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ABSTRACT 
 

Fused Deposition Modeling (FDM) is a 3D printing process (additive manufacturing) that is widely used 
around the world in a variety of industrial applications due to its ability to create complex 3D parts and 
geometries. The accuracy of parts printed by FDM technology is greatly influenced by various process 
parameters which are often difficult to determine. Increasing dimensional accuracy is the major concern of 
most industrial applications and affects the cost and functionality of the fabricated part. One of the key 
issues of the FDM process is how to select the right parameter to reduce the dimensional errors.This study 
offers an optimality criterion to optimize FDM parameters in order to go over the limits of the traditional 
designs previously used. The influence of the FDM parameters is studied using the D-optimal surface 
response methodology. Their effects on dimensional accuracy are studied critically. Mathematical model 
has been formulated to develop a functional non-linear relationship between process parameters and 
dimensional accuracy. Ultimately, the optimal setting of the process parameters has been determined and 
the results show that the optimality criterion is a very promising technique to optimize the FDM process 
parameters. 

Keywords: Additive Manufacturing; Fused Deposition Modeling; Parameters Optimization; Response 
Surface Method; Dimensional Accuracy 

 
1. INTRODUCTION  
 

Additive An The Additive Manufacturing 
Process (AM) creates three-dimensional (3D) parts 
by sequentially fabricating the material layers [1] 
without the use of shaping tools. So additive 
manufacturing (AM) reduces material wastage, is 
more economical and allows flexibility in geometric 
complexity unlike traditional subtractive 
manufacturing processes [2]. In recent years, the 
manufacturing of parts by additive manufacturing 
process has increased enormously [3]; so is called 
Rapid Manufacturing [4, 5]. Additive 
manufacturing applications focus on products in 

various fields such as medicine, mechanical 
engineering, art, fashion [6, 7]  and aerospace, 
which is the second largest market for which AM 
technology is profitable because of its 
customization, low volume and high value-added 
production lines [8, 9].  

The AM process is applied to treat different kinds 
of materials: for example polymers, ceramics and 
metals, as long as different types of machines are 
operated. As for polymeric AM polymerization, 
three main types of additive manufacturing 
processes are currently available [10]: 
stereolithography (SLA) [11, 12] based on the use 
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of photopolymers that can be selectively cured 
using various sources of energy (the most common 
being UV). Selective Laser Sintering [13-15], 
where polymer powders ise used as a base material 
assembled by laser and Fusion Deposition 
Modeling (FDM) [16-18], in which the parts are 
printed from polymeric filaments. 

FDM technology is the most popular method, 
developed by Stratasys. Part of the additive 
manufacturing technologies allows a fast and clean 
manufacturing of functional components and 
prototypes. In this technology, the layers are made 
by extruding a thermoplastic filament, which is 
unwound from a coil and sent to the head of the 
liquefier to produce a part. The semi-molten 
filament acts to pass through small nozzles of 
diameter (0.4mm, 0.6mm, 0.8mm, 1.00mm and 
1.20mm) where it is melted and then deposited in 
the form of a thin layer on a heated table as shown 
in Figure 1 . Once on the bed, the polymer hardens 
because of cooling. Subsequently, the platform goes 
down, and the printer proceeds in the same way for 
the next layers. 

 

Figure 1: FDM manufacturing process 
The filament generally has a circular section with 

specific diameters for each FDM system. The most 
used diameters are either 3.0 mm or 1.75 mm. 
Additive manufacturing processes, including FDM 
technology, are needed to produce high quality 
parts. The need of FDM increases in all areas: such 
as telecommunications, recreation, naval industry, 
military, medical implants, aerospace and 
electronics that require an ever-higher level of 
dimensional accuracy. Some applications require 
dimensional accuracy with tight tolerances will 
ensure dimensional repeatability and stability of the 
printed parts. The dimensional accuracy of the 
FDM printed part depends greatly on the selected 
process parameters. FDM-printed parts suffer from 
dimensional inaccuracy compared to other AM 
technologies such as SLA or SLS due to the 
diversity of conflicting process parameters that 

affect dimensional accuracy individually or 
collectively in several parameters interactions [19]. 

This document is composed of: Section 2 the 
current state of art. Section 3 presents the research 
methodology used and useful information on the 
use of optimal designs, including the D-optimality 
criterion. Section 4 presents an analysis of the data 
obtained from the experience and mathematical 
models developed. Section 5 discusses the results. 
Section 6 presents the conclusions. 

2. LITERATURE REVIEW 
 
Some research work has been done to optimize 
dimensional precision of parts completed in FDM. 

Ala aldin Alafaghani [29] studied the influence of 
FDM processing parameters on the quality of parts 
and their functionality. The study investigates the 
effect of parameters independently from mechanical 
properties and dimensional accuracy.From a 
Taguchi plan, they have established 18 test samples 
which were printed using various processing 
parameters. In order to study the repeatability and 
resulting tolerances, the dimensions of these 
specimens were measured and compared to a 3D 
CAD model. In addition, the study presents a new 
approach developed for modeling FDM parts using 
FEA. Nancharaiah et al. [30] applied an 
experimental method on dimensional accuracy and 
surface quality using the ANOVA technique and 
the Taguchi method. However, in this experimental, 
optimal parameters have not been addressed.Sahu et 
al. [31] applied the Taguchi Experience Plan to 
study the effect of process parameters on the 
accuracy of parts. However, the use of the Fuzzy 
Inference System (FIS) requires the development of 
rules. Therefore, it requires a thorough the expertise 
and prior experience. Tobias Lienekea [32] studied 
missing restrictions which appear in the available 
geometric accuracy. The objective of this study was 
the experimental determination of dimensional 
tolerances using standard parameters. To that end, a 
methodical procedure has been put in place. On the 
basis of the experimentally determined deviations, 
dimensional tolerances were calculated. Sood et al. 
[33] experimented the influence of manufacturing 
parameters on dimensional accuracy using the 
Experiment Plan Method (Taguchi Plan) and 
Artificial Neural Networks (ANN). They noted that 
the optimal manufacturing parameters are different 
for each quality criterion, indicating that the optimal 
manufacturing parameters are not obtained. For this 
reason, the Gray Relational Grade (GRG) was used 
to turn three responses into one answer. The 
limitation of this work is that the optimal settings 
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are limited to experimental values, where, in fact, 
the optimal settings are not exactly the same as the 
parameter values used in the experimental matrix. 
Vijay.B.Nidagundi [34] have studied optimization 
of process parameters for melt deposition modeling 
(FDM). Layer thickness, orientation angle, and fill 
angle are the process variables considered for 
optimization. Tensile strength, surface roughness, 
dimensional accuracy and manufacturing time were 
considered response parameters. The experiments 
were designed using Taguchi's well-known L9 
Orthogonal Network. Taguchi's S / N ratio was used 
to identify the optimal values of the parameters. 
The effectiveness of each parameter was studied 
using an analysis of variance. In the end, the 
performance of the optimal conditions was 
validated by a verification experiment. Zhang and 
Peng [35] studied the relationship between 
dimensional errors, manufacturing parameters and 
deformations. They noticed that the optimal 
manufacturing parameters for deformation and 
dimensional error vary. However, if the goal is to 
minimize deformation and dimensional error at the 
same time, the study could not provide a definitive 
answer in terms of a global solution to this problem. 

The current state of art indicates that during the 
production, the dimensional accuracy of 
manufactured parts is influenced by various 
parameters of the FDM process. Although large 
optimization studies to reduce the dimensional 
errors of parts was proposed, they still have some 
drawbacks and weaknesses. First of all, the majority 
of previous research work has mainly studied the 
dimensional accuracy of parts manufactured by 
ABS and not by PLA (Polylactic Acid). Secondly, 
traditional experimental designs such as GRG and 
Taguchi have been used previously to improve the 
quality of parts. However, traditional processes are 
too complex to establish a functional relationship 
between dimensional accuracy and process 
parameters. Then, there are many studies that use 
the Taguchi method combined with a global ANN 
or fuzzy assessment. Indeed, ANN and FIS do not 
provide sufficient studies on factors and their 
interaction effects on dimensional accuracy if 
additional analyzes. However, this approach has its 
drawbacks, because it takes into account the 
complexity of the computation process, it requires a 
large amount of data for appropriate technical 
judgment to interpret the responses or results. 
Finally, no study considers all parameters with all 
possible levels that may be affecting dimensional 
accuracy. And this is very important to achieve a 
much improved accuracy and a functional 

relationship between dimensional accuracy and 
manufacturing parameters. 

Our research work unlike the work of previous 
studies, attempts to overcome the limitations of 
previous work by developing a method that can 
improve dimensional accuracy effectively. This 
article presents a methodology based on computer-
generated optimal designs using a reliable and 
efficient criterion D optimality to deal with the 
optimization problem involving many FDM 
parameters and levels of constraints (irregular 
experimental matrix) . The proposed methodology 
has a better performance and accuracy than 
previous methodologies in several cases. In this 
work, we have established global relationships 
between developed the mathematical models and 
the dimensional accuracy and parameters of the part 
by PLA (Polylactic Acid). In this study, a complete 
analysis was provided taking into account all 
critical process parameters with the possible levels. 
This proposed and developed method was then 
validated in terms of accuracy and precision. 

3. METHODS AND MATERIALS 
3.1 Experimental Work: 

In this work, the specimen used has a length of 
35 mm, a width of 12.5 mm and a height of 3.5mm. 
This was designated from the basis of ASTM 
D5418-07 [20] and references from the TA 
instrument manufacturer [21] that was presented in 
Figure 2. A total of 50 samples (shown in Figure 3) 
that were printed by the 3DP WORKBENCH 
machine (shown in Figure 4) from 3DP Platform 
Industries, using a nozzle diameter of 0.6 mm 
diameter and 1.75 mm diameter filaments and PLA 
material (Polylactic Acid). 

 

 
Figure 2: Sample dimensions 

 

 
Figure 3: printed samples 
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This FDM printer has a print size of 1000 x 1000 

x 500 mm with a resolution of 0.07 mm. Samples 
were manufactured in the XYZ orientation at the 
center of construction bed [22]. All models were 
created in the SolidWorks design and modeling 
software and converted to standard STL file, the 
STL file was prepared in the Simplify3d software 
to generate the toolpath and set all process 
parameters on all samples. All samples were made 
using PLA (Polylactic Acid) filaments 1.75 mm in 
diameter and nozzle diameter 0.6 mm. 

The measurements of dimensional accuracy were 
made using a 3-dimensional CMM-type gantry and 
CNC-guided measuring machine; they allow high 
precision measurements of 0.0001 mm and with an 
optional PH9 probe head. From a point cloud taken 
from an actual surface (or curve), the machine 
software proceeds to identify the sensed element. 

 
Figure 4: 3DP workbench used 

This operation consists of associating a 
theoretical surface (or curve) to the cloud of 
palpated points. The most used association criteria 
are the Chebyshev criterion or the least squares 
criterion. MMT has been programmed to perform 
measurements automatically to avoid errors that 
may occur during the measurement process during 
a manual measurement. So, to carry out this 
program we developed a range of measurement 
according to: 

 

 
 

 
Figure 5: Assembly and fixing of samples (a), Assembly 

of the probe 1 and probe 2     (b, c). 
 
• The NC program parameters are: Travel speed: 
100 mm / s, Measurement speed: 1 mm / s, Safety 
distance: 1 mm and Maximum length in measuring 
speed: 2 mm. 
• For the positioning of the samples in the MMT 
table, a mounting device and fixtures were used to 
fix the samples and to allow repeatability and ease 
of measurement as shown in Figure 5a. 
• Assembly of the probe 1 and probe 2, then 
calibration of the two probes in diameter and 
position by measuring the reference sphere. The 
probe 1 is chosen long enough to reach any plane 
point PL1, its orientation is substantially parallel to 
PL1 (see Figure 5b). The probe 2 is chosen long 
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enough to reach any point of the planes PL2, PL3, 
PL4, PL5 and PL6. Its orientation is substantially 
perpendicular to the plane PL2 and parallel to the 
PL3, PL4, PL5 and PL6 planes (see Figure 5c). 
 
 5 point probing of the known plane surface 

PL1. 
 9 point probing of the known plane surface 

PL2. 
 3 point probing of the known plane surface 

PL3. 
 4 point probing of the known plane surface 

PL4. 
 3 point probing of the known plane surface 

PL5. 
 4 point probing of the known plane surface 

PL6. 
From the measurement results of length, width and 
thickness were made per sample, the following 
equation 1 was developed to calculate the 
dimensional error: 

EXPCAD DDD    (1) 

D  Represents the dimensional error, CADD  

represents the value of the CAO model and EXPD  

represents the experimental value. 
 
3.2 Experimental Design: 
3.2.1 The designated process elements and 

their levels: 
The quality of an FDM printed model depends 

primarily on the designated process elements. In 
this research study the manufacturing parameters 
that have been treated are defined as follows [23, 
24]: Platform temperature (A); Extruder 
temperature (B); Layer thickness (C); Number of 
shells (D); Infill density (E); Print speed (F); Infill 
pattern (G); Number of solid layers 'U / L' (H). 
Each of the parameters analyzed was assigned to 
three levels of control as Table 1 presented. The 
levels of these control parameters are selected from 
the literature review, their relevance, significance, 
and experience gained from the preliminary pilot 
surveys, as well as the maximum and minimum 
allowed values. Other research work focuses on a 
single parameter, such as the direction of the 
building [25], while others focus on 3 or 4 to 6 
treatment parameters at the same time. Effects as in 
[26-28]: where the effect of layer height, the 
construction direction, the number of shells and 
other parameters are studied at the same time. 

 
 

 

Table 1: Parameters and levels of varying Processing 
Parameters 

Symbols Factors Units Levels 
A Platform temperature ◦C 70 75 80 
B Extruder temperature ◦C 190 200 

210 
C Layer thickness mm 0.15 0.3 

0.45 
D Number of shells – 1 2 3 
E Infill density % 25 50 75 
F Print speed  mm/s 50 65 80 
G Infill pattern ’H=1 

D=2 L=3’ 
– H D L 

H Number of solid layers 
’U/L’ 

– 2 3 4 

The manufacturing parameters are represented 
graphically (shown in Fig.6 (a-d)) are defined as 
follows: 
 (A) Platform temperature is the bed 

temperature. 
 (B) Extruder temperature is the necessary 

temperature to melt the material 
 (C) Layer thickness is the thickness of the 

extruded layer. It is based on the filament and 
the nozzle diameters (figure5-a). 

 (D) Number of shells is the number of outlines 
built around the outer and inner pattern. (figure 
5-b).  

 (E) Infill density: is the percentage of the infill 
of the printed part. 

 (F) Print speed: is the printing velocity in 
mm/s. 

 (G) Infill pattern: is the internal structure of the 
print H: Honeycomb; D: Grid; L: Rectilinear 
(figure 5-c). 

 (H) Number of solid layers 'U / L': the number 
of upper and lower layers (figure 5-d) 

Figure 6: Input parameters, (a) Layer thickness,(b)  
Number of   shells, (c) Infill pattern, (d) Number of solid 

layers 'U / L' 
3.2.2 Developing the experimental design 

matrix: 
The study of eight parameters using traditional 

experimental designs such as complete factorial 
requires 256 examinations and Taguchi plan 
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requires 18 analyses. It should be noted that these 
numbers of analyses from the complete factorial 
design are only at two levels of each parameter 
(standard designs) and the number of analyses from 
Taguchi plan is not required for processing of 
complex problems. In addition, Taguchi matrices 
are not suitable for nonlinear and complex 
problems because of the higher order of empirical 
polynomial models that cannot be mapped using 
these methods, which is very important when that 
the goal is optimization. Therefore, the D-optimal 
design proposed in this study offers a better 
alternative approach, since it provides a better 
accuracy with only 50 analyses at eight parameters 
and three levels at each parameter (irregular 
experimental matrix). The efficiency and accuracy 
of an experimental model depend on the precise 
measurement of responses, as well as the detailed 
planning of experimental procedures. The optimal 
design improves the accuracy of the models 
developed by testing the lack of fit and reducing the 
influence of the design points on the fit regression 
response. This provided the appropriate degrees of 
freedom needed and provided an accurate estimate 
of the variation in responses to develop an adequate 
relationship between parameters and output 
responses. Table 2 represents the final design 
matrix. 

 
4. ANALYSIS 

From the D-optimal design matrix, dimensional 
errors in length, width and thickness were analysed 
to obtain the results of the different variables 
responses and to study the effects of the parameters 
involved. Table 2 presents the experimental results 
for the three responses of length ∆L, width ∆W and 
thickness ∆T in each set of operating conditions, 
based on the D-optimal design. The responses were 
then analysed to develop the most appropriate 
mathematical models. For the regression and 
graphical analysis of the data collected during the 
experiment, we used MATLAB software. In this 
study, linear models, interactions, pure quadratic 
and quadratic were analysed in order to determine 
the best model in terms of adaptability to 
experimental data. Table 3 presents the statistical 
summary of the models. 

This table clearly shows that the quadratic model 
has p-value for the F-test on the weaker model 
(meaning) and Square root of the mean squared 
error, which estimates the standard deviation of the 
error distribution is lower by a for the other 
modules. In addition, the quadratic model has the 

highest R-squared and Adjusted R-squared. 
Moreover, adjusted R-square is in very good 
agreement. Thus, the quadratic model provides an 
excellent explanation of the relationship between 
dimensional accuracy and FDM parameters. It was 
therefore used in this study. 

4.1 Development Of Mathematical Models: 

RSM (Response Surface Methodology) is a set 
of mathematical and statistical techniques useful for 
improving, developing and optimizing process 
variables. This is dedicated to the evaluation of the 
relationships between the controlled experimental 
factors and the observed results of one or more 
selected criteria. The RSM consists of a group of 
techniques used in the empirical study of the 
relationship between several input variables and a 
response. If all the variables are supposed to be 
measurable, the response surface can be expressed 
as in the function: Y=f (X1;X2;……;Xk). The goal 
is to optimize the response variable y. The Eq.2 
expressed the quadratic regression model used in 
this study as follows: 

   
 

k
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 (2) 

 Y is the predicted response 
 k is the number of variable 
 Xi and Xj are the coded variables 

 0 is the constant of the regression equation 

 ii  is the interactive coefficient 

 ij  is the square term of each variable 

 ε is the random measurement error 
 
In matrix form: 

  XY        (3) 

 
The solution of equation 2 can be obtained by the 

matrix approach: 

YXXX TT 1)(    (4) 

In addition, for the eight parameters, the 
quadratic model could be formulated in equation 5: 
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(5) 
After determining the coefficients, the 

mathematical models were developed. These 
models can be used to evaluate and study the 
relationship between input parameters and the 
dimensional accuracy required in terms of length, 
width, and thickness variation by giving levels of 
each factor, with factor levels specified in the 
original units. The final models developed, in terms 
of their actual values for length ∆L, width ∆W and 
thickness ∆T, are given by equations 6, 7 and 8, 
respectively: 

22

222

5-

5-

5-

0.018499H+0.033656G-

0.014104D-1.5487C+0.001351A

-H0.0087295G+FH0.00089654-FG0.00047387

-EH0.00035869+EF10*3.792-G0.0064656D

-F0.0008086D-0.072752CH-0.040393CG

-E0.0022484C-BH0.00058834-G 0.0019589B

-BE10*7.5847-0.008502BC+H0.0019693A

AF108.5158-0.018841AC- 0.091621H

-0.56082G +0.013385F+ 0.017735E+0.15864D

+0.89266C-0.0035799B+0.212A+9.2368



L

(6) 
Table 2: D-Optimal Design Matrix And Collected Data

RUN Factors Responses 
A B C D E F G H T M 

1 80 210 0.45 3 25 80 L 4 3 2.27 
2 80 210 0.45 1 75 50 L 4 4 2.28 
3 70 190 0.15 3 75 65 H 4 7 1.78 
4 70 210 0.15 1 75 50 H 3 8 1.66 
5 80 190 0.15 3 25 80 H 4 5 1.5 
6 80 210 0.45 1 75 80 H 2 2 1.99 
7 80 190 0.45 3 75 50 D 4 3 2.27 
8 80 190 0.15 1 75 80 H 2 5 1.61 
9 70 210 0.15 3 25 50 L 4 8 1.52 

10 70 210 0.45 3 25 80 H 4 3 2.27 
11 70 200 0.45 1 25 50 D 4 4 2.28 
12 80 190 0.45 1 25 50 L 4 4 2.28 
13 70 210 0.15 1 75 80 L 2 5 1.74 
14 80 190 0.45 1 75 80 L 2 2 2.08 
15 80 190 0.45 1 75 50 H 2 3 1.99 
16 70 190 0.15 1 25 65 L 2 4 1.08 
17 70 190 0.45 2 25 50 H 3 3 2.02 
18 70 190 0.45 3 50 80 L 4 3 2.27 
19 70 190 0.15 3 75 50 L 2 8 1.83 
20 80 190 0.45 1 75 80 H 4 3 2.28 
21 80 190 0.3 3 25 50 L 2 4 1.64 
22 80 210 0.15 1 25 50 L 2 5 1.08 
23 80 190 0.15 1 50 50 H 4 7 1.48 
24 80 210 0.15 1 50 80 L 4 5 1.55 
25 70 210 0.45 2 75 80 D 4 3 2.28 
26 70 210 0.45 1 25 80 L 3 2 1.97 
27 70 210 0.45 1 25 50 H 2 3 1.65 
28 70 200 0.15 1 25 80 H 4 4 1.28 
29 70 200 0.15 3 75 80 L 3 6 1.86 
30 80 210 0.15 3 25 80 L 2 5 1.38 
31 70 190 0.45 3 25 80 L 2 2 1.84 
32 70 210 0.3 3 75 65 D 2 4 2.1 
33 75 190 0.15 2 25 80 L 4 5 1.42 
34 70 190 0.45 1 75 80 H 2 2 1.99 
35 70 200 0.45 2 50 50 L 2 3 1.93 
36 80 210 0.15 3 75 50 H 2 8 1.71 
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37 80 200 0.15 2 75 65 L 4 7 1.85 
38 80 210 0.45 3 25 50 D 2 3 1.89 
39 70 210 0.45 3 75 50 H 4 3 2.27 
40 75 210 0.45 1 50 65 H 4 3 2.28 
41 75 200 0.15 3 25 50 H 2 7 1.35 
42 70 210 0.15 2 50 80 H 2 5 1.47 
43 75 210 0.45 3 75 50 L 2 3 2.13 
44 80 210 0.15 1 25 65 H 3 4 1.18 
45 75 200 0.3 3 50 80 D 3 3 1.97 
46 75 210 0.15 3 75 80 H 4 6 1.78 
47 80 190 0.45 3 75 80 H 2 2 2.06 
48 70 190 0.3 1 75 50 L 4 5 2.08 
49 80 190 0.45 1 25 80 H 2 2 1.65 
50 80 210 0.3 2 25 50 H 4 4 1.87 

 
Table 3: The Statistical Summary Of The Models. 

Response Model P-value R2 R2 Adj Root Mean 
Squared 

Error 

Precision Remarks 

∆L Linear 5.4 ∗ 10−9 0.67 0.624 0.0385 Inadequate  
Interactions 7.32 ∗ 10−9 0.887 0.809 0.0275 Inadequate  
Purequadratic 6.33 ∗ 10−8 0.628 0.576 0.0409 Inadequate  
Quadratic 4.34 ∗ 10−10 0.976 0.937 0.0157 Adequate Selected 

∆W Linear 5.14 ∗ 10−13 0.861 0.821 0.0265 Inadequate  
Interactions 5.14 ∗ 10−13 0.861 0.821 0.0265 Inadequate  
Purequadratic 3.31 ∗ 10−13 0.906 0.865 0.023 Inadequate  
Quadratic 5.14 ∗ 10−11 0.984 0.957 0.013 Adequate Selected 

∆T Linear 2.81 ∗ 10−7 0.729 0.641 0.0628 Inadequate  

Interactions 1.36 ∗ 10−7 0.774 0.684 0.0589 Inadequate  

Purequadratic 2.09 ∗ 10−10 0.883 0.882 0.0442 Inadequate  

Quadratic 3.45 ∗ 10−10 0.955 0.905 0.0323 Adequate Selected 

 
 

 

222

25-22

25-

5-

5-

0.017576H+0.016321G-F0.00012892

-E10*2.2585+0.022442D-1.8364C

+A0.00085333-EF10*2.303-G0.0041935D

-DF0.00028402+DE0.00035901-0.083541CH

+0.047168CG-F0.0028997C+E0.0021619C

-G0.0018614B-BE10*4.246-C0.0067878B

+AH0.00089284+AG0.00080476-AE10*7.7802

-C0.0058007A-AB0.00012194- 0.17844H

-0.52171G +0.01839F+0.015365E +0.12384D

+2.3057C-0.0098978B+00.16006A+-7.8175W

(7) 

22

25-22

5-

5-

0.056329G-F0.00016194

-E10*4.2589+3.7194C-0.0023279A

-FH0.00070657+EG0.00059124-EF10*4.281

-0.019251DG-0.098881CH+F0.0059142C

-E0.0095769C+0.23827CD+D0.0018528B

+G0.0037604A+AF0.00024119-AE10*8.4681

-0.003443AD- 0.08295H-0.0078414G

 +0.041985F+0.0022519E+0.12077D

-1.7033C+0.0068654B-0.36642A+-14.046T

(8) 
All developed mathematical models are subject 
to constraints: 
70⩽ A⩽ 80 
190⩽ B ⩽210 
0.15 ⩽ C ⩽0.45 
1⩽ D ⩽ 3 
25⩽ E ⩽ 75 
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50⩽ F ⩽ 80 
1⩽ G ⩽3 
2⩽ H ⩽4 
 
4.2 Checking The Adequacy Of The Data 

With The Developed Models: 
The relevance of the developed models was 

evaluated at a 95 % confidence interval by 
applying the ANOVA technique, which is used 
to evaluate the meaning of the developed 
models. In order to develop realistic models, the 
significance terms with the highest partial 
likelihood values were filtered using the 
upstream elimination method.  P-value for the 
statistic F hypotheses verifies that the 
corresponding coefficient is equal to zero or not. 
For example, the p-value of the F statistic for   is 
greater than 0.05, so this term is not significant at 
the 5% significance level given the other terms 
of the model. 

 
The validity of developed regression models 

was also assessed using normal probability 
curves. Fig 7 (a - c) shows the normal probability 
curves of the residues for the dimensional error 
in length, width and thickness, respectively. 
These values indicate that the residues lie on a 
straight line and follow a normal distribution, 
this indicates that the developed models are well 
adapted to the experimental values and that the 
errors are normally distributed. 

 

 

 

Figure 7: Normal Probability Plot Of Residuals For 
Variation Of: (A) Length, (B) Width And (C) Thickness 

The experimental values were compared to the 
predicted values of the dimensional error in 
length, width and thickness calculated from 
equations 6 to 8. Fig. 8 (a - c) presents predicted 
values plotted with experimental values for three 
responses, respectively. It can be noted that there 
is a high degree of correlation between the 
predicted values and the experimental values, 
which implies that the developed models are able 
to accurately model the relationship between 
dimensional accuracy and parameters and can 
produce accurate results. 
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Figure 8: Comparisons Of Experimental Values And 
Predicted Values For The Variation Of: (A) Length, 

(B) Width And (C) Thickness 

5. RESULTS AND DISCUSSION 

In order to verify and understand the effect of 
the eight process parameters on the three output 

responses, the 3D response surface curves can be 
graphically applied to study and analyze the 
interactions between factors and their main 
effects on responses, as well as the other factors 
are held constant at their center value. On the 
other hand, 3D response surface graphics can be 
applied to achieve the optimal response of 
variation in length, width, and thickness. From 
the developed models, the 3D response surface 
curves were plotted to understand the behavior of 
the output responses, which are studied by 
different levels of process parameters. Figures 9 
to 11 show the corresponding 3D response 
surface plots showing various interactive effects 
of parameters for the three output responses, 
respectively comprising the variation in length, 
width, and thickness. The colored bars in figs.9 
to 11 indicate the various effects of the process 
variables on the response. 

5.1 Influence Of Process Parameter On The 
Dimensional Error Of The Length: 

From a global observation of Figure 9 (a - g), 
a high interaction between deferent process 
parameters and the change in length was noted. 
Fig. 9 (a - g) illustrates the 3D surface diagrams 
between the most significant process parameter 
interactions for the change in length. In Figure 9 
(a) it can be seen that the variation in length 
between the fabricated part and the dimensional 
error can be reduced by decreasing the Platform 
temperature and the thickness of the layer is 
average value. The variation in length proved to 
be lower (0.2047 mm) for a the Platform 
temperature 70  and with a layer thickness of 0.3 
mm.  Fig 9 (b) illustrates the effect of layer 
thickness and the extruder temperature on the 
dimensional error with Platform temperature, 
Number of shells, Infill density, print speed, 
Infill pattern and Number of solid layers' U / L 
are maintained constant to their value in the 
center. Dimensional imprecision can be caused 
by the removal of the extruded material as it 
passes from the semi-molten state to the solid 
state. Note in Figure 9 (b) that the dimensional 
error increases when the Extruder temperature is 
low and the thickness of the layer is at its 
maximum or minimum value (min is the low 
value of the thickness of the layer and max value 
nearest to the diameter of the nozzle). The 
optimum value of the change in length (0.2254 
mm) for this interaction can be obtained with an 
extruder temperature of 210  and a layer 
thickness of 0.3 mm. Figure 9 (c) is the graph of 
the surface response that shows the effect of the 
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number of contours and the thickness of the layer 
on the variation of length when other parameters 
remain constant at their value in the center. As 
can be seen in this figure, the dimensional error 
tends to increase steadily as the number of 
contours increases. The optimum value of the 
change in length (0.2068 mm) for this interaction 
can be obtained with a number of contours of 1 
and a layer thickness of 0.330 mm. Because 
lower values of the contours number can reduce 
deformation by reducing the build-up of heat 
stress. Figure 9 (d) shows the graph of the 
response surface of the effect of Infill density 
and the thickness of the layer on the variation of 
the length. It has been observed that the 
dimensional error increases when Infill density 
increases and the layer thickness at its lowest 
level. The optimum value of the dimensional 
error (0.2462 mm) for this interaction can be 
obtained with an infill density of 25% and a layer 
thickness of 0.310 mm. The effect of the print 
speed and the thickness of the layer on the 
variation of the length have been shown in the 
graph of the response surface see Figure 9 (e). It 
has been noticed that the dimensional error 
increases as the thickness of the weak layer and 
at any print speed. The optimum value of the 
dimensional error (0.2553 mm) for this 
interaction can be obtained with a print speed of 
80 mm / s and a layer thickness of 0.330 mm. 
Infill pattern has a marginal effect on length 
variation, as shown in Figure 9 (f), but the 
thickness of the layer has a significant effect on 
this response. The result states that the 
dimensional error for this interaction effect can 
be improved by using the average value of the 
layer thickness and Infill pattern of the 
honeycombs. Therefore, the optimal value of the 
dimensional error (0.2201 mm) for this 
interaction can be obtained with an infill pattern 
honeycombs and a layer thickness of 0.3150 mm. 
 Fig. 9 (g) illustrates the effect of the number of 
solid layers and the thickness of the layer on the 
dimensional error with the other parameters that 
have been kept constant at their values in the 
center. We observe that the dimensional error at 
its maximum value when the number of solid 
layers is very large and the thickness of the layer 
is low. So the optimal value of the dimensional 
error (0.2575 mm) for this interaction can be 
obtained with a layer thickness of 0.3250 mm 
and a number of solid layers of 3. 
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Figure 9: 3D Response Surface Plots Representing 

Interactive Effects Of Parameters On Change In 
Length 

 
5.2 Influence Of Process Parameter On The 

Dimensional Error Of The Width: 
 

Figure 10 (a - g) shows the effect of the most 
significant interactive terms on the dimensional 
error of the width by graphs of the response 
surface. Figure 10 (a) shows the graph of the 
response surface of the effect of the Platform 
temperature and the thickness of the layer on the 
variation of width when other parameters remain 
constant with their value in the center. Note that 
the optimal value of the dimensional error of the 
width (0.0848mm) for this interaction can be 
obtained with a layer thickness of 0.300 mm and 
the Platform temperature of 70 . Fig. 10 (b) 
illustrates the 3D surface graph between the 
extruder temperature interactions and the 
thickness of the layer on the change of width. It 
is noted in Figure 10 (b) that the dimensional 

error decreases as the Extruder temperature 
increases. The optimum value of the dimensional 
error of the width (0.0911 mm) for this 
interaction can be obtained with a layer thickness 
of 0.2900 mm and the extruder temperature of 
210 . Figure 10 (c) shows the graph of the 
response surface of the effect of the number of 
contours and the thickness of the layer on the 
variation of width when other parameters remain 
constant at their value in the center. As can be 
seen in this figure, the dimensional error of the 
width tends to increase steadily with the increase 
in the number of contours. The optimal value of 
the change of width (0.0797mm) for this 
interaction can be obtained with a number of 
contours of 1 and a layer thickness of 0.3100mm. 
Because lower values of the contours number  
can reduce deformation by reducing the build-up 
of thermal stress. Figure 10 (d) shows the graph 
of the response surface of the Infill density effect 
and the thickness of the layer on the variation of 
the width. It has been observed that the 
dimensional error increases when Infill density 
increases and the thickness of low layer. 
Therefore, the optimal value of the dimensional 
error of the width (0.1196 mm) for this 
interaction can be obtained with an Infill density 
of 41 % and a layer thickness of 0.3100 mm. The 
effect of the print speed and the thickness of the 
layer on the dimensional error of the width have 
been shown in the graph of the 3D response 
surface, see Figure 10 (e). It has been noted that 
the variation in width between the fabricated part 
and the design dimension (the dimensional error) 
can be reduced when printing with a low speed 
and the thickness of the layer is in the average 
value. The optimum value of the dimensional 
error (0.0629 mm) for this interaction can be 
obtained with a layer thickness of 0.3200 mm 
and a print speed of 50 mm / s. Infill pattern has 
a marginal effect on the variation of the width, as 
shown in Figure 10 (f), but the thickness of the 
layer has a significant effect on this response.  
Note in Figure 10 (f) that the dimensional error 
increases when the thickness of the layer is at its 
maximum or minimum value (min is the low 
value of the thickness of the layer and maxi the 
most value close to the diameter of the nozzle) 
and whatever Infill pattern but it takes the 
maximum value when using an infill pattern of 
grid structure with a thickness of the weak layer. 
Then, the optimal value of the dimensional error 
(0.1041 mm) for this interaction can be obtained 
with an infill pattern honeycombs and a layer 
thickness of 0.3000 mm. Fig. 10 (g) illustrates 
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the effect of the thickness of the layer and the 
Number of solid layers on the dimensional error 
with the other parameters that have been held 
constant at their center values. We observe that 
the dimensional error increases when we increase 
the Number of solid. Therefore the optimal value 
of the dimensional error (0.1154 mm) for this 
interaction can be obtained with a layer thickness 
of 0.3300 mm and a number of solid layers of 2. 

 

 

 

 

 

 

 
Figure 10: 3D Response Surface Plots Representing 

Interactive Effects Of Parameters On Change In Width 
 

5.3 Influence of process parameter on the 
dimensional error of the thickness: 

It has been observed experimentally that the 
thickness of all the printed samples was above or 
below the nominal value of (3.5mm), which 
seems to be due to the error of the height of Z. In 
this experiment, all samples should be printed 
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with a height (H) of 3.5 mm and some samples 
should have a slicing thickness (C) of 0.1500 
mms so the number of layers needed to make 
these samples is 23.33 layers. However, the 
sample should be made with a layer thickness of 
0.3000 mm, so the number of layers needed is 
11.66 layers. Also, for a thickness of 0.4500 mm, 
it requires 7.77 layers to build the sample. In this 
case, the machine will deposit 23 layers with a 
layer thickness of 0.1500 mm, and 12 layers with 
a layer thickness of 0.3000 mm and 8 layers with 
a layer thickness of 0.4500 mm. As a result, the 
actual thickness of the samples manufactured is 
greater than the designed thickness specified by 
the CAD model for the thicknesses of the layers 
equal 0.3000 mm and 0.4500 mm and unlike the 
thicknesses of the layers is equal 0.1500 mm 
where the sample is smaller. Therefore, it can be 
concluded that the difference between the 
calculated value and the experimental value is 
important when the layer thickness is large. 
Figure 11 (a) is the graph of the 3D response 
area that illustrates the Platform temperature and 
the thickness of the layer on the variation of the 
thickness. From this figure, it can be noticed that 
the dimensional error of the thickness of the part 
decreases in a linear manner as a function of the 
decrease of the Platform temperature and the 
thickness of the layer. The optimum value of 
variation of the thickness (0.0176mm) for this 
interaction is obtained at a layer thickness of 
0.2100 mm and at a temperature of 70 . The 
interaction effects between the Extruder 
temperature and the thickness of the layer on the 
variation of the thickness are shown in Figure 11 
(b). It is clear from this graph of the 3D response 
surface that the dimensional error increases as 
the layer thickness increases and the value of the 
Extrude temperature is low. The optimum value 
of variation of the thickness (0.0595mm) for this 
interaction is obtained at a layer thickness of 
0.2200 mm and an extruder temperature equal to 
205 . Figure 11 (c) is the graph of the surface 
response that shows the effect of the layer 
thickness and the number of contours on the 
dimensional error of the thickness when other 
parameters remain constant at their center value. 
As can be seen in this figure, the dimensional 
error of the thickness tends to increase steadily 
with the increase in the number of contours and 
the thickness of the layer. The optimum value of 
the change in thickness (0.0687mm) for this 
interaction can be obtained with a number of 
contours of 3 and a layer thickness of 0.2100 
mm. Figure 11 (d) shows the graph of the Infill 

density effect response surface and the thickness 
of the layer on the variation of the thickness. It 
has been noticed that the dimensional error 
expect the maximum value when the layer 
thickness is at its average value and low Infill 
density. Therefore, the optimal value of the 
dimensional error of the thickness (0.0594mm) 
for this interaction can be obtained with an Infill 
density of 75% and a layer thickness of 0.2200 
mm. The effect of the print speed and the 
thickness of the layer on the dimensional error of 
the thickness have been shown in the graph of 
the 3D response surface see Figure 11 (e). It has 
been noticed that the variation of the thickness 
between the fabricated part and the dimensional 
error increases when printing with a large print 
speed and a thickness of the high layer. The 
optimum value of the dimensional error of the 
thickness (0.0054mm) for this interaction can be 
obtained with a layer thickness of 0.2100 mm 
and a print speed of 50mm / s . Infill pattern has 
an effect on the variation of the thickness, as 
shown in Figure 11 (f) , but the thickness of the 
layer has a significant effect on this response. 
We note in Figure 11 (f) that the dimensional 
error wait for the maximum value when the layer 
thickness and Infill pattern at its mean values. 
Then, the optimal value of the dimensional error 
(0.0127mm) for this interaction can be obtained 
with an infill pattern honeycombs and a layer 
thickness of 0.2200 mm . Fig. 11 (g) illustrates 
the effect of the layer thickness and the Number 
of solid layers on the dimensional error of the 
thickness with the other parameters that have 
been kept constant at their center values. It is 
observed that the dimensional error increases 
when increasing the thickness of the layer. 
Therefore the optimal value of the dimensional 
error (0.0692mm) for this interaction can be 
obtained with a layer thickness of 0.2200 mm 
and Number of solid layers of 3. 
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Figure 11: 3D Response Surface Plots Representing 

Interactive Effects Of Parameters On Change In 
Thickness 

 

6. CONCLUSIONS 

This study represented a methodology for an 
efficient optimization of FDM technology 
parameters using D-optimal design. The study 
showed a successful application of D-Optimal 
design in optimizing FDM process parameters. 
The presented method can solve the quality 
problems (dimensional accuracy) of FDM parts 
containing a large number of parameters and 
levels that cannot be chosen by the traditional 
experimental design when multiple restrictions 
and physical constraints applied to the 
experimental variables are included. 

In this paper, mathematical representations 
have been developed to model the relationship 
between dimensional accuracy and input 
parameters. The following conclusions are drawn 
from the results obtained by this study. 
 The results of the statistical analysis have 

shown that developed regression 
representations can model the relationship 
between dimensional accuracy and input 
parameters with a 95% sureness interval. 

 Parameters (Platform temperature (A); 
Extrude temperature (B); Layer thickness 
(C); Number of shells (D); Infill density (E); 
Print speed (F); Infill pattern (G); solid layers 
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U / L (H)) show a significant effect on the 
variation of the length.  Thereafter, 3D 
response surface graph s optimal values are 
70  (A), 210  (B), 0.3mm (C), 1 (D), 25% (E), 
50mm / s (F) ), Infill pattern honeycombs and 
3 (H). 

 Optimal values for variation of the width 
from the 3D response surface graphs are a 
Platform temperature of 70 , an Extruder 
temperature of 210 , a Layer thickness of 
0.3000mm, a Number of shells of 1 , Infill 
density of 25%, a Print speed of 50mm / s , 
Honeycombs infill pattern and 3 solid layers 
'U / L'. 

 Optimal values for the variation of the height 
from the 3D response surface graphs are a 
Platform temperature of 70 , an Extruder 
temperature of 205 , a Layer thickness of 
0.2200mm, Number of shells of 3 , Infill 
density of 75%, a Print speed of 50mm / s, 
Infill pattern honeycombs and 3 solid layers 
'U / L'. 

All the results presented in this study 
confirmed that the proposed method was an 
effective and adequate technique for optimizing 
FDM process parameters. This method can be 
applied to guide the new uses of computer 
optimized design in optimizing FDM process 
parameters for part quality in other additive 
manufacturing processes involving a wide range 
of pro parameters. 
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