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ABSTRACT 
 

There are different computer models to classify groups of data, among which are neural networks, vector 
support machines, numerical methods, among others. However, in some cases these strategies consume a 
large amount of computer resources, reducing the speed of operation during their execution in the various 
electronic development devices. In this work, a partial solution to this limitation is proposed. The algorithm 
developed is a classifier that incorporates a backward-propagation neural network, which is trained by means 
of a modified genetic algorithm that is in charge of finding the appropriate set of weights for the neural 
network to classify a given group of random numbers. The proposed optimization will allow the use of this 
algorithm in various classification problems, not only in conventional computing units, but also on various 
technological platforms with reduced properties (embedded systems), maintaining an optimal balance 
between the use of resources and the speed of response of the device used. 

Keywords: Neural Network; Classifier; Machine Learning; Genetic Algorithms; Correlation. 
. 
 
1. INTRODUCTION  
 

Automatic learning is one of the pillars studied in 
computer science, since, through supervised and 
unsupervised learning techniques, it generalizes 
processes with the ability to solve problems like a 
living being. In certain cases, such processes require 
efficient classification methods, since the amount of 
computer resources they consume must be optimized 
to avoid cost overruns during their operation or 
actual implementation [1-3].  

Despite this, machine learning techniques are 
making a large-scale foray into industrial 
automation; some of the applications found are 
based on pattern recognition, raw material sorting or 
fault prediction. This incursion has turned the pattern 
classification into a research problem in the area of 
automation and control, in which researchers are 
given the task of finding efficient methodologies to 
design machine learning algorithms, in order to 
optimize the computer cost they may have [4-5]. 

A trend to optimize resources in general is based 
on co-evolution, which could be defined as an 
evolutionary change between interrelated species 
guided by natural selection. Thanks to this 
phenomenon there is a great diversity of species 
which has helped nature in the forging of life, in 

addition to the interactions that make it possible to 
conserve genetic diversity. 

This concept has become part of the family of 
evolutionary techniques and is inspired by the 
principles of natural evolution. Co-evolutionary 
models are very similar to conventional evolutionary 
algorithms, individuals are coded and evolved by 
genetic operators, and are selected according to their 
level of aptitude. However, they differ because in co-
evolution, interactions between individuals are 
required [6-8]. 

These interactions are represented by the concepts 
of cooperation and competition for the exploitation 
and exploration of the regions of interest. Co-
evolution is used to solve optimization problems, 
when there are large and complex search areas, 
since, thanks to this methodology, these areas can be 
divided into smaller and more easily soluble areas 
[9-10]. 

More specifically, collaborative strategies allow 
individuals from a solution set to cooperate with 
each other to solve a problem [9]. The opposite is 
true for models based on competitive co-evolution, 
since individuals in a solution set compete to find a 
partial solution to a problem. However, the search 
for communities in this type of algorithms has been 
a research topic, to improve the individuals in the 
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solution sets and increase their capacity to solve 
different types of problems [10]. 

A limitation of this type of technique is that it 
lacks memory, therefore, in some cases learning 
models are implemented to store information of 
interest for a certain amount of time. For example, 
the implementation of intelligent classifiers that 
discard defective products. However, this technique 
requires prior training of the classifier reducing its 
ability to adapt and learn from the process. Some 
improvements to these classifiers have incorporated 
learning processes based on least squares that are 
executed online, that is, while the process is running 
the classifier is modified to adapt to the new 
characteristics of the process [11-12].  

The results obtained by the above-mentioned 
training algorithms and some others are very good, 
however, they do not allow optimizing their 
consumed computational resources by reducing the 
speed of operation in the system where they are 
executed [12]. 

Consequently, this paper proposes a learning 
strategy that reduces the computational cost by 
training a neural network-based classifier. The 
strategy combines a modified genetic algorithm, 
which incorporates several crossing and mutation 
mechanisms to find the most appropriate 
combination of weights to allow the network to 
classify random data series.  
 

2. MATERIALS AND METHODS 

 
Neural networks and bio-inspired 

optimization algorithms are computational models 
that are built to emulate certain characteristics of 
human cognitive behavior.  The definition and 
behavior of these strategies is presented in detail 
below. 

2.1 Artificial Neural Networks (ANN) 

 
Neuronal networks are inspired by neurons 

and the nervous system of living beings, in the same 
way that synapses between neurons are made, 
approximate models of neurons collaborate with 
each other to modify a set of weights and generate 
an output stimulus [12-13]. 

In some cases, the neurons in these network 
systems are grouped in three different layers, where 
the first layer represents the input data that is sent to 
the second layer, which performs the synapse 
process to send an output parameter to the third 
layer. The synapse is performed by modifying a 
series of parameters called weights, which vary 

according to the complexity of the neural network 
and can be grouped in more than one layer (see 
Figure 1) [13]. 

 

 
Figure 1: Topology of a multi-layered neural network 
(Based on [14, 16]). 

 
Finding approximate values for the weights 

is a very complex task, since as the size of the 
network increases, so do the number of possible 
solutions it may have. Normally, the weights are 
updated using a back-propagation algorithm which 
uses a calculation based on the descending gradient 
to estimate the weight values, reducing the mean 
square error between the training sample set and the 
result obtained, as close to zero as possible from a 
set of validation samples     [14-15].  

It can be said that the combination of these 
algorithms allows the creation of new types of 
network, such as the so-called "back-propagation 
network" which is a multi-layer network that uses 
the back-propagation algorithm through a 
generalization of the least-squares algorithm. By 
combining the two algorithms the learning of the 
network is done based on the mean square error and 
the idea is that the learning is supervised, that is, a 
set of samples should be provided for the updating 
of the weights and to estimate an output value        
[14-15].  

The simplest retro-propagation network has 
three layers, e.g. the one described in Figure 2, which 
has 2 inputs and one output. The figure shows that 
each neuron is composed of two layers, where the 
first is the sum of the inputs by their respective 
weights and the second contains the activation 
function. The activation function is in charge of 
defining the output of a node from an input, in other 
words, if the output of the network is represented as 
a sum y ൌ fሺhሻwhere, y would be the approximate 
output provided by the node and h the trigger signal. 
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Figure 2: Response of a two-layer network. 

 
The input data sets, such as the xଵ y xଶ that 

are assigned to expected outputs yThe data sets are 
used for network training through an iterative 
process. Each time an iteration is executed, an 
attempt is made to modify the weights of the network 
to obtain a better approximation of the output value. 
This is done by propagating the information and the 
result shown in Figure 3 [14, 16] is obtained. 
 

 
Figure 3: Response of the first sweep of the network. 

 
Considering that the inputs to each node are 

multiplied and added up at the end of the operations 
between all the nodes, the output value obtained is 
compared with the expected value. The difference 
between these two values is known as the "signal 
error δ"and spreads back to all neurons, starting with 
the last neuron that was the exit from the network 
(see Figure 4) [14, 16]. 
 

 
Figure 4: Error propagation. 

By propagating the error each new weight 
that is assigned has a learning rate assigned μ. The 
learning rate can be estimated by various methods or 
be fixed with a constant value. For example, the 

value of μ is minimizing its magnitude exponentially 
as training iterations progress. 

As the training process progresses, the 
weights change as shown in Figure 4, the weight wଷ 
changes to wଷ

ᇱ  (in each iteration) which depends on 
the learning rate μthe error of the signal δ and the 

derivative of the activation function ቀ
ୢ୤యሺ୦ሻ

ୢ୦
ቁ 

multiplied by the appropriate entry [14, 16]. 
An activation function is the function that 

can represent the output of a neuron from the input 
data, such functions are usually expressed as 
mathematical functions, such as: S-shaped, 
Gaussian, rectangular or trapezoidal [14, 16]. 

2.2 Genetic Algorithm 

Unlike neural networks, bio-inspired 
optimization algorithms try to find the best value 
among a given set of values using various 
techniques, most notably genetic algorithms. These 
algorithms emulate the natural selection of species to 
find a solution to a problem, make use of crossing 
and mutation methods, in order to generate new 
species and thus improve the search process [17]. 

The conventional genetic algorithm starts 
with a selection process by which it generates a new 
set with the best individuals from the solution set 
based on their aptitude value (Result of the 
evaluation of the individual). The crossing process 
consists of taking 2 or more individuals from the 
solution set and combining their characteristics to 
generate new individuals and incorporate them into 
the set. Finally, the mutation process oversees 
generating a new individual and changing it for one 
from the set of solutions, as presented in the 
following algorithm [16-17]. 
 

Algorithm 1. Conventional Genetic Algorithm 
Start Variables; 
P0=Generate initial solution set (); 
/*The initial population (Solution Set) is generated 
randomly*/ 
While Termination condition = True to do 

Fitness=Evaluate Function (P0); 
Children=Selection (P0, Fitness) 
Sons= Crossing (Sons); 
Sons=Mutation (Sons); 
P0=Sons; 

End While 
 

The operation of these approaches is based 
on the theory of schemes proposed by Holland [19]. 
This theory says that by coding everyone in binary 
(genetic chain) it converges to a solution by 
performing the different operations (Assessment of 
fitness, selection, mutation and crossing) on each bit 
of the chain (chromosome) directly. Where the 
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mathematical expressions of these operations are 
described taking into account the following: L is the 
size of the population, K is the size of the individual 
d or of the string and φሺE, tሻ is the number of 
individuals in the population over time t described 
by the solution set E [16-19]. 

The suitability of the solution set in time t, 
evaluateሺE, tሻ is defined as the average of the 
aptitude of all the individuals who make up the 
solution set. If there are several strings n described 
by the set of solutions over time t, the result is shown 
in equation 1 [16-19]. 

 

 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒ሺ𝐸, 𝑡ሻ ൌ ∑ ௘௩௔௟௨௔௧௘ሺௗ೔ሻ

௡
௡
௜ୀଵ       (1) 

 
When performing the selection operation, 

each string is copied according to its suitability 
value, whose probability is expressed as shown in 
equation 2. 

 

𝑝௜ ൌ
௘௩௔௟௨௔௧௘ሺௗ೔ሻ

ிሺ௧ሻ
    (2) 

 
Where Fሺtሻ is the sum of all the skills of the 

individuals in the solution set as shown in equation 
3. 

 
𝐹ሺ𝑡ሻ ൌ ∑ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒ሺ𝑑௜ሻ

௅
௜ୀଵ        (3) 

 
At the end, you get several individuals 

φሺE, t ൅ 1ሻ described by the solution set E, this can 
be represented by the mathematical expression of 
equation 4. 

 

φሺE, t ൅ 1ሻ ൌ φሺE, tሻ ୣ୴ୟ୪୳ୟ୲ୣሺ୉,୲ሻ

୊ሺ୲ሻ
 
              (4) 

      
The above shows that the number of 

individuals given by the solution set E at t ൅ 1, is 
represented by: The number of individuals is equal 
to that of time t with characteristics like those of the 
time t. The suitability of the solution set in t and the 
average fitness of the population. 

These characteristics allow the selected 
individuals in time t ൅ 1 have two characteristics; 
individuals with a proficiency value higher than the 
population average will have a higher probability of 
replicating themselves in the next generation. The 
opposite case occurs when the skill value of an 
individual has a value below the population average, 
since, it will not have a probability of replicating 
itself in the next generation (they tend to disappear). 

Other effects that should be considered 
during the execution of this algorithm are crossover 

and mutation. Crossing allows to generate new 
individuals from two existing individuals (as shown 
in Figure 5) [16-19]. 

 

 
Figure 5: Single point crossing strategy. 

 
Assuming that two individuals were 

randomly selected and break at a random crossing 
point, as observed, crossing both individuals results 
in two new individuals like their parents, which 
replace the parent individuals. Normally the crossing 
point is selected using a uniform distribution with a 
maximum value of K െ 1 where K is the length of 
the individual; in other words, the individual d has a 
probability of disappearing or prevailing as indicated 
by equations 5 and 6 respectively ( δሺEሻ represents 
the individual coded in real numbers). 

 

𝑝ௗ௘ሺ𝐸ሻ ൌ
ఋሺாሻ

௠ିଵ
     (5) 

 

𝑝௦௢௕ሺ𝐸ሻ ൌ 1 െ
ఋሺாሻ

௠ିଵ
                    (6) 

 
However, some authors propose a 

probability for the occurrence of a crossing event pc; 
In that case it is already known that the individual 
will survive and is represented as indicated in 
equation 7. 

 

𝑝௦௢௕ሺ𝐸ሻ ൌ 1 െ 𝑝𝑐
ఋሺாሻ

௠ିଵ
                    (7) 

 
The combined effect of crossover and 

selection affects generational replacements as shown 
in equation 8. This allows the suitability value of 
above-average schemes to be increased and thus to 
have a greater probability of replication and passage 
to the next generation [16-19]. 

 
𝜑ሺ𝐸, 𝑡 ൅ 1ሻ ൌ 𝜑ሺ𝐸, 𝑡ሻ ௘௩௔௟௨௔௧௘ሺா,௧ሻ

ிሺ௧ሻ
ቂ1 െ 𝑝𝑐

ఋሺாሻ

௠ିଵ
ቃ (8) 

 
Unlike the crossover, the mutation must be 

very careful, since, the change in many bits can 
destroy the individual or the changes made will not 
benefit the overall solution set. If the probability of 
modifying a bit is p୫, This means that the 
probability of survival will be its inverse, where the 
operation results in a new individual (see Figure 6) 
[16-19]. 

INDIVIDUAL 1 
INDIVIDUAL APTITUDE 

01100110  51 

INDIVIDUO 2 
INDIVIDUAL APTITUDE 

01001100  98 

SON 1 
INDIVIDUAL APTITUDE

01100011 99 

SON 2 
INDIVIDUAL APTITUDE

00110010 50 

RESULT 
OBTAINED 

CROSSING POINT 
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Figure 6: Example of a mutation 

 
Each mutation can be represented by 

equation 9 and each mutation affects the behavior of 
the solution set as shown in equation 10. 

 
𝑝௦௢௕ሺ𝐸ሻ ൌ 𝐸 ∗ 𝑁ሾ0,1ሿ  

 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛      (9) 
 

𝜑ሺ𝐸, 𝑡 ൅ 1ሻ ൌ 𝜑ሺ𝐸, 𝑡ሻ ௘௩௔௟௨௔௧௘ሺா,௧ሻ

ிሺ௧ሻ
ቂ1 െ 𝑝𝑐

ఋሺாሻ

௠ିଵ
ቃ ∗ 𝑝௠     (10) 

 
 
3. IMPLEMENTATION 
 

The algorithm developed is a classifier that 
incorporates a retro-propagation neural network, 
which is trained by a modified genetic algorithm that 
is responsible for finding the appropriate set of 
weights for the neural network to classify a given 

group of random numbers. The design of this 
algorithm (see Figure 7) is based on a conventional 
genetic algorithm but differs in that the single-point 
cross operator was replaced by an operator that 
reverses the positions of the weight vector. 

In other words, the proposed algorithm has 
two mutation operators, the first depends on a 
crossing probability and the second incorporates an 
operation with a Gaussian random number generator 
centred on 0 with a variance of 1, which reduces the 
size of the mutations (with increments of 0.01 in 
each generation) as the process advances, therefore, 
it was not made dependent on some probability. The 
structure of the proposed algorithm is shown in     
Figure 8. 

Once the neural network is created (see 
Figure 9) a solution set or initial population is 
created, in which its elements (individuals) change 
using two types of mutation, where the first mutation 
depends on a probability threshold set at 0.3. When 
this threshold is exceeded by a randomly generated 
number, the mutation is executed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 7: Training strategy 
 

 

 
INDIVIDUAL APTITUDE 

11001100  51 

 
INDIVIDUAL APTITUDE

11001110  115 

Bit to mutate  Mutated bit

RESULT 

OBTAINED 
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Figure 8: Optimization routine 

 
Considering the structure of the genetic 

algorithm, a selection per tournament was 
incorporated, which selects four individuals at 
random and compares them to each other in three 
different ways to take the best one. The first phase of 
the tournament selects the individual with the 
highest aptitude value, in the same parallel phase an 
individual is selected at random. The individual is 
selected by assigning a probability to each one 
according to its aptitude value, then a random 
number with uniform distribution is generated and 
the individual with the aptitude value closest to the 
generated number is selected.  

In the second phase of the tournament the 
same selection mechanism is used generating a 
random number with uniform distribution.  
However, to improve the effectiveness of the 
algorithm a steady state generation replacement was 
implemented, which allows new generations of 
individuals to prevail only if proficiency value is 
better. The aptitude value of each set of weights is 
evaluated by replacing in the network all the existing 
weights by those estimated with the algorithm, 
unlike the descending gradient the weights are 
estimated and replaced without taking into account 
the error; as shown in the  Algorithm 2. 
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Figure 9: Structure of the network 

 
Algorithm 2. Proposed Genetic Algorithm 
Modified AG program () 
         Start Variables; 
         Network=Create network (weights, hidden layers);  
         /*Create neural network*/  
         P0=Initial population U~ [0. weights];  
         /*Start grid weights*/ 
         While != Stop condition 
                Proficiency=Testing network weights (); 
                Parents= Selection (P0, proficiency); 
                /*Apply selection per tournament*/ 
                If R~U [0.1] <Pc     

          /*If the random number exceeds the Pc threshold, the    
mutation is activated*/ 
Children=Flip (P0, Parents);   
Sons=Mutation (Sons, sigma); 
/*This mutation performs the following operation  
H=H*sigma*/  
P0=Selection (Children, fitness); 

                /*A selection is made to take the best individuals*/ 
                /*And make the selection*/ 
                sigma=sigma*e^(-1/iteration); 

 End While 
End of program 

 
 
The Gaussian mutation used to modify the 

value of the weights is represented by multiplying a 
scalar value provided by equation 11 and the 
aptitude value of each individual is the correlation 
(Relationship between variables) between the output 
estimated by the network and the training data, is 
calculated using equation 12. 
 

𝑃ሺ𝑥ሻ ൌ
ଵ

√ଶగఙ
∗ 𝑒ି

൫ೣ೔షഥೣ൯
మ

మ഑మ      (11) 

 

𝑟 ൌ
൫∑ ሺ௫೔ି௫̅ሻ∗ሺ௬೔ି௬തሻಿ

೔సభ ൯

ට∑ ሺ௫೔ି௫̅ሻమಿ
೔సభ  ට∑ ሺ௬೔ି௬തሻమಿ

೔సభ

      (12) 

 
Where 𝐏ሺ𝐱ሻ is the probability value, 𝐱𝐢 is a 

value in the data range, 𝛔 is the standard deviation, 
𝛔𝟐 is the variance and 𝐱ത is the mean or average of the 
measured data [16]. 

 

4. RESULTS 

The neural network created to implement 
the classifier has 20 hidden layers and a linear-type 
activation function in each layer. The training data 
of the network are composed by a set of data 
available in a repository, which proposes a problem 
to test this kind of computational learning strategies 
[20]. 

In this case, the validation and testing of the 
proposed strategy was carried out by seeking the 
solution to a classification problem of three wines (3 
classes) with nine different characteristics. The 
characteristics are available as a 9-column 
arrangement and the wine to which they belong in a 
separate column or class, i.e. each row represents the 
characteristics of a wine, see Table 1. The total 
number of samples used for the validation of this 
example was 1926, based on 9 different 
characteristics stored in 214 records.   
 
 
 



Journal of Theoretical and Applied Information Technology 
15th July 2020. Vol.98. No 13 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
2613 

 

Table 1: Example of Samples Used 
 

 Features  

#Reg 1 2 3 4 5 6 7 8 9 Class 

1 152.101 13.64 4.49 1.10 71.78 0.06 8.75 0.0 0.00 1 

2 151.761 13.89 3.60 1.36 72.73 0.48 7.83 0.0 0.00 1 

3 151.618 13.53 3.55 1.54 72.99 0.39 7.78 0.0 0.00 1 

4 151.766 13.21 3.69 1.29 72.61 0.57 8.22 0.0 0.00 1 

5 151.742 13.27 3.62 1.24 73.08 0.55 8.07 0.0 0.00 1 

71 151.574 14.86 3.67 1.74 71.87 0.16 7.36 0.0 0.12 2 

72 151.848 13.64 3.87 1.27 71.96 0.54 8.32 0.0 0.32 2 

73 151.593 13.09 3.59 1.52 73.10 0.67 7.83 0.0 0.00 2 

74 151.631 13.34 3.57 1.57 72.87 0.61 7.89 0.0 0.00 2 

75 151.596 13.02 3.56 1.54 73.11 0.72 7.90 0.0 0.00 2 

147 151.769 13.65 3.66 1.11 72.77 0.11 8.60 0.0 0.00 3 

148 151.610 13.33 3.53 1.34 72.67 0.56 8.33 0.0 0.00 3 

149 151.670 13.24 3.57 1.38 72.70 0.56 8.44 0.0 0.10 3 

150 151.643 12.16 3.52 1.35 72.89 0.57 8.53 0.0 0.00 3 

151 151.665 13.14 3.45 1.76 72.48 0.60 8.38 0.0 0.17 3 

 
Table 2 shows the average data obtained in 

50 runs of the algorithm and their respective margin 
of error, then in Table 3 presents the behavior of 
genetic algorithms during their evolution (after fifty 
generations). 

The problem was solved with 3 different 
algorithms, initially tested with a neural network 
trained with the descending gradient strategy, then 
trained with the conventional genetic algorithm and 
finally with the proposed algorithm. The 
performance of the neural network was measured 
with a correlation between the training data and the 
data obtained by modifying its weights, i.e. the 
graphs in Table 3 represent the output behavior of 
the network and if this value is close to one, it can be 

said that the network has a large number of hits in 
the prediction of wines from its characteristics.  

It is important to emphasize the execution 
times achieved, because a substantial improvement 
is obtained in this process, since with the modified 
algorithm it only takes an average of 42.48 
milliseconds to obtain the analysis of the samples 
(class classification) while only with the neural 
network it takes a time of 249.38 milliseconds. The 
software validation tests were performed on a 
development interface on MATLAB 2015a, which 
runs on a 64-bit Windows 10 operating system with 
an Intel Core I7-4702MQ 2.2 GHz CPU and 8 Gb of 
RAM.

 
 

Table 2: Statistical Results 
 

 Best Worst Average Medium Learning time 

Descending gradient 0.75±0 0.75±0 0.75±0 0.75±0 4 hours 55 min 

Algorithm  
genetic 

conventional 

0.2397±0.12 -0.651±0.13 0.2397±0.1 0.2397±0.05 5 hours 20 min 

Algorithm  
genetic 

Modified 

0.8124±0.08 -0.0050±0.01 0.8123±0.09 0.8074±0.01 4 hours 45 min 
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Table 3: Results Graphs 
 

Conventional  
Algorithm 

 

Modified  
Algorithm 

 

5. CONCLUSIONS 

The implemented strategy improved the 
performance of the conventional genetic algorithm, 
because the single point crossing does not allow the 
population to diversify as much as the flip operator 
and the Gaussian mutation combined. This is shown 
in Tables 2 and 3 where it is appreciated that the 
correlation value found by the proposed strategy is 
higher than the one found using the conventional 
genetic algorithm, according to these results we can 
say that the solution of the optimized algorithm 
proposed by this work reflected an increase in 
performance of 82.97 % (42.48 milliseconds), with 
respect to the response time associated with the 
solution of classification problems using only neural 
networks and a conventional genetic algorithm 
(249.38 milliseconds). By omitting the error 
calculation as done with the back-propagation 
network and replacing them with genetic operators, 
it is possible to optimize the amount of resources 
consumed by the computer during neural network 
training, increasing the processing speed. 

This proposed optimization will allow the 
use of this algorithm in various classification 
problems, not only in conventional computer units 
(PCs), but can also be used on various technological 
platforms with reduced properties (embedded 
systems), maintaining an optimal balance between 
the use of resources and the speed of response of the 
device used. 
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