corpus (QC) [58].
QC is widely used in empirical software
engineering studies as it has a massive collection
of software systems, written in Java code, which
are developed in various domains and have
different sizes. Fontana et al. [32] used QC to
develop a massive dataset for the code smell
detection problem by modelling a 74 systems (out

of 111 systems) in terms of a set of object-oriented
metrics. The software metrics utilized model six
aspects of the software which are: (i) size, (ii)
cohesion, (iii) coupling, (iv) inheritance, (vi)
encapsulation and (vii) complexity. For each
system a 61 source code metrics were computed
for the class level code smells (God class and Data
class) and 82 for the method level smells (Feature
envy and Long Method). The metrics were
computed using the DFMC4J tool. Then the
authors labelled the data instances using a set of
code smells detection tools (including: iPlasma,
PMD and AntiPattern) in addition to a manual
validation by three experts. Afterwards, a balanced
dataset was generated for each of the four code
smell types; such that each dataset contains 1/3
smelly samples and the rest 2/3 are non-smelly
samples. Each dataset has a size equal to 420
instances.

We merged the God class dataset with the Data
class one, as recommended by Di Nucci et al. [33],
to make the God class dataset more realistic. As,
the resulting dataset includes more than one smell
and less proportion of smelly instances with God
class.

To serve the aim of this paper we acquired the
source code of the software systems encompassed
by this dataset from the QC to extract their textual
features. However, during the process of accessing
the source codes some software systems were
unreachable; consequently, we reconstructed a
data set consisting of 684 instances (out of the
original 840 instances) with 554 non-smelly
instances and 130 smelly instances.

4.2. Proposed Approach

Fig. 4 shows the phases of the proposed
methodology for God class detection. It starts with
pre-processing the source code corpus using the
natural language processing (NLP) techniques to
extract the textual features. Also, the source code
is characterized using suitable software metrics for
detecting the occurrence of God class smell.
However, this part is not implemented in this
paper, as explained in the dataset collection
section; we used Fontana et al. [32] metric features.
The two sets of features are combined and utilized
to train three deep learning neural networks. The
following subsections discuss each of these phases
in detail.

4.2.1. Source code pre-processing

This section discusses the pre-processing of the
source code to extract its textual features, taking

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2689

into consideration the language keywords. Then,
convert these textual features into numerical form
that is suitable to be passed to the machine learning
models. Source code is not simply a plain text it
contains multiple aspects of information such as
tokens and control flows. In this work we consider
only the tokens.

The pre-processing process compromises two
consecutive tasks: (i) tokenization then (ii)
vectorization. Javalang library [59] was used for
the tokenization; it is a python library that provides
a Lexer and a Parser to the Java code. Whereas,
NLTK [60] was used for the vectorization.

Tokenization: Each class is parsed to generate
its sequence of tokens. Tokens are considered the
smallest form of data that can be interpreted by a
compiler than a representation to the programming
language elements such as reserved word. All the
identifiers are parsed into a sequence of tokens
according to the camelCase and underscore
heuristics. For example, a method name “listFiles”
or “list_files” will be parsed into the tokens “list”
and “files”. Finally, all the tokens are normalized
through transferring them into lowercase.

Vectorization: A vector space model [48], [51-
55] was built, where each class is represented as a

1D vector. All the vectors have equal size equal to
the number of unique tokens in the dataset. Each
value in the vector represents the weight of the
corresponding token for the class. The term
frequency-inverse document frequency (TF-IDF)
weighing scheme was used in this work [48] and is
computed by equation `16

𝑡𝑓 െ 𝑖𝑑𝑓௜,௝ ൌ
௧௙೔,ೕ

௡
𝑙𝑜𝑔

஽

ௗ௙೔
 (16)

Where, 𝑡𝑓 െ 𝑖𝑑𝑓௜,௝ is the TF-IDF of token i in class
j, 𝑡𝑓௜,௝ is the number of times token i appears in
class j, 𝑛 is the total number of unique tokens in
the source code dataset, 𝐷 is the total number of
classes in the dataset, 𝑑𝑓௜ is the number of classes
that include the token i.

4.2.2. Proposed Deep Learning Architectures

The deep learning architectures utilized in this
paper were supplied with the one-hot encoded
vectors generated by the pre-processing phase.
Keras [61] was used in the implementation; the
following subsections explain the configuration of
each utilized architecture.

Fig. 4: Proposed methodology for God class detection.

CNN ARCHITECTURE

Fig. 5(a) depicts the architecture of the CNN
architecture utilized in this paper. It consists of a
stack of convolution stages, for feature selection,
followed by a stack of dense layers for
classification. Each convolution stage starts with a
convolution layer followed by a batch
normalization layer then a max pooling layer. The
convolution layer applies a set of filters on the
input sequence and produces the feature map
which represents an input to the max pooling layer.

Max-pooling reduces the dimensionality of the
feature map by half. We experimented with
different depths of the convolution stack stages,
different values to the filters and kernels; table I
Summarizes the CNN parameters used in the
experiments.

The output of the last max pooling layer is
connected to a dropout layer. Dropout performs
regularization by ignoring some random nodes
during training to prevent over-fitting. In our
experiments we set the dropout rate to be equal to
0.5 which means that the nodes to be ignored are
randomly selected with probability equal to 0.5.

The output of the last dropout layer is fed into a
dense layer which consists of a fully connected

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2690

multi-perceptron neural network that works as a
classifier.

We used a stack of two dense layers. The first
dense layer with 32 units and Relu activation;
followed by the second dense layer with number of
outputs set to equal one, in order to make
predictions on whether the God class smell
occurs/does not occur in a given source code. This
layer uses the sigmoid activation function in order
to produce a probability within the range of 0 to 1.
Cross entropy or log loss is the loss function we
utilized as it is proved effectiveness with the binary
classification problems. Finally, we set the
maximum number of epochs to equal 100.

LSTM/GRU ARCHITECTURES

Fig. 5(b) depicts the architecture of the utilized
LSTM/GRU models which consists of a stack of
LSTM/GRU layers, dropout layer then a dense
layer. The LSTM/GRU layer learns a
representation for each source code class. We set
the regular dropout (dropout layer) to 0.5, while
the recurrent dropout parameters of the
LSTM/GRU layer to 0.1. The recurrent dropouts
drop the connections between the recurrent units
along with dropping units at inputs and/or outputs.
We experimented with different values to the
LSTM/GRU units (32,64). The dense layer is same
as the one used with the CNN architecture. Table
II Summarizes the LSTM/GRU parameters used in
the experiments.

Fig. 5: (a) Proposed CNN architecture, (b) Proposed
LSTM/GRU architecture.

Table I: CNN architecture parameters.

of convolution
stages

1,2,3

of filters 32,64
Kernel sizes 2,3
of Dense layers 2
Drop out rate 0.5
Loss fn. Binary cross

entropy
of epochs 100

Table II: LSTM/GRU architecture parameters.

of LSTM/GRU
layers

1,2,3

of units 32,64
Regular drop out
rate

0.5

Recurrent drop out
rate

0.1

of Dense layers 2
Loss fn. Binary cross

Entropy
of epochs 100

4.2.3. Traditional Machine Learning Models

For the purpose of comparison, we
implemented three traditional machine learning
models, that are reported in the related work of
having high classification performance for
smelly/non-smelly source code; these models are:
(i) Naïve bayes, (ii) C4.5 decision trees and (iii)
Random forests. Scikit-learn [62] was used for the
implementation of these models.

Decision trees: is a supervised machine
learning technique that creates a flow chart like
model which is capable of classification, through
learning some decision rules inferred from the data
features.

Random Forests: is a classifier that builds
several decision trees which forms a forest of
random classifiers, each one uses a specific subset
of the input features. Each tree gives a
classification (vote). The class that is having the
most votes among all the trees in the forest, is
selected.

Naïve bayes: is a probabilistic classifier that is
based on Bayes’ theorem. However, it presumes
that the input features are independent among each
other”.

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2691

4.3. Performance Metrics

The performance of our approach was assessed
using the popular metrics in evaluating the binary
classifiers, which are: Precision, Recall and F-
measure metrics.

Precision is defined as the percentage of the
correctly identified code smells to the total
detected code smells; it is given by (17).

Precision ൌ
୘୔

୘୔ା ୊୔
 (17)

Where, TP (true positives) represents the number
of smelly instances that are correctly detected, FP
(false positives) represents the number of non-
smelly instances that are incorrectly identified as
smelly.

Recall is defined as the percentage of the
correctly identified code smells to the total number
of the actual code smells; it is given by (18).

Recall ൌ
୘୔

୘୔ା ୊୒
 (18)

Where, FN (false negatives) represents the set of
smelly instances that are missed.

F-measure: the harmonic mean of the
precision and recall metrics, it represents a balance
between their values. It is given by (19).

F െ measure ൌ 2 ∗
୔୰ୣୡ୧ୱ୧୭୬∗୰ୣୡୟ୪୪

୔୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪
 (19)

5. EXPERIMENTS AND RESULTS

We designed the experiments to answer the
previously mentioned research questions, as
follows:

Answer to RQ1: Is it possible for textual
features to be an alternative to the source code
metrics for detecting the occurrence of God
class smell?

The aim of this question is to evaluate the
performance of the deep learning architectures and
the traditional classifiers when they are trained
using each of the two sets of features, metrics and
textual, individually. So, we run two sets of
experiments, in the first set we utilized the 61
software metrics recommended by Fontana et al.
[32] as the input features to the classifiers, while in
the second set we used the extracted textual
features. Table III and Fig. 6 depict the results of
all the experiments. As could be observed from
Fig. 6, that CNN, NB, RF, C4.5 suffered drop in
their performance when utilized the textual
features; their F-measures dropped by 7%, 4%, 7%
and 5% respectively. While the GRU and the

LSTM could almost maintain the same
performance across the two sets of metrics, their F-
measures dropped only by 2% and 1%
respectively.

Conclusion: The selection of the classifier is so
important when utilizing the textual features
instead of the metrics for detecting the God class
smell. Some classifiers can maintain almost the
same classification performance across the two
sets of features while others suffer drop in the
performance when replacing the metrics with the
textual features. Maybe including more textual
features of the source code (e.g. the parse tree) or
using embedding vectors, instead of the VSM
model, enhance the performance of the classifiers.

Answer to RQ2: How effective are the three
deep learning neural networks in detecting the
God class smell in comparison to traditional
classifiers?

As observed from Figs. 7 and 8 that the three
deep learning architectures are superior to the NB,
RF and C4.5 regardless of the type of features used
in the training. However, the CNN achieved the
lowest performance across the three deep learning
architectures. While The GRU is the superior
model; GRU could achieve an improvement equal
to 12% (using metrics), 14% (using textual) over
the NB (the superior traditional classifiers).

Conclusion: Generally, deep learning
architectures could achieve better results than
traditional machine learning models in detecting
the God class. Furthermore, the GRU is the
superior model in this context.

Answer to RQ3: Does the combination of the
source code textual features and metrics boost
the performance of the deep learning networks
in detecting the occurrence of the God class
smell?

The aim of this question is to assess the
performance of the proposed methodology,
utilizing hybrid features (combination of the
metrics and textual) in training the deep learning
architectures. We trained each of the three
proposed deep learning architectures using the
hybrid features; Table IV and Fig. 9 depict the
results of the experiments. As could be observed
utilizing the hybrid features boosted the
performance of the LSTM and GRU, while the
performance of the CNN was declined. Moreover,
GRU is the superior architecture.

Conclusion: Utilizing more features does not
always boost the performance of the deep learning

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2692

architectures. In our context, it boosted the
performance of each of the LSTM and the GRU
while harmed the performance of the CNN.

Table III: Performance comparison among deep
learning architectures and three traditional machine
learning techniques in detecting the God class smell.

Approach P R F

LSTM Metrics 90% 86% 88%

Textual 89% 86% 87%

GRU Metrics 91% 88% 89%

Textual 89% 87% 87%

CNN Metrics 84% 86% 87%

Textual 80% 82% 80%

Naïve

Bays

Metrics 82% 74% 77%

Textual 79% 68% 73%

Random
forest

Metrics 58% 62% 59%

Textual 49% 56% 52%

C4.5

Metrics 60% 64% 61%

Textual 61% 52% 56%

Fig 6: Comparison among the F-measure of the six classifiers when trained using metrics or textual features.

Fig. 7: Performance of the six classfiers trained using the source code metrics only.

87% 89% 88%

77%

59% 61%

80%
87% 87%

73%

52%
56%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CNN GRU LSTM NB RF C4.5

Metrics Textual

90% 86% 88%91% 88% 89%
84% 86% 87%

82%
74% 77%

58%
62% 59%60% 64%

61%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P% R% F%

LSTM GRU CNN NB RF C4.5

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2693

Fig. 8: Performance of the six classifiers trained using the source code textual features only.

Table IV: Performance of the proposed deep
learning architectures trained using three set of

features: metrics, textual and hybrid.

Approach P R F

LSTM Metrics 90% 86% 88%

Textual 89% 86% 87%

Hybrid 93% 90% 91%

GRU Metrics 91% 88% 89%

Textual 89% 87% 87%

Hybrid 94% 91% 92%

CNN Metrics 84% 86% 87%

Textual 80% 82% 80%

Hybrid 81% 83% 81%

Fig. 9.: F-measure of the three deep learning
architectures trained using three set of features:

metrics, textual and hybrid.

6. CONCLUSION

The paper proposed a methodology for
detecting the occurrence of the God class smell in
the source code. The proposed methodology
leveraged both of the characteristics (textual and

metrics) of the source code and the capabilities of
the deep learning architectures. To achieve our
purpose, we built a dataset for the God class smell
in source codes acquired from the “Qualitas
Corpus” repository. The textual features of the
source code were extracted using the natural
language processing techniques, then integrated
with the 61 metrics features computed by Fontana
et al. [32]. Three deep learning architectures
(CNN, LSTM and GRU) were trained using three
different types of the source code features (metrics,
textual features and hybrid metrics-textual
features). Moreover, three traditional machine
learning techniques (NB, RF, C4.5) from the
literature were trained, to compare their
performance with the proposed deep learning
architectures. It was found that the performance of
the three deep learning architectures is superior to
the traditional machine learning techniques; and
the GRU is the superior model. Furthermore, each
of the GRU and the LSTM could maintain almost
the same performance when trained using metrics
or textual features only; while the CNN and the
traditional machine learning techniques suffered a
drop in their performance when trained using the
textual features. It is noteworthy that the GRU and
the LSTM achieved their best performance when
they were trained using the hybrid features; while
the best performance of the CNN was achieved
when trained using the metrics features only.

As an extension to this work, the accuracy of
detecting the God class could be boosted through
utilizing other deep learning architectures like the
hybrid CNN-RNN architecture; in addition to,
representing the textual features of the source code
using techniques other than the VSM (e.g. word
embedding). Furthermore, datasets for other code
smells could be built such that the proposed
technique can be extended to detect the
occurrences of other code smells.

89% 86% 87%89% 87% 87%
80% 82% 80%79%

68%
73%

49%
56%

52%
61%

52%
56%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P% R% F%

LSTM GRU CNN NB RF C4.5

89%

87%

92%

88%
87%

91%

87%

80%
81%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

Metrics Textual Hybrid

GRU LSTM CNN

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2694

REFERENCES

[1] M.M. Lehman, “Programs, life cycles, and

laws of software evolution”, in Proceedings of
the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[2] P. Avgeriou, P. Kruchten, I. Ozkaya, C.
Seaman, Managing technical debt in software
engineering, Dagstuhl Reports, 6, Schloss
Dagstuh- l-Leibniz-Zentrum fuer Informatik,
2016.

[3] M. Fowler, Refactoring: improving the design
of existing Code, Addison-Wesley, 1999.

[4] T. Sharma and D. Spinellis, “A survey on
software smells,” Journal of Systems and
Software, vol. 138, pp.158 – 173, 2018.

[5] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and
G. Antoniol, “An empirical study of the
impact of two anti-patterns, blob and spaghetti
code, on program comprehension”, in 15th
European conference on Software
maintenance and reengineering (CSMR)
IEEE, 2011, pp.181–190.

[6] A. Yamashita and L. Moonen. “Exploring the
impact of inter-smell relations on software
maintainability: An empirical study,” in
Proceedings of the 2013 International
Conference on Software Engineering, IEEE
Press, 2013, pp. 682–691.

[7] S. Olbrich, D.S.Cruzes, V. Basili, N.
Zazworka, “The evolution and impact of code
smells: A case study of two open source
systems,” in Proceedings of the 2009 3rd
International Symposium on Empirical
Software Engineering and Measurement,
ESEM09, Washington, DC, USA: IEEE
Computer Society, 2009, pp. 390–400.

[8] M. Tufano, F. Palomba, G. Bavota, R. Oliveto,
M. Di Penta, A. De Lucia, D. Poshy- vanyk,
“When and why your code starts to smell bad
(and whether the smells go away),” IEEE
Transactions on Software Engineering, vol.
43, no. 11, pp. 1063-1088, 2017.

[9] F. Palomba, G. Bavota, M. Di Penta, F.
Fasano, R. Oliveto, A. De Lucia, “A large-
scale empirical study on the lifecycle of code
smell co-occurrences,” Inf. Softw. Technol.
Vol. 99, pp. 1–10, 2018.

[10] A. Chatzigeorgiou, A. Manakos,
“Investigating the evolution of bad smells in
object-oriented code,” in Quality of
Information and Communications Tech-
nology (QUATIC), 2010 Seventh
International Conference on the, IEEE, 2010,
pp. 106–115.

[11] R. Peters, A. Zaidman, “Evaluating the
lifespan of code smells using software

repository mining,” in Software Maintenance
and Reengineering (CSMR), 2012 16th
European Conference on, IEEE, 2012, pp.
411–416

[12] R. Marinescu, “Detection strategies: Metrics-
based rules for detecting design flaws,” in
Proceedings of the International Conference
on Software Maintenance (ICSM), 2004, pp.
350–359.

[13] M. J. Munro, “Product metrics for automatic
identification of “bad smell” design problems
in java source-code,” in Proc. Int’l Software
Metrics Symposium (METRICS), IEEE, 2005,
p. 9.

[14] M. Lanza and R. Marinescu, Object-Oriented
Metrics in Practice: Using Software Metrics
to Characterize, Evaluate, and Improve the
Design of Object-Oriented Systems,
Berlin/Heidelberg: Springer-Verlag, 2006.

[15] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G.
Gu´eh´eneuc, “Numerical signatures of
antipatterns: An approach based on B-
splines,” in Proceedings of the European
Conference on Software Maintenance and
Reengineering (CSMR), IEEE, 2010, pp. 248–
251.

[16] N. Moha, Y.-G. Gu´eh´eneuc, L. Duchien, and
A.-F. L. Meur, “DECOR: A method for the
specification and detection of code and design
smells,” IEEE Trans. on Software
Engineering, vol. 36, no. 1, pp. 20–36, 2010.

[17] N. Tsantalis and A. Chatzigeorgiou,
“Identification of move method refactoring
opportunities,” IEEE Transactions on
Software Engineering, vol. 35, no. 3, pp. 347–
367, 2009.

[18] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, E.
Figueiredo, “A review-based compar- ative
study of bad smell detection tools,” in
Proceedings of the 20th International
Conference on Evaluation and Assessment in
Software Engineering, in: EASE ’16, New
York, NY, USA: ACM, 2016, pp. 18:1–18:12.

[19] M. Zhang, T. Hall, N. Baddoo, “Code bad
smells: a review of current knowledge,” J.
Softw. Maint. Evol., Vol. 23, no. 3, pp. 179–
202, 2011.

[20] F.A. Fontana, P. Braione, M. Zanoni,
“Automatic detection of bad smells in code: an
experimental assessment,” J. Object Technol.
Vol. 11, no. 2, pp. 1–5, 2012.

[21] F. Palomba, G. Bavota, M. Di Penat, R.
Oliveto, D. Poshyvanyk, and A. De Lucia,
“Mining version histories for detecting code
smells,” IEEE Trans. on Software

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2695

Engineering, vol. 41, no. 5, pp. 462–489, May
2015.

[22] D. Ratiu, S. Ducasse, T. Gˆırba, and R.
Marinescu, “Using history information to
improve design flaws detection,” in European
Conf. on Software Maintenance and
Reengineering (CSMR), IEEE, 2004, pp. 223–
232.

[23] W. Kessentini, M. Kessentini, H. Sahraoui, S.
Bechikh, and A. Ouni, “A cooperative parallel
search-based software engineering approach
for code-smells detection,” IEEE
Transactions on Software Engineering, vol.
40, no. 9, pp. 841–861, Sept 2014.

[24] M. Boussaa, W. Kessentini, M. Kessentini, S.
Bechikh, and S. Ben Chikha, “Competitive
coevolutionary code-smells detection,” in
Search Based Software Engineering, ser.
Lecture Notes in Computer Science,
Berlin/Heidelberg: Springer, 2013, vol. 8084,
pp. 50–65.

[25] D. Sahin, M. Kessentini, S. Bechikh, and K.
Deb, “Code-smell detection as a bilevel
problem,” ACM Trans. Software Engineering
Methodology, vol. 24, no. 1, pp. 6:1–6:44, Oct.
2014.

[26] M.I. Azeem, F. Palomba, L. Shi, Q. Wang,
“Machine learning techniques for code smell
detection: A systematic literature review and
meta-analysis,” Information and Software
Technology, vol. 108, pp. 115-138, 2019.

[27] J. Kreimer. “Adaptive detection of design
flaws,” Electronic Notes in Theoretical
Computer Science, vol. 141, no. 4, pp. 117–
136, 2005.

[28] L. Amorim, E. Costa, N. Antunes, B. Fonseca,
and M. Ribeiro. “Experience report:
Evaluating the effectiveness of Decision trees
for detecting code smells,” in IEEE 26th
International Symposium on Software
Reliability Engineering (ISSRE), 2015, pp.
261–269.

[29] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and
H. Sahraoui, “Bdtex: A gqm-based bayesian
approach for the detection of antipatterns,”
Journal of Systems and Software, vol. 84, no.
4, pp. 559–572, 2011.

[30] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané,
Y.-G. Guéhéneuc, G. Antoniol, and E.
Aïmeur, “Support vector machines for anti-
pattern detection,” in Proceedings of the 27th
IEEE/ACM International Conference on
Automated Software Engineering (ASE),
2012, pp. 278–281.

[31] Y.-G. Guéhéneuc, “Ptidej: Promoting patterns
with patterns,” in Proceedings of the 1st

ECOOP workshop on Building a System using
Patterns, Berlin/Heidelberg: Springer-Verlag,
2005.

[32] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and
A. Marino, “Comparing and experimenting
machine learning techniques for code smell
detection,” Empirical Software Engineering,
vol. 21, no. 3, pp. 1143–1191, 2016.

[33] D. Di Nucci, F. Palomba, D. A. Tamburri, A.
Serebrenik, and A. De Lucia, “Detecting code
smells using machine learning techniques: are
we there yet?” In IEEE 25th International
Conference on Software Analysis, Evolution
and Reengineering (SANER), 2018, pp. 612–
621.

[34] M. Hadj-Kacem and N. Bouassida, “A Hybrid
Approach to Detect Code Smells using Deep
Learning,” in Proceedings of the 13th
International Conference on Evaluation of
Novel Approaches to Software Engineering
(ENASE 2018), 2018, pp. 137-146.

[35] H. Liu, Z. Xu, and Y. Zou, “Deep learning
based feature envy detection,” in Proceedings
of the 33rd ACM/IEEE International
Conference on Automated Software
Engineering, ACM, 2018, pp. 385–396.

[36] S. Fakhoury, V. Arnaoudova, C. Noiseux, F.
Khomh and G. Antoniol, “Keep it simple: Is
deep learning good for linguistic smell
detection?,” in 2018 IEEE 25th International
Conference on Software Analysis, Evolution
and Reengineering (SANER), Campobasso,
2018, pp. 602-611.

[37] S. Hochreiter and J. Schmidhuber, “Long
short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[38] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio,
“Empirical evaluation of gated recurrent
neural networks on sequence modelling,”
arXiv preprint arXiv:1412.3555, 2014.

[39] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.
Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE
conference on computer vision and pattern
recognition, 2015, pp.1-9.

[40] Y. Kim, “Convolutional Neural Networks for
Sentence Classification,” in Proceedings of
the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP),
Qatar, Doha, Oct. 2014, pp. 1746–1751.

[41] R. Johnson and T. Zhang, “Semi-supervised
convolutional neural networks for text
categorization via region embedding,” in
Advances in Neural Information Processing
Systems, 2015, pp. 919-927.

Journal of Theoretical and Applied Information Technology
31st July 2020. Vol.98. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2696

[42] K. Cho, B. Van Merri¨enboer, D. Bahdanau,
and Y. Bengio, “On the properties of neural
machine translation: Encoder-decoder
approaches,” arXiv preprint arXiv:1409.1259,
2014.

[43] C. Baziotis, N. Pelekis, and C. Doulkeridis,
“Datastories at semeval-2017 task 4: Deep
LSTM with attention for message-level and
topic-based sentiment analysis,” in
Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-
2017), pp. 747–754.

[44] H. Wei and M. Li, “Supervised Deep Features
for Software Functional Clone Detection by
Exploiting Lexical and Syntactical
Information in Source Code,” in Proceedings
of the 26th International Joint Conference on
Artificial Intelligence (IJCAI'17), pp. 3034–
3040, 2017.

[45] T. Wen, M. Gasic, N. Mrkˇsi´c, P. Su, D.
Vandyke, and S. Young, “Semantically
Conditioned LSTM-based Natural Language
Generation for Spoken Dialogue Systems,” in
Proceedings of the 2015 Conference on
Empirical Methods in Natural Language
Processing, 2015, pp. 1711–1721.

[46] F. Palomba, G. Bavota, M. Di Penta, F.
Fasano, R. Oliveto, and A. De Lucia, “On the
diffuseness and the impact on maintainability
of code smells: a large scale empirical
investigation,” Empirical Software
Engineering, vol. 23, no. 3, pp. 1188–1221,
2018.

[47] I. Goodfellow, Y. Bengio, A. Courville, and
Y. Bengio. Deep learning,Vol. 1, Cambridge:
MIT press, 2016.

[48] A. Hotho, A. Nurnberger, G. Paas, “A brief
survey of text mining,” Journal for
Computational Linguistics and Language
Technology, 2005, pp. 19–62.

[49] T. Mikolov, I. Sutskever, K. Chen, G. S.
Corrado, and J. Dean, “Distributed
representations of words and phrases and their
compositionality,” in Advances in neural
information processing systems, pp. 3111–
3119, 2013.

[50] A. Hamdy, A. El-laithy, “Using smote and
feature reduction for more effective bug
severity prediction,” International Journal of
Software Engineering and Knowledge
Engineering, vol. 29, no. 6, pp. 897-919, 2019.

[51] A. Hamdy, A. El-Laithy, “Semantic
Categorization of Software Bug Repositories
for Severity Assignment Automation, Studies
in Computational Intelligence,” Integrating
Research and Practice in Software

Engineering, Vol. 851, pp 15-30, January
2020.

[52] A. Hamdy, M. Elsayed, “Towards more
accurate automatic recommendation of
software design patterns,” in Journal of
Theoretical and Applied Information
Technology, 2018, vol. 96, no. 15, pp. 5069-
5079.

[53] A. Hamdy, M. Elsayed, “Topic modelling for
automatic selection of software design
patterns,” in proceedings of the International
Conference on Geoinformatics and Data
Analysis ICGDA '18, Prague, Czech Republic,
April 20th - 22nd, 2018, pp. 41-46.

[54] A. Hamdy, M. Elsayed, “Automatic
Recommendation of Software Design
Patterns: Text Retrieval Approach”, Journal
of Software, Vol. 13, No. 4, pp. 260-268, April
2018.

[55] A. Hamdy and A. Mohamed, “Greedy Binary
Particle Swarm Optimization for multi-
Objective Constrained Next Release
Problem,” International Journal of Machine
Learning and Computing, vol. 9, no. 5, pp.
561-568, October 2019.

[56] A. Hamdy, “Genetic fuzzy system for
enhancing effort estimation models”,
International Journal of Modeling and
Optimization (IJMO), vol. 4, no.3, June 2014.

[57] A. Hamdy, “Fuzzy Logic for enhancing the
sensitivity of COCOMO cost model”, Journal
of Emerging Trends in Computing and
Information Sciences (CIS), vol. 3, no. 9,
September 2012.

[58] E. Tempero, C. Anslow, J. Dietrich, T. Han, J.
Li, M. Lumpe, H. Melton, and J. Noble, “The
Qualitas corpus: A curated collection of java
code for empirical studies,” in 17th Asia
Pacific Software Engineering Conference
(APSEC), 2010, pp. 336–345.

[59] JavaLang, Available:
https://pypi.org/project/javalang/.

[60] NLTK, Available: https://www.nltk.org/.
[61] Keras, Available: https://keras.io/.
[62] Scikit, Available: https://scikit-learn.org/.

