
Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2214

 MEASURING RIPPLE EFFECT OF NATURAL LANGUAGE
REQUIREMENTS CHANGE FOR ULS DYNAMIC

REQUIREMENTS

AHMED SAFWAT ALY1 , MOHAMED BADR SENOUSY2 , ALAA M.RIAD3

1Teaching Assistant, Sadat Academy for Management Sciences, Department of Computer and Information

Systems, Egypt
2Professor, Sadat Academy for Management Sciences, Department of Computer and Information Systems,

Egypt
3Professor, Faculty of Computer and Information Systems, Department of Information Systems, Mansoura

University, Egypt

E-mail: 1asafwat@sadatacademy.edu.eg, 2 badr_senousy_arcoit@yahoo.com, 3 amriad2000@gmail.com

ABSTRACT

Ultra Large Scales Systems (ULS) or Ecosystems are growing dramatically alongside their interactions and
dependencies among other system components, change management needs new tactics. As consider one
change or more in ULS requirements may result in a lot of side effects in other running or planned
requirements that could be called “Ripple Effect”.
Different ULS elements are affected in this type of environments varying from RE workers, Change
Requesters and Involved parties those can be called ‘Crowed Sourcing” contributors in ULS environment.
To challenge such problems, in this paper, we suggest a new methodology for requirements change evolution
to able to measure the impact of several changes on ULS requirements which are represented by a Natural
Language utilizing Similarity models. This paper reports on initial results of such an empirical study of
Requirements change that led to ripple effects across an entire ULS environment, our case study around one
of ecosystems for ERP with around 4480 stored requirement statements and closed to around 22 connected
subsystems. We have used Natural Language Processing (NLP) and Similarity Models to support the
model

Keywords: ULS, Requirements Engineering, NLP, Similarity Models, Change Management

1. INTRODUCTION

ULS Systems includes massive number of
stakeholders and apparently that presence of all
stakeholders is impossible, and the traditional
methods are inapplicable. The Requirements
Engineering processes therefore not only needs to
increase their capabilities to include all these
different stakeholders but needs also to be conducted
in a carefully way in order to respond more quickly
to different, conflicting, complex and changing
needs. Change is inevitable in all large scales’
projects. Changes are pushing the system to respond
to external and internal requirements changes as long
as the demands change.

In the typical ecosystems environments, a
requirement change can be issued or raised by the
system stakeholders, affecting one or more

components, module lacking the awareness of how
these changes may influence their systems.

Since, new programming languages, tools

and cloud based applications are being available,
new design and quick implementation needs arise.
Therefore, whatever software practice is used, it is
indispensable that it can adapt changes to the
software being developed [1]. In ULS systems, the
problems of change management are more serious
than in traditional systems. The requirements have
basically conflict with each other and are unknown
until the time which are implemented [2].

Due to the dependency between

components the change management is very
difficult. How to apply these changes, so that all
teams are informed about updates as quickly as

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2215

possible with minimum risk on the running
functionalities. Dependency chain in developing
system should be managed and taken into account.
Because when a system is made up of assembled
components, an error in system configuration may
result in software miss-functioning. Requirements
manipulation must be observed and controlled to
guarantee that no single party or enterprises can
noticeably change the system without
understanding, and possibly getting approval from,
the other participants [3].

Although there are a lot of studies exist to

measure the impact of change at the single system
level. Some work on measuring the impact of
changing in place requirement on other requirement,
and other measured the impact of changing
Application Programming Interface (API) in
framework and libraries. but limited studies have
been performed on the impact of single or multiple
requirements change on the entire Ultra Large-Scale
Systems through decentralized development
communities.

Always the requirements are expressed in

Natural Language statements explained with
different charts, those are the artifacts of the
Requirements Engineering practices, so linking the
raised changes with the huge repositories of
requirements documents become a dilemma since
these data are stored in unstructured formats.

The model was developed in order to be

able to extract the list of textual requirements from
requirements repository, then to measure the impact
of different raised changes issued from different
crowdsourcing parties using similarity models. Then
the development teams extract the list of impacted
requirements according to the similarity score
ranging from 0 to 1 depending to the strength of
impact

Finally, as a result, the model is able to
detect the affected requirements by certain distinct
number of changes affecting current requirements
with different degree of impact that represented by a
similarity score, the higher the similarity value, the
greater the impact on ULS requirements.
1.1 Research Contributions

‐ We propose a model based on the Natural

Language Processing (NLP) similarity models to

measure the impact of group of Changes on ULS
Requirements represented in Natural Language

‐ The model isn’t biased on the way of writing
either System Requirement or the change those
are expressed freely by the requirements editors

‐ The model utilizes “Wordnet” dictionary to find
the synonyms of the statements in order to
measure the degree of similarity in meaning

‐ The model also detects and prioritizes the
affected requirements that were provided by ULS
Analysts and Changes requesters according to
their similarity score

‐ The feasibility of the proposed model is validated
by conjunction between Ultra Large-Scale ERP
with around 4500 requirements expressed in
English with around 45 raised change requests

The rest of paper is organized as follows:
Section II elaborate the characteristics of ULS
systems, and the limitation of current RE practices
and the related effort while Section III describes the
Change Impact Analysis and Requirements
Traceability Metamodel. The model design and its
techniques are presented in section IV. Section V
unveil the results of model implementation. Section
VI concludes the paper and additionally features the
directions for future research.

2. BACKGROUND

The enormous availability of data, information,
the continues adoption of technologies, and the
continuous evolution of the systems force model and
ground-breaking methodologies for building,
operating, and managing software systems [4]. As a
result of this continuous growing is that software
systems must become more adaptable, reliable, fit,
recoverable, customizable, and compliant to
changing operational contexts, environments or
system requirements.

ULS Systems have the following
characteristics, those are far from today’s systems:

‐ The broad variety of participants improve and
uses these systems, it carries dissimilar,
incompatible, complex and changing needs.

‐ The construction and existence are evolutionary,
beside the growing need to assimilate new
capabilities into ULS system while it’s
functioning

‐ A ULS will be described by diverse, variable and
changing elements

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2216

‐ The scale of ULS systems affect to be certainly
decentralized in a diversity of modes (Data,
Development, evolution and operational
management)

‐ Societies will not just be consumers of a ULS
system, they will be parts of the system, affecting
its overall growing behavior

Several examples of ULS can be specified;
for instance, Health Care system incorporating
systems to disease identification, cure, and
management of patients records, transportation
systems, and emergencies system, including several
of them considered as critical embedded systems [5].

2.1 The limitations of Present Software

Development Approaches
Today’s software development

atmospheres are deeply leaning to old-fashioned
software development practices as they centralize
them in a single development unit and points of
control.

Meanwhile, the dev teams are first elicit the

requirements and document the specifications, and
then continue through complete design, programing,
verification, validation and etc., while in ULS this
cycle is impractical; Analysis and design methods
must adapt total incompleteness, insufficiency,
ambiguity, and non-determinacy in the requirements
and practices that happen during the system
development and evolution,

Therefor ULS require a new model of
development that supports the following activities

‐ Combined and intersecting development,
deployment and operational actions

‐ Distributed design process among the
development, deployment and operational
activities with many contributing groups

‐ Healthy systems structure that ensures the
security and privacy of critical data and manages
the constantly changing environments as the
development and deployment will exceed the
organization limitations that will require a

‐ Recurring development in an environment at run
where the number of changes is huge and the
period between modification time and run time is
almost near time

‐ Decentralized development stimulates over
many associations those require a modern
method for verification and problems
recognitions

‐ Extracting the systems architectures, [1]and the
framework for developing and adapting ULS
systems

‐ Dynamic and quick requirement response to
preserve live ULS systems functioning abilities

‐ Automated validation to upkeep sustainable
performing self-testing as the verification might
be probabilistic, real-time and non-deterministic
behavior [6]

‐ Automatically configure modules during the
installation and protect the interconnected
systems from failure when updates are installed
as well as from incidents during the run time

2.2 Requirements Characteristics in ULS
System

For previous generations of software
projects, individuals could prospect to predict and
control change by using modular design to segregate
the effects of change. The change was studied and
analyzed in a central manner. But the centralized
management is being replaced by distributed
management units that encourage invention, but the
price is illogical and unanticipated. stretching older
approaches arise a dilemma of either tying change
and innovation by imposing interface stability or
facing unacceptable levels of technical risk [7].

So, one of the ULS requirements

characteristics [4] is “Ever Changing”.
Requirements change over time, so the changes
demands often raised to a change or group of
changes in requirements, changes might be issued
from customers after requirements analysis or any
other crowdsource [8] such as developers groups,
acquirers, suppliers, testers, communities, or
whoever is represented as a stakeholder, the ability
to response to ever changing requirements in an
distributed way cannot possibly take all different
resolutions into account and manage them capably,
or allow for rapid changes in response to instant
needs [4]

So, the researchers in Requirement

Engineering (RE) for ULS tried to find some
automatic ways to measure and circulate the changes
impact over all interconnected systems since the
systems grow in size and complexity beyond the
point that traditional ways fall behind it.
2.3 Related Work

This section displays the related work on
approaches and methods for Requirement
Engineering’s change management, impact analysis
and mining for ripple effects

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2217

Arora et al, presented an methodology
based on NLP which exploits the phrasal structure of
the requirements sentences, through defining the
elements of phrase to analyze the impact of changing
one phrase to the others [9]

Johan et al, offered practical evaluations of

the benefits of automated similarity analysis among
textual requirements in identifying the relationships
between the requirements [10]

In 2011 [11] Goknil et al, produced a

requirement engineering model from traceability
relations which the requirements worker has already
stated to be used for consistency checking of
relations and inferencing then in 2014 [12] the
authors presented a requirements meta model using
requirements relation types and their semantics. The
proper semantics of associations and change types
allows new projected changes to be determined

Also, in 2014 Torkamani et al, proposed

and analyzed new decentralized approach for
configuration management. It’s able to demonstrate
the dependency graph as well as management and
transfer the change between different developers
across the globe [13]

Table 3 presents the summary of the

perspectives that are linked to our research. The “✓”
sign represents that column is exist in the individual
author’s paper and “✘” symbol represents that the
aspect is not present in this paper. The first column
displays the authors who used NLP techniques for
manage the changes, the second column shows the
system size (Medium, Large, Ultra Large), the third
column shows the implementation layer (Coding,
Design, Requirements Engineering), the forth
column shows the distribution and working teams
(Centralized or Decentralized), and the forth column
shows the source of change (Professional Technical
Teams or Crowd sourcing), the fifth column shows
the utilization level of NLP techniques, and the sixth
column shows the level of decision making
guidance.

To conclude existing literature for ULS

Change Management on Requirements Engineering
using NLP Similarity models has the impression that
the research performed for measuring the change
ripple effect on ULS requirements has not covered
the decentralized nature of ULS stakeholders.

Specifically, change requests are issued by
crowdsourcing stakeholder from different business
domains and cultures. For the different language

expression, we utilized Wordnet dictionary to find
the all different synonyms among the requirements
and changes. Therefore, whatever change requested
is submitted, the model is extracting all possible
synonyms to match against the requirements
repository. Change impact analysis is performed on
the whole requirements to provide all the possible
affected requirements according to similarity scores,
to give the development teams the capability to
manage the raised changes.
2.4 Change Impact Analysis in ULS

Change Analysis is an essential phase of system
evolution and it consists of sum activities before
change implementation including the following
steps:
(1) Dependencies extractions, which aims to pull

out depended requirements and possible
dependencies between various systems and
modules

(2) Change impact analysis, that is used widely to
specify the probable ripple effects caused by
changes made to software

(3) Changeability valuation, an assessment of
implementing the change

(4) Modification recommendation: that offers
some productive change proposals to minimize
the software maintenance exertion and cost
[14]

For each requested change, an impact
analysis is being done by system analysts at the
initial stage, later the discussions are continued with
the systems stakeholders in the efforts involved in
implementing the change through different manual
methods either workshops, meetings or even formal
documented communications. Sine each single
change in requirements always producing ripple
effects [15].

Arvanitou et al, define Change impact as an

analysis measures the consequences of systems
changes, i.e., the propagation of changes to other
parts of an ULS systems and here the propagation of
requirements changes to other requirements and
other requested changes, hence, it’s named as
(Requirement Change Ripple Effect).
Studying and quantifying the ripple effect can
provide benefits both before and after considering
the change:

‐ Before considering the change: for a
requirement change requested from the user

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2218

‐ After changes have been considered: for other
pending requirement changes, other in progress
changes and the identification of relationships
among all system requirements [16]

As a result, the change impact analysis is
performed to determine the affected requirements to
overcome the systems fall that occurs when
changing requirements

This paper aims to develop a model in
which we as change analysts can find the similarity
between the requested change and the ULS
requirements in order to address the affected set of
requirements those are defined and documented in a
Requirements Traceability Matrix. So, in section IV,
the Requirements traceability matrix meta model is
explained as it represents the main linguistic
repository for the requirements

3. REQUIREMENTS TRACEABILITY

CONTEXT

Requirements traceability context or matrix
is captured during the requirements specifications
phase to relate all the business requirements
together. and used in all software development
practices as an example project planning, analysis,
requirements validations, change impact analysis,
testing and requirements reuse

For example, change impact analysis might
discover impacts on some related requirements when
a change issued on a requirement, as an analyst may
have to analyze a whole requirement documents to
find the impact of a single change. That could lead
to neglecting some other critical changes with a high
proper risk on the systems beside the price of
implementing this change may be several times
higher than planned, additionally the high cost of
redoing and fixing the defected parts of systems as a
result of that. And therefore, it’s not possible to plan
for systems releases without considering the
relations between requirements.

Gotel and Finkelstein [17] define
traceability in the context of Requirements
Engineering (RE) as:
Requirements traceability states to the ability to keep
track the life of a requirement in a onward and
backward path (i.e., from its roots, through its
specification and development , to its succeeding
employment and use, and through all phases of on-
going amendments and iterations in any of these
phases.

The concepts of forward and backward
have their standards clarifications:

Forward traceability: is the capability to keep track
of a requirement to ingredients of a design or
implementation.

Backward traceability: is the ability to track a
requirement to its origins, i.e. to a people,
organization, law, agreement, etc. [18]

4. REQUIREMENTS AND CHANGES

SIMILARITY MODEL SPECIFICATION

As described before the proposed model
use the Requirements Traceability information not
only to extract the similarity among the requirements
themselves but also the similarity with proposed
Change Requests.

Therefore, this paper pays attention to the
similarity examination, that is performed so as to
find the requirements that associated with the
proposed change. Furthermore, the requirements
engineer can discover it necessary to split or merge
two or more requirements changes according to their
complexity and similarity.

When the Requirements Expert decides
whether two or changes are related or not, it’s with
regard to the understanding of the change context
itself and the further impact on the requirements in
place, surely, these decisions are made by humans,
but automated analysis of information presented in
natural language processing may provide the
requirements engineering with some help
concerning the similarity to help these judgements.

4.1 Requirement and Change Document

Representation

There are numerous methods to represent a
document which can be represented as a bag of
words, where words are expected to appear
individually, and the order is irrelevant. The bag of
words or it can be called as “Words Vector” is
broadly used in information retrieval and text mining

Each word represented as a feature in the
subsequent data space and each document then
becomes a vector containing of non-negative values
on each feature. Here we use the frequency of a term
as its weight illustrates terms that shown more
frequently are more vital and descriptive for the
document.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2219

Let D = {d1, . . . , dn} be a set of documents
Let T = {t1, . . . ,tm} the set of individual terms
occurring in D.
A document is then represented as a m-dimensional
vector.

𝑡𝑑ሬሬሬሬሬሬ⃗ . Let tf(d, t) mean the frequency of term t ∈ T in
document d ∈ D.
Then the vector representation of a document d is

𝑡𝑑ሬሬሬሬሬሬ⃗ . = (tf (d, t1), . . . , tf (d, tm)) (1)

Basically, the words that appears more
frequent like “a” and “the”, but neither are
illustrative nor vital for the document’s topic are
removed.

Figure 1: Angel between documents

With each document presented as vectors,
we measure the degree of similarity between two
documents as the association between their
consistent vectors, which can be further enumerated
as the cosine of the angle between the two vectors.
Figure 1 shows the angle in two-dimensional plots
but in practice the document plot usually has
numerous of dimensions.

4.2 Similarity Measures

In order to find the degree of correlation
between the requirements and changes, the
researchers found extensive diversity of distance
functions and similarity measures those have been
utilized for clustering, such as squared Euclidean
distance, cosine similarity, and relative entropy. [1]

All these methods reflect the degree of

closeness and it gives a value between 0 and 1 to
specify how similar a couple of sentences are, so 0
means that the sentences have no words in common
while 1 means that the sentences are matching.

Cosine similarity: is a degree of similarity between
two vectors of an inner product plot that calculates
the cosine of the angle between them.

Dice’s coefficient: is stated as twice the number of
shared terms in the compared strings divided by the
total number of terms in both strings.

Jaccard similarity: is calculated as the number of
common terms over the number of all unique terms
in both strings [2].

Natt et al., stated that Dice and Cosine
Similarity measures are superior compared with
Jaccard [3], while Vikas and Vivek [4] stated that
Cosine similarity is clearly visible and best fit
followed by Dice and Jaccard.

Strehel et al., found that extended Jaccard
and cosine similarity performance is narrowly to
human work outcome [5]. Agarwal et el., stated that
time required when using the cosine similarity is less
compared to Jaccard.

Jaccard coefficient took all the terms of
single document to another to compute the similarity
which is taken large amount time to finalize the
process. So, cosine similarity gives more accurate
result compared to Jaccard coefficient.

The researchers have found that most
modest and well established measure to compute the
similarity among the sentences is Cosine which is
narrowly to human being and takes less time [6].

Give two documents 𝑡𝑎ሬሬሬ⃗ and 𝑡𝑏ሬሬሬ⃗ , their cosine
similarity is

SIMC(𝑡𝑎ሬሬሬሬ⃗ , 𝑡𝑏ሬሬሬሬ⃗ ሻ ൌ
𝑡௔ሬሬሬሬ⃗ .𝑡௕ ሬሬሬሬሬ⃗

|𝑡௔|ሬሬሬሬሬሬሬሬ⃗ ௫ |𝑡௕| ሬሬሬሬሬሬሬሬሬ⃗ (2)

Where 𝑡𝑎ሬሬሬ⃗ and 𝑡𝑏ሬሬሬ⃗ are m-dimensional vectors

over the term set T = {t1, . . . , tm}. Each dimension
characterizes a term with its weight in the document,
which is non-negative. Consequently, the cosine
similarity is non-negative and enclosed between
[0,1] [1].
4.3 Functional Model Design

Figure 2 illustrates a High-level functional

model for how to calculate the similarity between
each of Change Request C to each Systems
Requirement R after passing through different
activities in different Time T, when the total Model
Running time equal the sum of T1,2,3.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2220

In order to calculate the similarity, there are
some needed steps achieved through vocabulary
analysis, which started by taking flow of words
vector and convert them to tokens this step called
Tokenize. In our model the statements will be broken
to words while some characters like punctuation
marks are discarded.

Frequently existing words like ‘a’, ‘the’,
‘of’, etc., will affect the similarity measures. Those
words recognized as Stop Words, therefore they
filtered out beforehand the computation using
known stop word list.

Since the work could have different case,
lowercase transformation is placed to change all
tokens case to a lowercase such as ‘SYSTEM”,
“System”, or “system” are changed to “system”.

In order to find words that repeatedly
follow one another we used N-grams operator to
extract sequences of words from a text. N-grams can
be separated into two groups: 1) Character based and
2) Word based. The main inspiration behind this
approach is that similar words will have a high
part of N-grams in common, For example “business”
and “strategy” are different ideas, Statistical based
text processing will not obtain the context of these
words, but it will tell you how many times strategy
and business appear in the documents or data. So,
N-grams makes a new attribute business_strategy
and this leads to educate the model the context in
which business strategy is related [7].

To figure out the words those have same
synonyms for that purpose we used (Wordnet
Dictionary). For example, same functions are written
differently like “Sign in” and “Log in” while they
different words but lead to the same function or
meaning those should be considered equal.

Final step before calculating the similarity,
is finding the words that are commonly written
differently but leads to the same form. Therefore,
they should be reduced to their ground form to be
automatically matched, this technique called
“Stemming” which produce a stem of word. For
example both the words ‘replace’ and ‘replacement’
may outcome in the stem ‘replac’ and thus the words
would be treated as equivalent, in this model we used
“Stem (WordNet)” [3].

5. MODEL IMPLEMENTATION

We have implemented our model on
RapidMiner, it’s a data science application for
machine learning, data science, text mining,
predictive analytics and business analytics [8]. Each
function in the suggested model is represented in one
or more task in the tool.

In order to examine the possible benefits of
the model, we have implemented the similarity
measure on a real industrial requirements system for
around 4000 Requirements Statements and
submitted 15 change requests in same time which are
hypothetical but validated with experts, this number
may be more or less at certain point of time. The
measures were utilized to see if automated similarity
model can correctly detect if a specific change has
an impact on the already defined set of requirements.

5.1 Data Collection – Industrial Case

It’s based on a public Functional
requirements document for ERP ecosystem [9].
Table 1 shows a summary for the number of systems
requirements, minimum, maximum number of
distinct tokens and the numbers of change requests

Table 1: Case Study used in the Model Evaluation

After that we applied the following change requests
in Table 2 :

of
Requirements

Min # of
distinct
Tokens
per Req

Max # of
distinct
Tokens
per Req

Change

Requests

4000 6 150 15

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2221

Table 2: Changes Requested on the System Requirements

5.2 Data Analysis and Results

The Model shows in Results Section how
each change is interfered with each individual
requirement represented in the calculated similarity
distance. It’s noticed that lower calculated measure
is 0 which means that there is no impact of a change
on a requirement while the maximum value is 1,
conceptually this value calculated depending on the
similarity between each Change’s tokens vector to
each original requirement’s tokens vector with the
following ripple effects resulted from the changes in
form of count of affected Modules and Requirements
in table 4

Focusing on a single change (C1) as an
example as illustrated on figure 3, the impact of that
change is 0.54 on R0014, that means the impact is
strong, while the impact on R0087 is 0.14 which is
very weak, but depends on the Requirement
Engineer analysis and judgment, this change may
don’t have any clear impact but it could have any
hidden impact that should be considered in the
further human analysis

In Figure 4 shows the average similarity per
each change that can assist measuring the efforts
needed to apply a single change or plan for the
applications versions and releases. Since the impact
of C4 is much higher than the rest, while impact of
C13 is less high which can be developed with the
lowest risk.

In figure 2 the similarity frequencies are
grouped in 10 range clusters started from (0.01 - .09)
ended by (0.90 – 1.00) to observe the distribution of
similarities, and it’s noticed that the most of
similarities frequencies fall between 0.10 till 0.50, it
might be seen as the submitted changes don’t have a
high impact on the requirements, but on the other
side it could be related to the semantics of the
changes and how they are correlated with existing
requirements.

Figure 2: Similarity Frequencies Distribution

6. CONCLUSIONS

In this work, we proposed a model to
measure the impact of single or many change
requests or crowdsourcing ideas submitted in a free
natural language against a large set of requirements.
The key characteristics of the approach that is
exploits the synonyms of text in which the user write
the change free and the model measure the impact
against the list of placed ULS requirements in the
Traceability Matrix through NLP similarity models.

Change
Request

Change Number
of

Tokens
1 The system shall support tracking

the inventory through mobile
application

6

2 The System shall support Weekly
physical counts daily with update
of balance file.

9

3 The system shall provide the ability
to support the following
item/inventory attribute
Commercial cost

9

4 The system shall provide the ability
to support data collection via bar
code and QR Code hardware

10

5 The System shall inform the
customer by the available quantity
whenever a quotation is requested

7

6 The user shall able to simulate a
shipment or consignment before
actual receiving

7

7 The Landed cost of the received
goods shall be calculated in Activity
based costing

8

8 The system shall provide the ability
to support kilogram and meters as
units of measure.

8

9 Whenever there is a stock count the
system should block all stock
transactions

6

10 The System shall support creating
Picking List Manually and
Automatically

7

11 The System shall provide the ability
to upload vendor bank details

7

12 The AP team shall be able to issue
payment instructions to the banks

6

13 The Sales Admin shall be able to
print customer invoice using QR
Code

8

14 The Stock keeper should not allow
any invoice without a QR code

5

15 The finance department shall post
invoice to finance with its customer
code

7

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2222

Automated similarity analysis used widely
in many different business areas started by search
engines, recommender systems and sentiment
analysis and become an inspiring technique for
assisting requirements engineers to manage
requirements evolution since it’s managed in a
decentralized way by crowdsourcing stakeholders
and development team in ecosystems.

In general, the model showed noticed

results compared to human efforts needed to retrieve
all the impacted requirements by a single change.
Since there are no control over neither the structure
of written textual requirement, the change requests,
the formal semantics of requirements relation forms
nor even the domain knowledge of the system. In
addition, it can run over bulk of changes
simultaneously with no barrier to the statements
volume.

Less responsiveness has been directed to

joining requirements with other requirements, we
concentrated on how to link the change with all
requirements, specifically, in case the ULS
development units decided to change one or more in
place requirements without raising change requests,
the model won’t be able to associate the change with
the requirements

Finally, as it’s unsupervised prediction

model, consequently there is no predefined training
data set to train the model so it’s scaling up wherever
needed.

7. FUTURE WORK

One of the main areas we’d work on is the
linguistic ambiguity due to terminological
expression differences that may occur among
crowdsourcing stakeholders that belong to different
business domains and cultures.

Handling the repeated requested changes

with different format or syntax is a good field of
study since we could have many different
represented changes that belong on the same change
topic that has to be considered

Linking the same requirements domain is

one of the promising areas in order to enhance the
model accuracy by utilizing the ontologies and
semantics hierarchies

Finally, it’s preferred to test the

performance and the accuracy of this model in
different business domains to have a valid

assessment of the benefits and cost of such as a
decision support system for requirements
engineering change management

REFRENCES:

[1] H. Anna, "Similarity Measures for Text
Document Clustering," 2008.

[2] W. H. Gomaa and F. Aly A, "A Survery of
Text Similarity Approaches," International
Journal of Computer Applications (0975-
8887), vol. 68, no. 3, April 2013.

[3] N. p. Dag, J. Rengell, B. Carlshamre, P.
Andresson and M. Karlsson, "A Feasibility
Study of Automated Support for Similarity
Analysis of Natural Language Requirements
in Market-Driven Development,"
Requirements Engineering, vol. DOI:
10.1007/s007660200002, pp. 20-33, 2002.

[4] V. Thada and V. Jaglan, "Comparison of
Jaccard,Dice, Cosine Similarity Coefficient
to Find Best Fitness Value for Web
Retreived Documents Using Genetic
Algorithm," International Journal of
Innovations in Eningeering and Technology
(IJIET), August 2013.

[5] S. etal, "Impact of Similarity measures on
web-page clustering," AAAI-2000:
Workshop on Artificial Intelligence for Web
Serach, July 2000.

[6] W. B. P. R. D. H. "TOWNE, "Measuring
Similarity Similarly: LDA and Human
Perception," Transactions on Intelligent
Systems and Technology, Vols. ACM
Trans. Intell. Syst. Technol. 7, 2, Article 25,
p. 2, 2016.

[7] R. Community, "Generate n-grams
Knowledge Base," RapidMiner, December
2016. [Online]. Available:
https://community.rapidminer.com/discussi
on/35073/generate-n-grams-knowledge-
base. [Accessed October 2019].

[8] R. Miner. [Online]. Available:
www.rapidminer.com.

[9] "Functional Requirements for ERP
Ecosystem (Cuyahoga County Government
Functional Requirements)," [Online].
Available: http://it.cuyahogacountry.us.
[Accessed October 2019].

[10] I. Sommerville, Software Engineering, 10th
edition, Vols. ISBN-13: 978-013943030,
Pearson, April 2015, p. 43.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2223

[11] M.A.Torkamani, S.H.Ahmadi, A.Bayat,
A.Bahrami, H.Bagheri and
M.R.Khodabakhi, "An Approach for
Configuration Management in Ultra Large
Scales Systems," The International Journal
of Software Computing and Software
Engineering, vol. 3, no. 3, p. 463.

[12] P. Feier, R. P. Gabriel, J. Goodenough, R.
Linger, T. Longstaff, R. Kazman, M. Kelien,
L. Northrop, D. Schmidt, K. Sullivan and K.
Wallnau, Ultra Large Scale Systems: The
Software Challenge of the futhure.
Technical Report, Software Engineering
Institue, 2006.

[13] P. Feiler, R. Gabriel, J. Goodenough, R.
Linger, T. Longstaff, R. Kazman, M. Klein,
L. Northrop, D. Schmidt, K. Sullivan and K.
Wallnau, Ultra-large-scale systems: The
software challenge of the future. Technical
report,, Software Engineering Institute,
2006.

[14] E. Nakagwa, R. Capilla, F. Diaz and F.
Oquendo, "Towards the Dynamic Evolution
of Context-based-Systems-of-Systems," p.
46, September 2014.

[15] S. Ian, C. Dave, C. Radu, K. Justin, K. Tim,
K. Marta, M. John and P. Richard, "Large-
Scale Complex IT Systems," Magzine
Communications of the ACM, vol. 55, no. 7,
pp. 71-77, 2012.

[16] C.Bogart, C.Kastner and J.Herbselb, "When
it breaks, it breaks How Ecosystems
developers reason about the stability of
dependencies," in Preceedings of the ASE
Workshop on Software Support for
Collaborative and Global Software
Engineering (SCGSE), Forthcoming, 2015.

[17] A. Elfaki, "Automated Verification of
Variability Model Using First-Order Logic,"
in Managing Requirements Knowledge,
Berlin, Springer, 013, p. 263.

[18] C. Arora, M. Sabetzadeh, A. Goknil and L.
C. Briand, "Change Impact Analysis for
Natural Language Requirements: An NLP
Approach," in 23rd International
Requirements Engineering Conference
(RE), Ottawa, ON, 2015.

[19] A. Goknil, I. Kurtev, K. v. d. Berg and H. W.
Veldhuis, "Semantics of trace relations in
requirements models for consistency
checking and inferencing," Software and
Systems Modeling, p. 32, 2011.

[20] A. Goknil, K. Ivan, v. d. B. Klass and S.
Wietze, "Change imapact analysis for
requirements: A Metamodeling approach,"
IST, vol. 56, no. 8, 2014.

[21] M. A. Torkamani, H. Bagheri, A. Bahrami,
A. Bayat, S. H. Ahmadi and M. R.
Khodabakhshi, "An Approach for
Configuration management in Ultra Large
Scale systems," The International Journal of
Soft Comput ing and Software Engineering
[JSCSE],, vol. 3, no. 3, pp. 463-466, 2013.

[22] S. Xiaobing and L. Bixin, "Using Formal
Concept Analysis to Support Change
Analysis," ASE, 2011.

[23] S. Ghaisas and N. Ajmeri, "Ch 7,
Knowledge-Assisted Ontology
Requirements Evolution," in Managing
Requirements Knowledge, Springer, 2013.

[24] A. Elvira-Maria, A. Aposolos, C. Alexander
and A. Paris, "Introducing a Ripple Effect
Measure: A Theoretical and Empirical
Validation," in ACM/IEEE International
Sympsium on Emperical Software
Engineering and Measurement (ESEM),
2015.

[25] W. Spijkerman, Tool Support for Change
Impact Analysis in Requirement Models,
October 2010, pp. 9-10.

[26] W. Roel, "An Introduction to Requirements
Tracebility," November 1995.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2224

Table 3 Summary of Directions Associated with our Research existing in Different Papers

Figure 3: Similarity Model between Change (C) and Requirement (R) producing S similarity value between 0 and 1

Table 4: Impact of each single change on the whole list of modules and requirements

Ref

System Size Implementation
Layer

Working
Team

Source of
Change

NLP Requirement
Change

M
ed

iu
m

L
ar

ge

U
L

S

C
od

in
g

D
es

ig
n

R
E

C
en

tr
al

iz
ed

D
ec

en
tr

al
iz

ed

In
te

rn
al

 R
E

W

or
ke

rs

D
is

tr
ib

ut
ed

 T
ea

m
s

T
ok

en
iz

at
io

n

St
em

m
in

g

C
or

po
ra

 B
as

ed

S
im

il
ar

it
y

E
xi

st
in

g
R

eq
ui

re
m

en
t

C
ha

ng
e

N
ew

 C
ha

ng
e

R
eq

ue
st

[9] ✓ ✘ ✘ ✘ ✘ ✓ ✓ ✘ ✓ ✘ ✓ ✓ ✓ ✓ ✓ ✘
[10] ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✘ ✓ ✘ ✓ ✓ ✘ ✓ ✓ ✘
[11] ✓ ✘ ✘ ✘ ✘ ✓ ✓ ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✓ ✘
[12] ✓ ✘ ✘ ✘ ✘ ✓ ✓ ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✓ ✘
[13] ✓ ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✘ ✓ ✘ ✘ ✘ ✘ ✓ ✘

Proposed
Model

✓ ✓ ✓ ✘ ✘ ✓ ✘ ✓ ✘ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2225

Figure 4: Sample of Impacted Requirements by a single submitted Changes represented by Similarity Distance

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2226

Figure 5: Average Similarity per each Change

