
Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2580

PRACTICAL FRAMEWORK FOR SOFTWARE
INTEGRITY MEASUREMENT BASED ON STATIC

ANALYSIS

SHAREFA MURAD

Assistant Professor, Middle East University, Department of Computer Science, Amman, Jordan

E-mail: smurad@meu.edu.jo

ABSTRACT

Quality metrics technology is a disciplined approach used to evaluate, predict, and specify the software
quality in terms of software integrity. The obtained metrics interprets the criteria influencing the
implementation of software integrity. The primary goal of software integrity regarding security is ensuring
the commendable and basic data around the organizations and makes it effectively achievable. In this study,
we proposed two methods for finding the integrity bugs in software implementation. The first methods
involve determining and consolidating the criteria of evaluation while in the second method we employed
Chidamber and Kemerer Java Metrics (CKJM) to compute the software quality metrics. Furthermore, three
open-source Java frameworks are utilized to analyze the effect of quality metrics on the implementation of
software integrity. The proposed framework enabled to examine the most extensively employed metrics to
test software integrity i.e the number of children, the coupling between objects, and response for class
respectively. The empirical results suggested that the metrics calculated by the proposed framework have a
significant effect on software integrity. The benefits of the proposed system to the absolute use of
measurements at steady appearances of software products help in the early identification of software
quality-related issues. Specific appraisal of quality levels gives better administration permeability and
empowers auspicious dynamics.

Keywords: Software Quality, Software Integrity, Correlation, ANOVA test, Quality metrics

1. INTRODUCTION

Data security is the establishment of any
conducive industry. Corporations can accomplish
the objective of data security by having appropriate
data security tools to ensure data against
vulnerabilities. In a disseminated condition, it is a
major issue that how to guarantee in two-way
communication to make sure about data is protected
[1, 2, 3]. In a System Engineering, non-functional
requirements spout the patterns that can be utilized
to assess the activity of the framework, which
interprets as a simulate section of the framework
not identified with its accomplishment but instead
to its advancement after some time to make it
increasingly distinct [4, 5, 6]. One notable non-
functional requirement is considered as a security of
specific software [7].

The primary objective of security is ensuring the
commendable and basic data concerning the
relationships between the data and makes it
effectively reachable. Attackers utilize various

strategies, apparatuses, and procedures to harm the
frameworks and try to de-activate business tasks
[8]. Accomplishing reliable software products
becomes a challenge for the business experts; that
is because it needed a profound comprehension of
various viewpoints such as security categories,
security policies, and security evaluations [9, 10].

Security testing targets approving evaluation
criteria based on the framework requirements
identified with security properties [11]. For
empowering the direction of test recognizable
proof, several security evaluation strategies are
accessible for a long time, including the critical
methodologies that take into consideration detail of
experiments at a more elevated level of analysis
[11]. Software metrics are frequently employed to
evaluate the capacity of software to accomplish a
pre-described objective [12]. It can be defined as a
proportion to evaluate the characteristics of
software in terms of security, integrity, and
robustness. Furthermore, it can be utilized to

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2581

quantify during different software development
stages such as feasibility study, design, and
developmental process [13].

Several researchers have used numerous models
to ensure the security measure for the integrity of
software development. This study depends on the
principle Triple Security Model (TSP) likewise
named the CIA model [14, 15]. Specifically, the
CIA depends on three fundamental security ideas
which include availability, integrity, and
confidentiality. Each model relies on these three
measures to structure the software. Figure 1 exhibits
the CIA triangle.

Confidentiality is a terminology adopted to
anticipate the revelation of data to unapproved
people or frameworks [17]. Integrity implies that
information cannot be altered without approval.

It implies keeping up and guaranteeing the
precision and consistency of information over its
whole life-cycle [17]. Lastly, the availability of the
data must be accessible when it is required [17].
Various upgrades in the figuring condition and the
wide affection of software technology in instructive
foundations and associations; there are diverse new
assaults routinely enforced on the Integrity of
frameworks, the confidentiality of information, and
the copyrights of media suppliers [18].

Security specialists have perceived that in the
vast majority of the cases, security attacks are
because of inadequately data storing methods and
the evaluation metrics to investigate the quality
score of any particular software. Hence there is a
need to have such a software evaluation metric that
helps to ensure software integrity in every aspect.

In this study, we have proposed a framework that
defined standards to identify the integrity bugs into
the implementation of the software and gives the
experimental proof of associated correlation metrics
(CK) with integrity. The proposed framework
consists of two methods. The first methods involve
determining and consolidating the criteria of
evaluation while in the second method we used
static tools analysis using the CKJM tool to
compute the metrics.

Furthermore, we examine the impact on the
integrity of software by the probability of CK
metrics. Following hypothesis are considered for
this research.

H0: (Null Hypothesis) No correlation between
CK metrics and Integrity.

H1: (Substitute Hypothesis) Correlation exists
between CK metrics and Integrity.

For the validation of the hypothesis, we used the
CKJM tool [20] to consist of the open-source
program to show the correlation.

A. Research Objectives

The primary objectives of the underlying
results includes:

1. Establish standards and rules to
examine software integrity for
avoiding probable bugs.

2. Computing integrity score by
defining quality metrics.

3. To determine if the computed
metrics correlated with the integrity
of software.

Figure 1: Basic CIA Triangle [16]

2. BACKGROUND

This section depicts the past studies related to
estimating software integrity for plaining a model-
based analysis set up for security.

Livshits et al. [21] have carried out a latent
investigation method to distinguish numerous
application vulnerabilities, for example, HTTP
parting assaults, cross-site scripting, and SQL
infusions respectively. A user-friendly framework
was designed to tackle vulnerabilities that are
consequently converted into static analyzers.
Similarly in [22], the purpose of their examination
is the exhibition of the prescient model which
utilizes evaluation criteria to measure the integrity
based on the level of code. The analysis dissects 13

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2582

datasets of the “NASA Metrics Data Program”. By
implementing a space of factual significant tests
and demonstrating approaches, the proposed modal
guaranteed superiority over other approaches that
are based on design metrics.

The authors in [4] considered security concerns
due to the cloud being vulnerable. To ensure the
collected information was unblemished since it was
unfeasible to download the full information, a
security component named reliability check was
utilized. The integrity check was accomplished by
probabilistic structures, for example, cuckoo
channels and blossom channels. Transferring
information documents on to one cloud server could
be a state of failure, rather, the record could be
disseminated over l servers.

Al-Badareen et al. [23] brought out a detailed
comparison of the state of the art models designed
for the evaluation of software quality such as
Boehm Model [24], McCall Model [25] and IEC
9126 Model [26]. The outcome shows the
shortcomings and quality of those principles in
estimating security and other quality sides. In [13],
the authors have given exact proof that non-
cohesive, complex and, coupled software
substances are commonly weak in terms of the
security wall. The author investigated the absence
of Cohesion, Coupling, and Complexity metrics at a
factually critical level decidedly connected to the
number of vulnerabilities. The relationship is on the
p-value under 0.001 with normal 0.5.

The author proposed a strategy [5] for confirming
the quality of integrity ranks by an electronic
gadget, the technique includes getting to a module
of the related frame, acquiring a mark (M),
preparing a confirmation key (CK), related control
key (COK) relating to a marking key (MSK),
confirming whenever said signature (WSS) was
determined by marking related frame module with
said marking key (SK), by utilizing said
confirmation key (VK), and building up a positive
confirmation module. The work likewise gives a
strategy for giving a check the integrity to play out
the previously mentioned techniques.

Integrity Quantification Model” (IQM) based on
the designed with object-oriented proposed by [27].
Their study consist of the evaluation of soft-ware
security integrity, regarding unpredictability factors
such as Coupling between Object (CBO), Total
Supporting Services (TSS), Higher Level of
Abstraction (HLA), and Coupling Function (CP).
Schieferdecker et al. [28] carried out a novel
security testing approach termed as”Model-based

security testing”. The suggested technique
committed to the adequacy and the orderly detail of
the security test of instances objects semi-robotized
object. The MBST procedure incorporates security
functional tests and model-based evaluation to
prevent the framework from attackers with daily
basis experiments.

A survey carried out by the authors in [29] on
different techniques of security testing. Their study
includes the most advance and recent
advancements of security testing systems applied
during the protected software improvement life
cycle such as dynamic analysis, penetration testing,
static analysis, code-based testing, and model-
based security testing.

 Lastly, the security testing procedures are
represented by utilizing i.e. web-based applications
with three-tiered architecture. The authors
accompanied a systematic mapping study (SMS) in
[30] supporting a thorough convention that was
designed dependent on the best in class SMS and
orderly survey rules. For data extraction from a
large number of important studies, they deliberately
recognized 34 essential MBSE4CPS. The empirical
analysis for two on-going years (2014-2015)
reveals that the quantity of essential MBSE4CPS
examines has expanded altogether. Inside the
essential investigations, the notoriety of utilizing
Domain-Specific Languages (DSLs) is practically
identical with the utilization of the UML
demonstrating documentation.

MobSTer, an adaptable model-based security
testing framework proposed in [31]. MobSTer
considered as the superior framework in terms of
filling the hole between these two security testing
draws. The fundamental thought of the system is
that the utilization of model-checking strategies can
robotize the quest for conceivable section focuses
on the web application, i.e., it allows an
investigator to perform security testing without
avoiding significant checks. Additionally, the
system likewise considers reusability: the
investigator can gather the evaluation results into
the structure and (re)use it during future tests on
conceivably unique web applications. The authors
impersonate a study [32] of the ongoing
exploration endeavors in coordinating learning-
based models with testing. They recognized two
coasts of literature review which include test-based
demonstrating and learning-based testing.
Furthermore, they managed the outcomes as far as
their test object strategies, their hidden models, and
their objective domains.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2583

Hardware Security Modules (HSM) has carried
out in the study [33] to be tested by a strong
composite of three test determination standards to
examine security prerequisites of segments. The
proposed combination dependent on the utilization
of static test determination rules, to be specific
auxiliary model composition, supplemented by
unique test criteria. Their methodology is executed
in mechanical and adaptable MBT tools.

The author proposed another software quality
measurement [14], for anticipating the unwavering
quality of segments, in software that is based on the
components. In their examination, a standard
quality measurement like attachment, coupling, and
cyclomatic unpredictability was distinguished,
utilizing head part analysis (PCA). To approve the
recently proposed measurements factually, the t-test
was applied to it.

 They assessed and efficiently employed it to
three security applications based on the real world.
Another information-based security testing
technique is proposed in [34] by rational
programming and the associated tool execution.
The proposed strategy assists with defeating the
contemporary pervasive center on functional
requirements rather than the non-functional
requirement just as the necessary elevated level of
security information when performing non-
functional security testing. The issues tackled by the
suggested approach are: dealing with the vast
measure of negative security experiments, non-
functional requirements for testing, and non-
functional requirement manipulation for the non-
expert analyzers.

Simos et al. [35] carried out standard test criteria
for TLS security protocols to prevent an application
from the most recent attacks including BREACH,
ROBOT, and DROWN respectively. They
converged around cybernetic experiment period and
performance concerning the TLS security protocol,
wherever the point is to join arranging including
combinatorial techniques for giving experiments
likewise uncovering the previously hidden attacks.
That is composed attainable by making proper
information parameter models for various messages
that can show up in a TLS communication system.

3. METHODOLOGY

In this study, we proposed two methods for
finding the integrity bugs in software
implementation. The first methods involve
determining and consolidating the criteria of
evaluation while in the second method we used

static tools analysis using the CKJM tool to
compute the metrics.

The evaluation metrics can be defined as :

NOC-expresses to the number of prompt
subclasses (Children) subjected to the class (parent)
in the family chain of command. NOC gauges what
number of strategies or fields acquired legitimately
through selections of a superclass. .Orders with
countless children need to offer progressively
nonexclusive support to all the children in different
settings and ought to be increasingly adaptable, an
imperative that can bring greater intricacy into the
parent class.

CBO-Is the quantity of different sources that a
class is linked to. This type of coupling is only
feasible for object-oriented frameworks. For
instance strategies for individual use techniques or
occurrence factors of another, because a similar
class has similar properties, the coupling between
two classes is held when strategies pronounced in
one class use techniques or case factors
characterized by the different classes. Over the top
coupling demonstrates shortcoming of class
exemplification and may hinder re-use.

RFC-It can be characterized as a collection of
strategies that can be conceivably affected because
of an internal ping received through the object of
the concerning class. This entire metric is also
relevant to object-oriented systems. On the off
chance, that an enormous number of strategies can
be summoned in light of an internal ping, at that
point, the testing and troubleshooting of the class
turns out to be progressively muddled because it
expects a more noteworthy degree of understanding
required concerning the analyzer.

LOC- essentially checks the total number of
lines a source code contains (can be defined as line
break characters) of a specific software substance,
this type of metric is straightforward yet ground-
breaking to examine the intricacy of software
techniques and elements.

 The demonstration of the calculation of integrity
is given in equation 1.

Integrity = 1 -
Errors

 (1)

 Lines of Code

Lastly, we analyze the relative correlation
between the obtained metrics and integrity.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2584

A. Proposed model 1

The following 5 phases involve are in the
proposed method consist of defining and combining
the evaluation criteria to identify the software
integrity bugs in the implementation point of view.

1. Obtain the origin of warnings & bugs in
source code.

2. Segregate the warnings & bugs into two
different categories.

3. Choose the warnings & bugs with the
strongest integrity relationship.

4. Exploring the bugs using the static analysis
tools such as FindBugs, VC, and Jtest.

5. Implementation of static analysis tools for
static bug analysis.

The flow chart of the proposed model based on
combining the criteria is presented in figure 2.

Figure 2. Flow Chart Of The Proposed Model.

B. Proposed Model 2

After obtaining the activities, these projects are
embedded in static analysis tools at the code level
to find the Bugs that influence on integrity. The
flow diagram of the proposed model based on static
bug analysis is presented in figure 3.

Figure 3. Flow diagram of the proposed model based
on static bug analysis.

The following phases are contributed to form the
proposed framework.

Step 1: The source files are parsed through the
Jtest tool for finding the bugs in the source code
along with the relationship among the metrics and
integrity. The output obtained by the Jtest tool is
given in figure 4.

For detecting the faults in the source file, the
complete project is scanned through the VCG tools.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2585

The output is given by the VCG framework is
presented in figure 5.

Similarly, the layer of FindBugs takes the source
file as input to find the bugs. The output achieved
by the FindBugs toolbox is demonstrated in figure
6.

Likewise, the CKJM tool is employed for the
software project’s source files to be parsed to
compute the intended metrics such as LOC, CBO,
NOC, and RFC. The metric results obtained by
CKJM is expressed in figure 7.

Step 2: At this stage, the output achieved from
FindBugs, VCG, CKJM, and Jtest is further added
to form a single source code file. During the
process, the entry appears as duplicated error or
warning is removed from the file regardless of their
parent bug. The output of the merging process is
given in figure 8.

The integrity of the merged source code is then
calculated using the CKJM. Figure 9 shows the
CKJM results with integrity obtained by merging
FindBugs, VCG, CKJM, and Jtest source files.

Step 3: In this step, we used the results from
figure 9 to compute the relationship and the
influence of CBO, RFC, and NOC metrics upon
integrity. Furthermore, the proposed framework
utilized Multiple Linear Regression for obtaining
the relevant coefficients against each metric
corresponds to the relationship with integrity. MLR
is proposed in [36] for investigating software
integrity during the developmental process. MLR
attempts to shape a connection between at least two
translations factors and the reaction variable
utilizing the linear equation. The free factor x in
each of the reaction variables is associated with an
estimation variable y. MLR can be defined by the
following equation.

Y = 0+ 1X1+ 2X2+ 3X3+ …………..+ nXn

(2)

Where Y: denoting the dependent variable which

can be defined as what is being explained and 0:

(Beta) expressed as the intercept point. Where 1: is
the Slope for X.

4. EVALUATION AND RESULTS

A. Subject Evaluation

For the evaluation of the proposed modal, we
used three open-source projects to check and

compared in terms of the relationship between
metrics and integrity. The obtained projects include
which are Commercial, Payment, and ArgUML
respectively. The Commercial and Payment
projects are related to the security while ArgUML
is related to OpenGL communication in the hyper
networks. These programs were downloaded
directly from Sourceforge and Github. The detailed
description of the used projects is given in Table 1.

B. Regression Results

1. ArgoUML Project: Table 2 expressed the total
number of variables entered and deleted when
using the ArgoUML project.

SPSS permits users to enter factors based on the
specific type of variable for regression analysis.
This implies maintaining the co-relation between
dependent and independent variables. Similarly,
deleting variables that were expelled from the
regression slope fr stepwise regression alignment.
Choosing the Enter method of SPSS implies that
every autonomous variable was entered in the
standard style.

The results obtained by employing ArgoUml for
the proposed model is presented in Table 3.

In Table 3, R representing the correlation
precision relationship between the dependent
variable and the metrics, where R-square can be
defined as the square root of correlation based on
the proportion of precision variance and the
independent variable. Furthermore, a general
proportion of the quality of affiliation is dependent
on the degree to which a specific independent
variable is correlated. Std referencing a root mean
squared error can be obtained by taking the
standard deviation of the error. The Pearson
Correlation of 0.13 from Table 3, showing a
relationship between RFC, NOC, CBO on integrity,
nevertheless, R-square is 0.018 which symbolizes
1.8% of the variation of integrity.

The ANOVA Test and Individual Regression
Coefficients test are expressed in Table 4 and 5.

2. Shopizer-Ecommerce Project: Table 6 ex-
pressed the total number of variables entered and
deleted when using the Shopizer-Ecommerce
project.

The results obtained by employing ArgoUml for
the proposed model is presented in Table 7. The
ANOVA Test and Individual Regression
Coefficients test are expressed in Tables 8 and 9.

Table 8, shows that Sig= 0.942 over 5%, which
implies the fluctuation of critical contrast between

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2586

CBO, RFC, NCO respectability. The previously
mentioned table shows that Sig= 0.942 over 5%,
which implies that there is a no measurably huge
contrast between metrics and integrity and that
implies a no factually noteworthy connection.

Figure 4. Jtest results.

Figure 5. VCG Results.

Figure 6. Find Bug Results.

Similarly, Table 9, expressing the significant
effect of correlated metrics on integrity.

3. Payment4j Project: The results obtained by
employing Payment4j for the proposed model is
presented in Table 10.

Table 10 reveals that Correlation Pearson
obtained is 0.0122, signifies the existence of a
feeble connection between CBO, NOC, and RFC,
on integrity, Wherever, R2 is 0.002 which
demonstrates that 1.5% of the variety in a

subordinate variable (respectability) can be
clarified by the independent variables CBO, NOC,
and RFC. The ANOVA test is expressed in Table
11.

5. ANALYSIS

From Table 4, the Sum of Squares related to the
three well-springs of fluctuation Residual,
regression, and Total. The Total fluctuation is
divided into the difference which can be clarified
by the autonomous variables (Regression) and the
change which isn’t clarified by the autonomous
variables (Residual). Furthermore, F-measurement
the p-value related to the Mean Square isolated by
the Residual. The p-value is contrasted with some
alpha level in testing the invalid speculation that
the entirety of the model coefficients are 0. Table
IV shows that Sig= 0.000 under 5%, where the
factual relationship utilized is 5%, and it implies
that there is a measurably critical distinction
between CBO, RFC, and NOC.

Referred to the Table 5, Beta is the
institutionalized coefficients that acquire on the off
chance for institutionalizing the entirety of the
variables in the regression, including the reliant and
the entirety of the autonomous variables, and
encompassed the reverse of the regression. By
regulating the variables before covering the loss,
the variables on a similar scale are passed through
the user-defined entry which is dependent on the
size of the coefficient.

Table 7, reveals that Correlation Pearson obtained
is 0.021, signifies the existence of a feeble
connection between CBO, NOC, and RFC, on
integrity, Wherever, R2 is 0.005 which
demonstrates that 0.5% of the variety in a
subordinate variable (respectability) can be
clarified by the independent variables CBO, NOC,
and RFC. Table 11, shows that Sig= 0.04 less than
5%, which implies the fluctuation of critical
contrast between CBO, RFC, NCO respectability.
 In the Figure 10, the Cross correlation for
Individual regression results obtained by
employing argouml is presented. We can see that
the Lag and CCF are significantly improved when
comparing T and Std. error for the constant method
as appose to the CBO, RFC, and NCO
respectability. The achieved cross correlation ratio
is -4.0 to 1.0.
 From table 4, Taking a gander at the analysis of
difference in the result variable, these are the
classes we have computed Regression, Residual,
and Total. The Total change is parceled into the
fluctuation which can be clarified by the free

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2587

factors (Model) and the difference which is not
clarified by the autonomous factors (Error).
 Table 9 depicts the regression results which
shows the model is identical to the necessity for
dependability; the variety between them is that
unwavering quality is concerned about all errors of
the outcome, and reliability is concerned uniquely
with the subset of errors that sway on the integrity.
Marginal comparison for Shopizer-Ecommerce
project in terms of Std error and B value is
presented in the figure 11, which depicts the low
marginal error with respect to the correlation and
high B value with respect to the marginal
significance. Kruskal-Wallis average ranks on 3
employed projects are presented in the Table 12 and
shows significant ranks for CBO as compared to other
models.

6. LIMITATIONS

We perceive that there are sure restrictions to the

outcomes and effects of the underlying research.

In the first place, our exploration depends on
Bugs which have just been found and proclaimed.
The bugs that have not been found or openly
declared at this point are not utilized in our
examination even though such data may add to
progressively specific analysis.

The way that numerous different elements can
influence quality metrics in terms of integrity. In
this manner, we suggest that RFC, CBO, and NOC
measurements ought to be the sole thought when to
gauge integrity in the product lifecycle.

We recognize that one contextual analysis is not
adequate to draw totally broad and solid outcomes.
A few conclusions drawn from examining 3 trials
may not have any significant bearing to another
software integrity in various areas.

7. CONCLUSION

Software quality evaluation defined as the
complicated procedure and partitioned into three
angles; functional quality, structural quality, and
process quality. It is critical to assess the software
quality through the degree of code and the flow
chart after execution. Consequently, there is a need
to characterize criteria to decide integrity
determined by the bugs in the actualized software.
CK metrics are employed to evaluate the quality of
software. In this research, we have carried out a
static analysis tool for detecting the bugs to assure
software quality and integrity. The recommended
framework adopted JM to measure correlation

metrics. Moreover, three open-source Java
frameworks are employed to examine the effect of
metrics. The empirical result confirmed that the
independent variable RFC produces a notable
influence on software integrity as compared to the
NOC. Where the co-relation results obtained by
CBO reinforce the zero effect with the lowest
relationship between metrics and integrity.

Figure 7. CKJM Results.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2588

 Table 1. Detail Description Of The Used Projects For Comparison

 Name Location
of

Class Version

 shopizer-ecommerce
https://github.com/shopizer-

ecommerce/shopizer 861 2.0.0

 payments4j https://github.com/CarlosZ/payments4j 194 0.0

 ArgoUML
http://argouml-

downloads.tigris.org/source/browse/ 1914 0.30.2

Table 2. Variables Entered And Deleted When Using Argouml Project.

 Variables Entered/Deleted

Model

 Entered Deleted Method

 NOC,
RFC,
CBO

-

Enter

Table 3. Results Obtained By Employing Argouml For The Proposed Model

a.Predictors: NOC, RFC,

CBO

Model std Adjusted R Square

R
Squar

e R

1 .09415 .016
.01
8

.1
34a

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2589

Figure 8. The output of the merging process.

Figure 9. CKJM Results With Integrity Obtained By
Merging Findbugs, VCG, CKJM, And Jtest Source File

Figure 10. Cross Correlation For Individual
Regression Results Obtained By Employing Argouml

Figure 11. Marginal Comparison For Shopizer-
Ecommerce Project In Terms Of Std Error And B Value

Table 4. Anova Results Obtained By Employing Argouml For The Proposed Model

 ANOVAb

 Model Mean Df Sum Sig F

Square of Square

 Residual .009 1911 16.939

1

 Regression .104 3 .311 11.677 000a

 Total 1914 17.249

 a. Predictors: NOC, RFC, CBO

 b. Integrity.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2590

 Coefficientsa

 Model
Unstandardized

Coefficients
Standardized
Coefficients Sig. T

 Beta Std. Error B

 (Constant) 0.134 0 0.002 0 5.328

1

NO
C -0.001 0 -3.85E-06 0.977 -0.029

CB
O 0.004 0 8.60E-05 0.853 0.185

RF
C 0.003 0.943 0 338.469

 a.Integrity

 Table 6. Variables Entered And Deleted When Using Shopizer-Ecommerce Project.

 Variables Entered/Deleted

Model

 Entered Deleted Method

 NOC, RFC,

CBO

-

Enter

 Table 7. Results Obtained By Employing Shopizer-Ecommerce For The Proposed Model

a.Predictors: NOC, RFC,

CBO

 Model Std Adjusted R Square
R
Square R

 1 1.24428 -0.003 0.005 0.21a

Table 5. Individual Regression Results Obtained By Employing Argouml

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2591

ANOV
Ab

Mod
el

Mean

Squar
e

Df Sum

of
Square

Sig F

1

Residual .202 3 .606
Regressi

on
.104 3 .311 13

0
942

a
Total 191

4
17.249

a. Predictors: NOC, RFC, CBO

b. Integrity.

 Coefficients a

Model Unstandardized
Coefficients

 Standardized
Coefficients

Sig. T

1

 Beta Std.
Error

B

RFC .018 .002 .001 .643 .464

CBO -.004 .003 .001 .911 -.112

NOC .015 .015 .006 .672 .423

(Constant
)

 .055 .671 .000 12.24
6

a.Integrity

Table 8
.

Results Obtained By Employing Shopizer-Ecommerce For The Proposed Model

Table 9
.

Regression Results Obtained By Employing Shopizer-Ecommerce For The Proposed Model

Table 10
.

Results obtained by employing Payment4j for the proposed model

a.Predictors: NOC, RFC,
CBO

Model Std Adjusted R
Square

R
Square

R

1 .2280
4

0.000 .122a .122
a

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2592

Table 12. Kruskal-Wallis Avergaeg Ranks On 3 Employed

Projects

Metho
ds

Shopizer-
Ecommerce

Payment4j
project

ArgoUml
project

Const
ant

4.0 4.0 4.0

NOC 3.0 3.0 2.0

CBO 1.5 1.0 1.0

RFC 1.5 2.0 3.0

ACKNOWLEDGEMENT
The author thanks the Middle East University,
Amman, Jordan for their financial support of this
research and their continuous encouragement.

REFRENCES:

[1] A. Nikishova, T. Omelchenko, and Y.
Umnitsyn, “Software integrity control,” 2019
International Russian Automation Conference
(RusAutoCon). IEEE, 2019, pp. 1–5.

[2] M. Ahmadvand, A. Pretschner, and F. Kelbert,
“A taxonomy of software integrity protection
techniques,” in Advances in Computers.
Elsevier, 2019, vol. 112, pp. 413–486.

[3] S. Murad, I. Passero, and R. Francese, “Metric
pictures: Source code images for visualization,
analysis and elaboration,” in Information
Technology and Innovation Trends in
Organizations. Springer, 2011, pp. 279–287.

[4] H. S. Asl, B. M. Tazehkand, and M. J.
Museviniya, “Distributed scfmbf based
protocol for integrity in cloud storage system
(dpics),” SN Applied Sciences, vol. 2, no. 2, pp.
1–18, 2020.

[5] N. Asokan, J. Mantyla, and R. Serafat,

“Method and device for verifying the integrity
of platform software of an electronic device,”
Jan. 30 2020, uS Patent App. 16/591,192.

[6] R. Francese, S. Murad, I. Passero, and G.
Tortora, “Metric pictures: The approach and
applications,” The 2010 International
Conference on Computer Engineering &
Systems. IEEE, 2010, pp. 320–325.

[7] J. Son, S. Koo, J. Choi, S.-j. Choi, S. Baek, G.
Jeon, J.-H. Park, and H. Kim, “Quantitative
analysis of measurement overhead for integrity
verification,” in Proceedings of the Symposium
on Applied Computing, 2017, pp. 1528–1533.

[8] C. A. Sennewald and C. Baillie, Effective
security management. Butterworth-
Heinemann, 2020.

[9] S.-F. Wen and B. Katt, “Toward a context-
based approach for software security
learning,” Journal of Applied Security
Research, vol. 14, no. 3, pp. 288–307, 2019.

[10] A. Al-Far, A. Qusef, and S. Almajali,
“Measuring impact score on confidentiality,
integrity, and availability using code metrics,”
in 2018 International Arab Conference on
Information Technology (ACIT). IEEE, 2018,
pp. 1–9.

[11] O. N. Basheer, “Practical measurements
frame-work for software integrity,” Ph.D.
dissertation, Middle East University, 2015.

[12] R. Z. Frantz, M. H. Rehbein, R. Berlezi, and
F. Roos-Frantz, “Ranking open source
application integration frameworks based on
maintainability metrics: A review of five-year
evolution,” Software: Practice and
Experience, vol. 49, no. 10, pp. 1531–1549,
2019.

Table 11
.

Anova results obtained by employing Payment4j for the proposed model
 ANOV

Ab
Model df Sum of

Squares
F Mean Square Sig.

1

Regressi
on

3 .151 0.96
8

0.05 .04a

Residual 19
1

9.93 0.52

Total 19
4

10.08

a. Predictors: NOC, RFC, CBO

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2593

[13] I. Chowdhury and M. Zulkernine, “Using
complexity, coupling, and cohesion metrics as
early indicators of vulnerabilities,” Journal of
Systems Architecture, vol. 57, no. 3, pp. 294–
313, 2011.

[14] R. Sehgal, D. Mehrotra, and R. Nagpal, “New
metrics for predicting the reliability of
individual component based on software design
metrics,” in International Conference on
Distributed Computing and Internet
Technology. Springer, 2019, pp. 79–94.

[15] E. Dias Canedo, K. Valenca, and G. A.
Santos, “An analysis of measurement and
metrics tools: A systematic literature review,”
in Proceedings of the 52nd Hawaii
International Conference on System Sciences,
2019, pp. 9–20.

[16] S. Samonas and D. Coss, “The cia strikes
back: Redefining confidentiality, integrity and
availability in security.” Journal of Information
System Security, vol. 10, no. 3, 2014.

[17] Y. Sattarova Feruza and T. Kim, “It security
review: Privacy, protection, access control,
assurance and system security,” International
journal of multimedia and ubiquitous
engineering, vol. 2, no. 2, pp. 17–32, 2007.

[18] S. Chandra and R. A. Khan, “An empirical
validation of integrity risk factor metric: An
object-oriented design perspective,”
International Journal of Software Engineering
and Knowledge Engineering, vol. 3, no. 8,
2013.

[19] R. Bashir and A. G. Dunn, “Software
engineering principles address current
problems in the systematic review ecosystem,”
Journal of clinical epidemiology, vol. 109, pp.
136–141, 2019.

[20] J. Singer, S. Marion, G. D. Brown, R. E.
Jones, M. Lujan,´ C. Ryder, and I. Watson,
“An information theoretic evaluation of
software metrics for object lifetime
prediction,” in 2nd Workshop on Statistical and
Machine learning approaches to Architectures
and compilation (SMART’08), 2008, pp. 1–14.

[21] V. B. Livshits and M. S. Lam, “Finding
security vulnerabilities in java applications
with static analysis.” in USENIX Security
Symposium, vol. 14, 2005, pp. 18–18.

[22] Y. Jiang, B. Cuki, T. Menzies, and N.
Bartlow, “Comparing design and code metrics
for software quality prediction,” in
Proceedings of the 4th international workshop
on Predictor models in software engineering,
2008, pp. 11– 18.

[23] A. B. Al-Badareen, M. H. Selamat, M. A.
Jabar, J. Din, and S. Turaev, “Software quality
models: A comparative study,” in
International Conference on Software
Engineering and Computer Systems. Springer,
2011, pp. 46–55.

[24] B. Boehm, J. Brown, H. Kaspar, and M. M.
Lipow, “Fj & merritt, mj (1978).
Characteristics of software quality. trw series
of software technologies 1.”

[25] J. A. McCall, “Quality factors,” Encyclopedia
of software engineering, 2002.

[26] R. G. Dromey, “A model for software product
quality,” IEEE Transactions on software
engineering, vol. 21, no. 2, pp. 146–162, 1995.

[27] S. A. Khan and R. A. Khan, “Integrity
quantification model for object oriented
design,” ACM SIGSOFT Software Engineering
Notes, vol. 37, no. 2, pp. 1–3, 2012.

[28] I. Schieferdecker, J. Grossmann, and M.
Schneider, “Model-based security testing,”
arXiv preprint arXiv:1202.6118, 2012.

[29] M. Felderer, M. Buchler,¨ M. Johns, A. D.
Brucker, R. Breu, and A. Pretschner, “Security
testing: A survey,” in Advances in Computers.
Elsevier, 2016, vol. 101, pp. 1–51.

[30] P. H. Nguyen, S. Ali, and T. Yue, “Model-
based security engineering for cyber-physical
systems: A systematic mapping study,”
Information and Software Technology, vol. 83,
pp. 116–135, 2017.

[31] M. Peroli, F. De Meo, L. Vigano,` and D.
Guar-dini, “Mobster: A model-based security
testing framework for web applications,”
Software Testing, Verification and Reliability,
vol. 28, no. 8, p. e1685, 2018.

[32] B. K. Aichernig, W. Mostowski, M. R.
Mousavi, M. Tappler, and M. Taromirad,
“Model learning and model-based testing,” in
Machine Learning for Dynamic Software
Analysis: Potentials and Limits. Springer,
2018, pp. 74–100.

[33] J. Botella, J.-F. Capuron, F. Dadeau, E.
Fourneret, B. Legeard, and F. Schadle,
“Complementary test selection criteria for
model-based testing of security components,”
International Journal on Software Tools for
Technology Transfer, vol. 21, no. 4, pp. 425–
448, 2019.

[34] P. Zech, M. Felderer, and R. Breu,
“Knowledge-based security testing of web
applications by logic programming,”
International Journal on Software Tools for
Technology Transfer, vol. 21, no. 2, pp. 221–
246, 2019.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2594

[35] D. E. Simos, J. Bozic, B. Garn, M. Leithner,
F. Duan, K. Kleine, Y. Lei, and F. Wotawa,
“Testing tls using planning-based
combinatorial methods and execution
framework,” Software quality journal, vol. 27,
no. 2, pp. 703–729, 2019.

[36] O. Fedotova, L. Teixeira, H. Alvelos et al.,
“Software effort estimation with multiple linear
regression: Review and practical application,”
Journal of Information Science and
Engineering, vol. 29, no. 5, pp. 925–945, 2013.

