
Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2606

TRAINING STRATEGY FOR A NEURAL NETWORK USING
A MODIFIED GENETIC ALGORITHM

1HOLMAN MONTIEL A., 2FREDY H. MARTÍNEZ S., 3EDWAR JACINTO G.

1, 2, 3 Universidad Distrital Francisco José de Caldas, Facultad Tecnológica, Bogotá D.C., Colombia

E-mail: 1hmontiela@udistrital.edu.co, 2fhmartinezs@udistrital.edu.co, 3ejacintog@udistrital.edu.co

ABSTRACT

There are different computer models to classify groups of data, among which are neural networks, vector
support machines, numerical methods, among others. However, in some cases these strategies consume a
large amount of computer resources, reducing the speed of operation during their execution in the various
electronic development devices. In this work, a partial solution to this limitation is proposed. The algorithm
developed is a classifier that incorporates a backward-propagation neural network, which is trained by means
of a modified genetic algorithm that is in charge of finding the appropriate set of weights for the neural
network to classify a given group of random numbers. The proposed optimization will allow the use of this
algorithm in various classification problems, not only in conventional computing units, but also on various
technological platforms with reduced properties (embedded systems), maintaining an optimal balance
between the use of resources and the speed of response of the device used.

Keywords: Neural Network; Classifier; Machine Learning; Genetic Algorithms; Correlation.
.

1. INTRODUCTION

Automatic learning is one of the pillars studied in
computer science, since, through supervised and
unsupervised learning techniques, it generalizes
processes with the ability to solve problems like a
living being. In certain cases, such processes require
efficient classification methods, since the amount of
computer resources they consume must be optimized
to avoid cost overruns during their operation or
actual implementation [1-3].

Despite this, machine learning techniques are
making a large-scale foray into industrial
automation; some of the applications found are
based on pattern recognition, raw material sorting or
fault prediction. This incursion has turned the pattern
classification into a research problem in the area of
automation and control, in which researchers are
given the task of finding efficient methodologies to
design machine learning algorithms, in order to
optimize the computer cost they may have [4-5].

A trend to optimize resources in general is based
on co-evolution, which could be defined as an
evolutionary change between interrelated species
guided by natural selection. Thanks to this
phenomenon there is a great diversity of species
which has helped nature in the forging of life, in

addition to the interactions that make it possible to
conserve genetic diversity.

This concept has become part of the family of
evolutionary techniques and is inspired by the
principles of natural evolution. Co-evolutionary
models are very similar to conventional evolutionary
algorithms, individuals are coded and evolved by
genetic operators, and are selected according to their
level of aptitude. However, they differ because in co-
evolution, interactions between individuals are
required [6-8].

These interactions are represented by the concepts
of cooperation and competition for the exploitation
and exploration of the regions of interest. Co-
evolution is used to solve optimization problems,
when there are large and complex search areas,
since, thanks to this methodology, these areas can be
divided into smaller and more easily soluble areas
[9-10].

More specifically, collaborative strategies allow
individuals from a solution set to cooperate with
each other to solve a problem [9]. The opposite is
true for models based on competitive co-evolution,
since individuals in a solution set compete to find a
partial solution to a problem. However, the search
for communities in this type of algorithms has been
a research topic, to improve the individuals in the

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2607

solution sets and increase their capacity to solve
different types of problems [10].

A limitation of this type of technique is that it
lacks memory, therefore, in some cases learning
models are implemented to store information of
interest for a certain amount of time. For example,
the implementation of intelligent classifiers that
discard defective products. However, this technique
requires prior training of the classifier reducing its
ability to adapt and learn from the process. Some
improvements to these classifiers have incorporated
learning processes based on least squares that are
executed online, that is, while the process is running
the classifier is modified to adapt to the new
characteristics of the process [11-12].

The results obtained by the above-mentioned
training algorithms and some others are very good,
however, they do not allow optimizing their
consumed computational resources by reducing the
speed of operation in the system where they are
executed [12].

Consequently, this paper proposes a learning
strategy that reduces the computational cost by
training a neural network-based classifier. The
strategy combines a modified genetic algorithm,
which incorporates several crossing and mutation
mechanisms to find the most appropriate
combination of weights to allow the network to
classify random data series.

2. MATERIALS AND METHODS

Neural networks and bio-inspired

optimization algorithms are computational models
that are built to emulate certain characteristics of
human cognitive behavior. The definition and
behavior of these strategies is presented in detail
below.

2.1 Artificial Neural Networks (ANN)

Neuronal networks are inspired by neurons

and the nervous system of living beings, in the same
way that synapses between neurons are made,
approximate models of neurons collaborate with
each other to modify a set of weights and generate
an output stimulus [12-13].

In some cases, the neurons in these network
systems are grouped in three different layers, where
the first layer represents the input data that is sent to
the second layer, which performs the synapse
process to send an output parameter to the third
layer. The synapse is performed by modifying a
series of parameters called weights, which vary

according to the complexity of the neural network
and can be grouped in more than one layer (see
Figure 1) [13].

Figure 1: Topology of a multi-layered neural network
(Based on [14, 16]).

Finding approximate values for the weights

is a very complex task, since as the size of the
network increases, so do the number of possible
solutions it may have. Normally, the weights are
updated using a back-propagation algorithm which
uses a calculation based on the descending gradient
to estimate the weight values, reducing the mean
square error between the training sample set and the
result obtained, as close to zero as possible from a
set of validation samples [14-15].

It can be said that the combination of these
algorithms allows the creation of new types of
network, such as the so-called "back-propagation
network" which is a multi-layer network that uses
the back-propagation algorithm through a
generalization of the least-squares algorithm. By
combining the two algorithms the learning of the
network is done based on the mean square error and
the idea is that the learning is supervised, that is, a
set of samples should be provided for the updating
of the weights and to estimate an output value
[14-15].

The simplest retro-propagation network has
three layers, e.g. the one described in Figure 2, which
has 2 inputs and one output. The figure shows that
each neuron is composed of two layers, where the
first is the sum of the inputs by their respective
weights and the second contains the activation
function. The activation function is in charge of
defining the output of a node from an input, in other
words, if the output of the network is represented as
a sum y ൌ fሺhሻwhere, y would be the approximate
output provided by the node and h the trigger signal.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2608

Figure 2: Response of a two-layer network.

The input data sets, such as the xଵ y xଶ that

are assigned to expected outputs yThe data sets are
used for network training through an iterative
process. Each time an iteration is executed, an
attempt is made to modify the weights of the network
to obtain a better approximation of the output value.
This is done by propagating the information and the
result shown in Figure 3 [14, 16] is obtained.

Figure 3: Response of the first sweep of the network.

Considering that the inputs to each node are

multiplied and added up at the end of the operations
between all the nodes, the output value obtained is
compared with the expected value. The difference
between these two values is known as the "signal
error δ"and spreads back to all neurons, starting with
the last neuron that was the exit from the network
(see Figure 4) [14, 16].

Figure 4: Error propagation.

By propagating the error each new weight
that is assigned has a learning rate assigned μ. The
learning rate can be estimated by various methods or
be fixed with a constant value. For example, the

value of μ is minimizing its magnitude exponentially
as training iterations progress.

As the training process progresses, the
weights change as shown in Figure 4, the weight wଷ
changes to wଷ

ᇱ (in each iteration) which depends on
the learning rate μthe error of the signal δ and the

derivative of the activation function ቀ
ୢ୤యሺ୦ሻ

ୢ୦
ቁ

multiplied by the appropriate entry [14, 16].
An activation function is the function that

can represent the output of a neuron from the input
data, such functions are usually expressed as
mathematical functions, such as: S-shaped,
Gaussian, rectangular or trapezoidal [14, 16].

2.2 Genetic Algorithm

Unlike neural networks, bio-inspired
optimization algorithms try to find the best value
among a given set of values using various
techniques, most notably genetic algorithms. These
algorithms emulate the natural selection of species to
find a solution to a problem, make use of crossing
and mutation methods, in order to generate new
species and thus improve the search process [17].

The conventional genetic algorithm starts
with a selection process by which it generates a new
set with the best individuals from the solution set
based on their aptitude value (Result of the
evaluation of the individual). The crossing process
consists of taking 2 or more individuals from the
solution set and combining their characteristics to
generate new individuals and incorporate them into
the set. Finally, the mutation process oversees
generating a new individual and changing it for one
from the set of solutions, as presented in the
following algorithm [16-17].

Algorithm 1. Conventional Genetic Algorithm
Start Variables;
P0=Generate initial solution set ();
/*The initial population (Solution Set) is generated
randomly*/
While Termination condition = True to do

Fitness=Evaluate Function (P0);
Children=Selection (P0, Fitness)
Sons= Crossing (Sons);
Sons=Mutation (Sons);
P0=Sons;

End While

The operation of these approaches is based
on the theory of schemes proposed by Holland [19].
This theory says that by coding everyone in binary
(genetic chain) it converges to a solution by
performing the different operations (Assessment of
fitness, selection, mutation and crossing) on each bit
of the chain (chromosome) directly. Where the

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2609

mathematical expressions of these operations are
described taking into account the following: L is the
size of the population, K is the size of the individual
d or of the string and φሺE, tሻ is the number of
individuals in the population over time t described
by the solution set E [16-19].

The suitability of the solution set in time t,
evaluateሺE, tሻ is defined as the average of the
aptitude of all the individuals who make up the
solution set. If there are several strings n described
by the set of solutions over time t, the result is shown
in equation 1 [16-19].

 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒ሺ𝐸, 𝑡ሻ ൌ ∑ ௘௩௔௟௨௔௧௘ሺௗ೔ሻ

௡
௡
௜ୀଵ (1)

When performing the selection operation,

each string is copied according to its suitability
value, whose probability is expressed as shown in
equation 2.

𝑝௜ ൌ
௘௩௔௟௨௔௧௘ሺௗ೔ሻ

ிሺ௧ሻ
 (2)

Where Fሺtሻ is the sum of all the skills of the

individuals in the solution set as shown in equation
3.

𝐹ሺ𝑡ሻ ൌ ∑ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒ሺ𝑑௜ሻ

௅
௜ୀଵ (3)

At the end, you get several individuals

φሺE, t ൅ 1ሻ described by the solution set E, this can
be represented by the mathematical expression of
equation 4.

φሺE, t ൅ 1ሻ ൌ φሺE, tሻ ୣ୴ୟ୪୳ୟ୲ୣሺ୉,୲ሻ

୊ሺ୲ሻ

 (4)

The above shows that the number of

individuals given by the solution set E at t ൅ 1, is
represented by: The number of individuals is equal
to that of time t with characteristics like those of the
time t. The suitability of the solution set in t and the
average fitness of the population.

These characteristics allow the selected
individuals in time t ൅ 1 have two characteristics;
individuals with a proficiency value higher than the
population average will have a higher probability of
replicating themselves in the next generation. The
opposite case occurs when the skill value of an
individual has a value below the population average,
since, it will not have a probability of replicating
itself in the next generation (they tend to disappear).

Other effects that should be considered
during the execution of this algorithm are crossover

and mutation. Crossing allows to generate new
individuals from two existing individuals (as shown
in Figure 5) [16-19].

Figure 5: Single point crossing strategy.

Assuming that two individuals were

randomly selected and break at a random crossing
point, as observed, crossing both individuals results
in two new individuals like their parents, which
replace the parent individuals. Normally the crossing
point is selected using a uniform distribution with a
maximum value of K െ 1 where K is the length of
the individual; in other words, the individual d has a
probability of disappearing or prevailing as indicated
by equations 5 and 6 respectively (δሺEሻ represents
the individual coded in real numbers).

𝑝ௗ௘ሺ𝐸ሻ ൌ
ఋሺாሻ

௠ିଵ
 (5)

𝑝௦௢௕ሺ𝐸ሻ ൌ 1 െ
ఋሺாሻ

௠ିଵ
 (6)

However, some authors propose a

probability for the occurrence of a crossing event pc;
In that case it is already known that the individual
will survive and is represented as indicated in
equation 7.

𝑝௦௢௕ሺ𝐸ሻ ൌ 1 െ 𝑝𝑐
ఋሺாሻ

௠ିଵ
 (7)

The combined effect of crossover and

selection affects generational replacements as shown
in equation 8. This allows the suitability value of
above-average schemes to be increased and thus to
have a greater probability of replication and passage
to the next generation [16-19].

𝜑ሺ𝐸, 𝑡 ൅ 1ሻ ൌ 𝜑ሺ𝐸, 𝑡ሻ ௘௩௔௟௨௔௧௘ሺா,௧ሻ

ிሺ௧ሻ
ቂ1 െ 𝑝𝑐

ఋሺாሻ

௠ିଵ
ቃ (8)

Unlike the crossover, the mutation must be

very careful, since, the change in many bits can
destroy the individual or the changes made will not
benefit the overall solution set. If the probability of
modifying a bit is p୫, This means that the
probability of survival will be its inverse, where the
operation results in a new individual (see Figure 6)
[16-19].

INDIVIDUAL 1
INDIVIDUAL APTITUDE

01100110 51

INDIVIDUO 2
INDIVIDUAL APTITUDE

01001100 98

SON 1
INDIVIDUAL APTITUDE

01100011 99

SON 2
INDIVIDUAL APTITUDE

00110010 50

RESULT
OBTAINED

CROSSING POINT

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2610

Figure 6: Example of a mutation

Each mutation can be represented by

equation 9 and each mutation affects the behavior of
the solution set as shown in equation 10.

𝑝௦௢௕ሺ𝐸ሻ ൌ 𝐸 ∗ 𝑁ሾ0,1ሿ

 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (9)

𝜑ሺ𝐸, 𝑡 ൅ 1ሻ ൌ 𝜑ሺ𝐸, 𝑡ሻ ௘௩௔௟௨௔௧௘ሺா,௧ሻ

ிሺ௧ሻ
ቂ1 െ 𝑝𝑐

ఋሺாሻ

௠ିଵ
ቃ ∗ 𝑝௠ (10)

3. IMPLEMENTATION

The algorithm developed is a classifier that
incorporates a retro-propagation neural network,
which is trained by a modified genetic algorithm that
is responsible for finding the appropriate set of
weights for the neural network to classify a given

group of random numbers. The design of this
algorithm (see Figure 7) is based on a conventional
genetic algorithm but differs in that the single-point
cross operator was replaced by an operator that
reverses the positions of the weight vector.

In other words, the proposed algorithm has
two mutation operators, the first depends on a
crossing probability and the second incorporates an
operation with a Gaussian random number generator
centred on 0 with a variance of 1, which reduces the
size of the mutations (with increments of 0.01 in
each generation) as the process advances, therefore,
it was not made dependent on some probability. The
structure of the proposed algorithm is shown in
Figure 8.

Once the neural network is created (see
Figure 9) a solution set or initial population is
created, in which its elements (individuals) change
using two types of mutation, where the first mutation
depends on a probability threshold set at 0.3. When
this threshold is exceeded by a randomly generated
number, the mutation is executed.

Figure 7: Training strategy

INDIVIDUAL APTITUDE

11001100 51

INDIVIDUAL APTITUDE

11001110 115

Bit to mutate Mutated bit

RESULT

OBTAINED

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2611

Figure 8: Optimization routine

Considering the structure of the genetic

algorithm, a selection per tournament was
incorporated, which selects four individuals at
random and compares them to each other in three
different ways to take the best one. The first phase of
the tournament selects the individual with the
highest aptitude value, in the same parallel phase an
individual is selected at random. The individual is
selected by assigning a probability to each one
according to its aptitude value, then a random
number with uniform distribution is generated and
the individual with the aptitude value closest to the
generated number is selected.

In the second phase of the tournament the
same selection mechanism is used generating a
random number with uniform distribution.
However, to improve the effectiveness of the
algorithm a steady state generation replacement was
implemented, which allows new generations of
individuals to prevail only if proficiency value is
better. The aptitude value of each set of weights is
evaluated by replacing in the network all the existing
weights by those estimated with the algorithm,
unlike the descending gradient the weights are
estimated and replaced without taking into account
the error; as shown in the Algorithm 2.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2612

Figure 9: Structure of the network

Algorithm 2. Proposed Genetic Algorithm
Modified AG program ()
 Start Variables;
 Network=Create network (weights, hidden layers);
 /*Create neural network*/
 P0=Initial population U~ [0. weights];
 /*Start grid weights*/
 While != Stop condition
 Proficiency=Testing network weights ();
 Parents= Selection (P0, proficiency);
 /*Apply selection per tournament*/
 If R~U [0.1] <Pc

 /*If the random number exceeds the Pc threshold, the
mutation is activated*/
Children=Flip (P0, Parents);
Sons=Mutation (Sons, sigma);
/*This mutation performs the following operation
H=H*sigma*/
P0=Selection (Children, fitness);

 /*A selection is made to take the best individuals*/
 /*And make the selection*/
 sigma=sigma*e^(-1/iteration);

 End While
End of program

The Gaussian mutation used to modify the

value of the weights is represented by multiplying a
scalar value provided by equation 11 and the
aptitude value of each individual is the correlation
(Relationship between variables) between the output
estimated by the network and the training data, is
calculated using equation 12.

𝑃ሺ𝑥ሻ ൌ
ଵ

√ଶగఙ
∗ 𝑒ି

൫ೣ೔షഥೣ൯
మ

మ഑మ (11)

𝑟 ൌ
൫∑ ሺ௫೔ି௫̅ሻ∗ሺ௬೔ି௬തሻಿ

೔సభ ൯

ට∑ ሺ௫೔ି௫̅ሻమಿ
೔సభ ට∑ ሺ௬೔ି௬തሻమಿ

೔సభ

 (12)

Where 𝐏ሺ𝐱ሻ is the probability value, 𝐱𝐢 is a

value in the data range, 𝛔 is the standard deviation,
𝛔𝟐 is the variance and 𝐱ത is the mean or average of the
measured data [16].

4. RESULTS

The neural network created to implement
the classifier has 20 hidden layers and a linear-type
activation function in each layer. The training data
of the network are composed by a set of data
available in a repository, which proposes a problem
to test this kind of computational learning strategies
[20].

In this case, the validation and testing of the
proposed strategy was carried out by seeking the
solution to a classification problem of three wines (3
classes) with nine different characteristics. The
characteristics are available as a 9-column
arrangement and the wine to which they belong in a
separate column or class, i.e. each row represents the
characteristics of a wine, see Table 1. The total
number of samples used for the validation of this
example was 1926, based on 9 different
characteristics stored in 214 records.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2613

Table 1: Example of Samples Used

 Features

#Reg 1 2 3 4 5 6 7 8 9 Class

1 152.101 13.64 4.49 1.10 71.78 0.06 8.75 0.0 0.00 1

2 151.761 13.89 3.60 1.36 72.73 0.48 7.83 0.0 0.00 1

3 151.618 13.53 3.55 1.54 72.99 0.39 7.78 0.0 0.00 1

4 151.766 13.21 3.69 1.29 72.61 0.57 8.22 0.0 0.00 1

5 151.742 13.27 3.62 1.24 73.08 0.55 8.07 0.0 0.00 1

71 151.574 14.86 3.67 1.74 71.87 0.16 7.36 0.0 0.12 2

72 151.848 13.64 3.87 1.27 71.96 0.54 8.32 0.0 0.32 2

73 151.593 13.09 3.59 1.52 73.10 0.67 7.83 0.0 0.00 2

74 151.631 13.34 3.57 1.57 72.87 0.61 7.89 0.0 0.00 2

75 151.596 13.02 3.56 1.54 73.11 0.72 7.90 0.0 0.00 2

147 151.769 13.65 3.66 1.11 72.77 0.11 8.60 0.0 0.00 3

148 151.610 13.33 3.53 1.34 72.67 0.56 8.33 0.0 0.00 3

149 151.670 13.24 3.57 1.38 72.70 0.56 8.44 0.0 0.10 3

150 151.643 12.16 3.52 1.35 72.89 0.57 8.53 0.0 0.00 3

151 151.665 13.14 3.45 1.76 72.48 0.60 8.38 0.0 0.17 3

Table 2 shows the average data obtained in

50 runs of the algorithm and their respective margin
of error, then in Table 3 presents the behavior of
genetic algorithms during their evolution (after fifty
generations).

The problem was solved with 3 different
algorithms, initially tested with a neural network
trained with the descending gradient strategy, then
trained with the conventional genetic algorithm and
finally with the proposed algorithm. The
performance of the neural network was measured
with a correlation between the training data and the
data obtained by modifying its weights, i.e. the
graphs in Table 3 represent the output behavior of
the network and if this value is close to one, it can be

said that the network has a large number of hits in
the prediction of wines from its characteristics.

It is important to emphasize the execution
times achieved, because a substantial improvement
is obtained in this process, since with the modified
algorithm it only takes an average of 42.48
milliseconds to obtain the analysis of the samples
(class classification) while only with the neural
network it takes a time of 249.38 milliseconds. The
software validation tests were performed on a
development interface on MATLAB 2015a, which
runs on a 64-bit Windows 10 operating system with
an Intel Core I7-4702MQ 2.2 GHz CPU and 8 Gb of
RAM.

Table 2: Statistical Results

 Best Worst Average Medium Learning time

Descending gradient 0.75±0 0.75±0 0.75±0 0.75±0 4 hours 55 min

Algorithm
genetic

conventional

0.2397±0.12 -0.651±0.13 0.2397±0.1 0.2397±0.05 5 hours 20 min

Algorithm
genetic

Modified

0.8124±0.08 -0.0050±0.01 0.8123±0.09 0.8074±0.01 4 hours 45 min

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2614

Table 3: Results Graphs

Conventional
Algorithm

Modified
Algorithm

5. CONCLUSIONS

The implemented strategy improved the
performance of the conventional genetic algorithm,
because the single point crossing does not allow the
population to diversify as much as the flip operator
and the Gaussian mutation combined. This is shown
in Tables 2 and 3 where it is appreciated that the
correlation value found by the proposed strategy is
higher than the one found using the conventional
genetic algorithm, according to these results we can
say that the solution of the optimized algorithm
proposed by this work reflected an increase in
performance of 82.97 % (42.48 milliseconds), with
respect to the response time associated with the
solution of classification problems using only neural
networks and a conventional genetic algorithm
(249.38 milliseconds). By omitting the error
calculation as done with the back-propagation
network and replacing them with genetic operators,
it is possible to optimize the amount of resources
consumed by the computer during neural network
training, increasing the processing speed.

This proposed optimization will allow the
use of this algorithm in various classification
problems, not only in conventional computer units
(PCs), but can also be used on various technological
platforms with reduced properties (embedded
systems), maintaining an optimal balance between
the use of resources and the speed of response of the
device used.

REFERENCES

[1] M. H. Roy-Cardinal, F. Destrempes, G. Soulez
and G. Cloutier, "Assessment of carotid artery
plaque components with machine learning
classification using homodyned-K parametric
maps and elastograms," in IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency
Control, 2019, pp. 493-504.

[2] K. Bakshi and K. Bakshi, "Considerations for
artificial intelligence and machine learning:
Approaches and use cases," in 2018 IEEE
Aerospace Conference, Big Sky, MT, USA,
2018, pp. 1-9.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2615

[3] F. Elghibari, R. Elouahbi and F. El Khoukhi,
“An Automatic Updating Process to Control
The E-learning Courseware.” International
Journal on Advanced Science, Engineering
and Information Technology, vol 7, no. 2, pp.
546-551, 2017.

[4] Q. Liu, Y. Zhao, Y. Zhang, D. Kang, Q. Lv and
L. Shang, "Hierarchical context-aware
anomaly diagnosis in large-scale PV systems
using SCADA data," in 2017 IEEE 15th
International Conference on Industrial
Informatics (INDIN), Emden, 2017, pp. 1025-
1030.

[5] R. Samdarshi, N. Sinha and P. Tripathi, "A
triple layer intrusion detection system for
SCADA security of electric utility," in 2015
Annual IEEE India Conference (INDICON),
New Delhi, 2015, pp. 1-5.

[6] S. Sen, E. Aydogan and A. I. Aysan,
"Coevolution of Mobile Malware and Anti-
Malware," IEEE Transactions on Information
Forensics and Security, vol. 13, no. 10, pp.
2563-2574, Oct. 2018.

[7] J. i. Matsuoka, Y. Nakashima and S. Ono, "A
preliminary study on designing a benchmark
problem for analysis of sparsely-synchronized
heterogeneous coevolution," in 2017 IEEE
Symposium Series on Computational
Intelligence (SSCI), Honolulu, HI, 2017, pp. 1-
8.

[8] E. Batot, W. Kessentini, H. Sahraoui and M.
Famelis, "Heuristic-Based Recommendation
for Metamodel — OCL Coevolution," in 2017
ACM/IEEE 20th International Conference on
Model Driven Engineering Languages and
Systems (MODELS), Austin, TX, 2017, pp.
210-220.

[9] C. H. Chen and C. B. Liu, "Reinforcement
Learning-Based Differential Evolution with
Cooperative Coevolution for a Compensatory
Neuro-Fuzzy Controller," IEEE Transactions
on Neural Networks and Learning Systems,
vol. 29, no. 10, pp. 4719-4729, Oct. 2018.

[10] R. Janssen, S. Nolfi, P. Haselager and I.
Sprinkhuizen-Kuyper, "Cyclic Incrementality
in Competitive Coevolution: Evolvability
through Pseudo-Baldwinian Switching-
Genes," Artificial Life, vol. 22, no. 3, pp. 319-
352, Aug. 2016.

[11] Y. Liang, J. Wang and C. Chen, "Research on
neural network control method with end point
bias," in 2018 13th IEEE Conference on
Industrial Electronics and Applications
(ICIEA), Wuhan, China, 2018, pp. 153-157.

[12] M. L. Tej and S. Holban, "Determining optimal
neural network architecture using regression
methods," in 2018 International Conference on
Development and Application Systems (DAS),
Suceava, Romania, 2018, pp. 180-189.

[13] A. Mahdi and J. Qin, "Bottom up saliency
evaluation via deep features of state-of-the-art
convolutional neural networks," in 2018 IEEE
EMBS International Conference on
Biomedical & Health Informatics (BHI), Las
Vegas, NV, 2018, pp. 247-250.

[14] H. Moayedi et al. “A systematic review and
meta-analysis of artificial neural network
application in geotechnical engineering: theory
and applications.” in Neural Computing and
Applications, pp. 1-24, 2018.

[15] D. Ulinic, J. Casas. “Why neural networks and
deep learning are the future in machine
learning”, B. Eng. thesis, Universitat
Autónoma de Barcelona, Spain, Mar. 2018.

[16] Z. Luo et al. “Structure-property relationships
in graphene-based strain and pressure sensors
for potential artificial intelligence
applications.” In Sensors, vol. 19, no 5, p.
1250, 2019.

[17] T. Barman and N. Deb, "State of the art review
of speech recognition using genetic algorithm,"
in 2017 IEEE International Conference on
Power, Control, Signals and Instrumentation
Engineering (ICPCSI), Chennai, India, 2017,
pp. 2944-2946.

[18] M. Shnan, T. H. Rassem & N. S. Zulkifli,
“Facial image retrieval on semantic features
using adaptive mean genetic
algorithm”. Telkomnika, vol.17, no. 2, pp. 882-
896, 2019.

[19] Liang Ming, Yu-Ping Wang and Yu-ming
Cheung, "A new schema theorem for uniform
crossover based on ternary representation," in
Proceedings of the 2004 Intelligent Sensors,
Sensor Networks and Information Processing
Conference, 2004, pp. 235-239.

[20] D. Dua and T. Karra Taniskidou. UCI Machine
Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information
and Computer Science, 2017.

