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ABSTRACT 

 
The article describes an approach to the analysis of a local indoor navigation map derived from a lidar point 
cloud represented as a projection on a horizontal plane. The article analyzes the applicability of the graph 
theory and binary image processing methods for structuring and uniting the elements of a noisy and 
segmental local navigation map layout. On an initial map layout (walls, free space and internal environment 
objects), stand-alone interior elements are detected, and the points of wall borders are filtered and closed 
up. Mathematical morphology methods and shortest path and connected component separation algorithms 
are used to complete these tasks. The authors have developed a trajectory generation algorithm consisting 
of several turning and straight-line motion commands.  
 
Keywords: Local Navigation Map, Mathematical Morphology, Flood Fill, Lee Algorithm, Connected 

Component Separation 
 
1. INTRODUCTION  

Segmenting initial data received from 
lidars, RGBD cameras and stereopairs is important 
to ensure the navigation of robotic systems and to 
map indoor premises. It allows evaluating the 
dimensions of objects that can be used to develop 
interaction scenarios. The primary segmentation 
parameters are dividing an indoor map into separate 
rooms and detecting walls and internal environment 
objects for every room.  

Detecting indoor objects is the site of 
special interest for this article. A lot of approaches 
exist to cope with this task. One of the solutions is 
the use of multiple lidars. For instance, the authors 
[1] use two lidars to segment floor and wall points 
from a point cloud received from a laser scanner. 
The first lidar scans the floor, the second one – 
other environment objects. Other methods are based 
on plane segmentation. It is confirmed with many 
papers devoted to separating objects or planes on 
the basis of data sets received from RGBD cameras. 
Many of these methods involve segmentation only 
[2-5], while others also imply the classification of 

objects [6, 7] on detected planes. Special interest 
should be paid to paper [8], as in this paper 
environment objects are identified, structured and 
complemented to create a complete indoor map. In 
this case [8], individual premises are segmented by 
time labels (the system stops in the process of map 
scanning, which signalizes about stoppage in an 
individual room), then the region growing method 
is used to identify planes inside this room; their set 
is divided into vertical and horizontal planes; in 
their turn, vertical planes are segmented into the 
walls and planes of indoor premises; the 
intersecting walls of two different premises are 
analyzed to segment a door aperture. 

Another task was to develop safe trajectory 
planning algorithms to make the robot move from 
one space point to another inside premises. The 
motion of the anthropomorphic robot in a plane 
space along a curved trajectory is characterized by 
the following peculiarity: all motion operations 
come down to a set of turns and straight-line 
movements. For instance, diagonal motion and 
sidewise motion are described using the same 
parameters as turns for a preset angle and onward 
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motion. Therefore, at the initial anthropomorphic 
robot trajectory planning stage, it is sufficient to 
compose a list of paired “turn-movement” 
operations and then to develop a scenario of motion 
along an optimal trajectory depending on the speed 
of movement and a set of preferable motion 
operations for a specific anthropomorphic robotic 
system. Several motion space representation 
methods are available to solve this task. The best-
known methods are road-map, cell decomposition 
and potential field [9].  

The road-map method implies representing 
potential robot movements as a connected graph 
that describes a standardized motion path. The best 
example of this representation method is the maps 
of cities, streets, railroad tracks and routes. In this 
case, motion scenario variability is influenced by a 
chosen motion edge, while there is no variability 
within the edge, which cannot be used for the 
anthropomorphic robot that moves inside indoor 
premises.  

The potential field method is based on the 
following space representation: all obstacles are 
marked with a virtual negative charge, while the 
target point is marked with a positive charge. A 
negatively charged particle is placed at the 
departure point. A potential antigradient is 
considered to be an artificial force applied to the 
robot. An optimal choice is a path with the 
minimum artificial force applied [10]. This method 
allows rather quickly finding an optimal motion 
trajectory that is well suitable for wheeled robots. 
In order to develop curvilinear motion scenarios 
using an available set of movement operations for 
the anthropomorphic robot, it is necessary to 
additionally analyze the obtained trajectory and 
update the algorithm. 

The cell decomposition or occupancy grids 
map method describes space as a set of cells where 
space point connectivity is determined by the 
neighborhood of the cells at which these points are 
located [9]. This representation of spatial data often 
serves as an interim container to mark obstacles that 
are dictated by points obtained via lidars, stereo 
cameras and other sensors. It results from the fact 
that they can indicate the likelihood of obstacles in 
a predetermined cell based on the number of points 
in this cell. The Dijkstra algorithm, A* search 
algorithm (and its modifications), Lee algorithm (as 
well as Moore algorithm or wave algorithm) are 
often used to create a trajectory in the cell 
decomposition space [11]. The Dijkstra algorithm 
helps find all shortest paths on a chart (with due 
account for the weight of every edge). In its turn, 
the A* search algorithm is used to find an optimal 

path [12]. The Lee algorithm analyzes the distance 
to all cells that are free for movements. One of the 
A* search algorithm modifications, the LIAN 
algorithm, is interesting from the viewpoint of 
dividing the path into a set of turning and 
movement operations [13]. This algorithm limits 
the displacement of a motion angle in every node of 
the trajectory that consists of equally spaced nodes. 
The larger the allowable offset angle is, the more 
curvilinear the path is and vice versa. The general 
classification of robot path planning algorithms 
presented in [14]. 

Also, there is a class of trajectory plotting 
algorithms based on intelligent technologies. These 
methods demonstrate good results, but they are 
often characterized by a lower execution speed [9]. 
In this connection, this group of methods was not 
considered. 

High speed of command execution and fast 
response are important for robotic systems when 
dealing with big global maps and data streams. 
Authors propose an approach based on the 
limitation of an area of interest when dealing with 
external algorithms.  For example, when searching 
for certain objects using computer vision, separate 
objects in the room can be selected on a map and 
subsequently their dimensions, vertical position 
assessed. Then only the data that corresponds to an 
area of interest obtained from the detected object is 
transmitted to a pattern recognition algorithm. 
Another example of this approach can be full path 
planning by obtaining local paths inside of each 
isolated space, where only this specific space 
boundaries are relevant. In turn, segmentation 
algorithms for walls and free-standing objects 
should also have a high data update rate, which 
ensures an optimal response speed. As mentioned 
above, in most works, a 3D representation of the 
space is used to segment objects on a map. As an 
option to optimize the segmentation algorithm, an 
approach is proposed for analyzing a two-
dimensional representation of a map for the primary 
segmentation of three-dimensional objects in an 
image. 

Therefore, the overall goal was to examine 
the approach to the analysis of initial data received 
from the lidar (and, subsequently, from RGBD 
cameras and stereopairs) not from the viewpoint of 
working with 3D planes but in terms of processing 
2D projections of obtained data to the horizontal 
floor plane. A scientific team has studied the 
applicability of the graph theory and binary image 
processing methods for structuring data on indoor 
objects. The team has examined the possibility of 
filtering and processing the initial layout of walls, 
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room space and interior objects. It is suggested that 
this segmentation will subsequently allow 
performing the preliminary classification of a room 
point cloud into separate structured elements that 
might later be individually processed with more 
complex algorithms. 

The resulting set of algorithms can serve 
as a basis for algorithms development that solve 
specific tasks of a robotic system. 

The conducted review shows that there are 
two types of input data for path planning 
algorithms: a two-dimensional map with 8 or 4 cell 
connectivity and a graph. The output data of 
algorithms are coordinates of the path cells in the 
case of a two-dimensional matrix, and nodes 
through which the path goes, in the case of a graph. 
In robotic systems with a limited set of movement 
operations, both in terms of the number of available 
commands and movement parameters (e.g. angle 
and length of movement), it becomes necessary to 
plan a path on a two-dimensional map by forming a 
graph of shortest paths, where the edges of the 
graph and their relative position satisfy the 
conditions of available robot commands. 

Therefore, the findings were used to study 
an opportunity of adapting the Lee algorithm to 
generate a motion trajectory for the 
anthropomorphic robot to ensure the shortest path 
of safe curvilinear motion. It is suggested that, as 
opposed to the methods discussed, adapting this 
algorithm will allow parametrically controlling the 
variability of potential motion scenarios, ensuring 
the fast adaptation of an obtained path for the set of 
operations available to the robot and evaluating this 
path from the viewpoint of preferred or non-
preferred motion operations in space. 

Developed path planning algorithm can be 
adapted for specific tasks and functional 
capabilities of a robotic system. 

 
2. LITERATURE REVIEW 

Singling out connected components is 
important for both map analysis and the analysis of 
binarized images. There are several approaches to 
solve this problem: recursive, multi- and two-pass 
algorithms [15]. Two-pass algorithms are often 
used to ensure high processing speed and lower 
memory usage rates. These algorithms also have 
multiple implementation options. The other side of 
this question is to outline the connectivity of one 
component with another. Usually, four-connected 
(cross) and eight-connected (quadrate) components 
are examined. These components differ in the 
possibility of diagonal connections between 
components. This article will describe both types of 

connectivity depending on the tasks and will utilize 
a two-pass algorithm with a union-find data 
structure as a table of equivalence. This structure 
allows storing and uniting disjoint sets or 
determining the belonging of elements to one of the 
disjoint sets [16]. Usually, a union-find data 
structure is implemented by means of trees to 
ensure an element instance search rate. 

Shortest path search is a fundamental 
approach to solve the problem of mapping. 
However, this article examines this class of 
algorithms not from the viewpoint of navigation but 
to lay out indoor objects for the purpose of 
successive by-passing and closing these elements. 
One of the best solutions in terms of the speed rate 
and introduction of additional path development 
conditions is the Lee algorithm. This algorithm 
implies the performance of forward and backward 
passes. The forward pass is performed to mark out 
an area with an algorithm similar to the flood fill 
algorithm. The only difference is that the distance 
to the beginning of the motion path is used as a 
label. The “line” data structure is often used to 
perform the forward pass. This structure ensures the 
consecutive processing of elements in the order of 
emergence. The backward pass consists in looking 
for the first path from the end point to the start 
point by using the stack data structure [17]. 

Quite often, maps created via lidars, 
RGBD cameras and stereo vision show the borders 
and parts of objects disjointedly or with false 
surges. It is convenient to additionally process these 
data by means of mathematic morphology methods. 
Mathematic morphology allows deriving important 
properties from binary images. The basic notions of 
mathematic morphology are “structural element”, 
as well as “dilation” and “erosion” operations. The 
structural element is used to perform operations and 
represents a two-dimensional binary element with 
odd dimensionalities. During mathematic 
morphology operations, the central part of this 
element is applied onto the pixel under study. The 
dilation operation consists in using logical 
multiplication between the structural element and 
the neighborhood of the point processed when 
every point has a true value. The erosion operation 
leaves the pixel under study with its true value, 
while the true cells of the structural element and 
underlying neighborhood of the pixel coincide. The 
combination of these operations allows segmenting 
different elements of objects, e.g., increasing the 
connectivity of components or singling out their 
borders [18]. 
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3. MATERIALS AND METHODS 
3.1. Proposed Methodology 

The authors implemented an algorithm to 
construct and segment a local navigation map based 
on data from the lidar, stereo vision and depth 
sensor in an application written in the C++ 
language in the QT Creator programming 
environment with the use of the MinGW platform. 
To visualize data, they used the OpenGL library 
implemented in the cross-platform QT framework. 
The algorithms were tested on a personal computer 
with the following features: Intel Core i5-4440 
CPU 3.10 GHz, 8 GB RAM. 

The authors used a data set received by 
Dorit Borrmann and Hassan Afzal from Jacobs 
University Bremen gGmbH, Germany. The data are 
available in 4TU.Datacentrum at [19]. These data 
were derived from the following resources available 
in the public domain [20]. The data (three-
dimensional coordinate points) consist of room 
scans obtained via the Riegl VZ-400 lidar and 
positions (offsets and angles of rotation in three 
axes) for each scan received via the odometry 
system. The indoor premises consist of a room with 
furniture and other moveable objects as well as part 
of a corridor. Scanning was limited to one story. In 
addition to the side walls, the data include the 
images of the ceiling and the floor.  
 
3.2. Algorithm 
A. Pre-processing 

The article describes an algorithm to 
segment a local indoor navigation map and does not 
consider the method used to obtain this layout. The 
repository data layout [19] used in this article was 
obtained by means of the following operations: 

1) constructing an occupancy grid map 
with the cell size of 5x5x5 cm; 

2) analyzing the layers of the occupancy 
grid map from the bottom upwards by the number 
of marked cells in each layer, singling out the level 
of the ceiling, interval located below the ceiling 
(including walls) and interval located between the 
ceiling and the floor (furniture interval); 

3) transferring the wall and furniture 
intervals into two-dimensional representations Mw 
and Mf; 

4) mapping two-dimensional wall interval 
representation Mw by means of vertical and 
horizontal passes up to obstacles, uniting the results 
of these passes via the logical multiplication 
procedure with the construction of a resulting two-
dimensional map of the walls in the current 
premises, saving the layout of the passage area as 
array Mw (obstacles are marked with value 1, free 

space – 2, virgin area – 0); 
5) mapping free space by means of the 

flood fill algorithm (value 3) on array Mf with the 
construction of a resulting two-dimensional map of 
the free space in the current premises that is copied 
to Mf; 

6) uniting layouts 1 and 2 of array Mf and 
layout 3 of array Mw; the layout of the passage area 
(value 2) obtained at stage 4 and transferred to the 
current map without overlapping with layout 3 will 
contain the layout of furniture. 

The consecutive use of the mathematic 
dilation and erosion morphology operations allows 
joining the isolated elements of interior objects 
(value 2). In this case, the authors used a chain of 
the above mentioned operations with structural 
element 3x3 where the angle units are zero. It 
allowed constructing a map shown in figure 1. 

Then two-dimensional array Mr was 
created. This array contains the layout of the 
current room. It will be used to represent the output 
of the initial algorithm. Therefore, array Mr will 
store the following layout values: 0 – virgin area; 1 
– layout of wall borders; 2 – layout of furniture; 3 – 
layout of free space for movements within the 
room.  

 
Figure 1: Two-Dimensional Map of Room Layout Mr 

 
B. Connected furniture component separation 

A two-pass four-connected components 
search algorithm was used to segment separate 
(connected) furniture objects. The first pass 
consisted in the line-by-line analysis of each filled 
(value 2) cell of matrix Mr(xi,yj) and its neighbors 
Mr(xi-1,yj) and Mr(xi,yj-1) with due account for the 
following situations: 

- both neighbors have marks, current cell 
Mr(xi,yj) is filled with the minimum value of the 
neighbors’ marks, connection between marks Mr(xi-

1,yj) and Mr(xi,yj-1) is indicated in the table of 
equivalence, if these marks are not equal; 

- one of the neighbors has a mark, current 
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cell Mr(xi,yj) is labeled with its mark; 
- none of the neighbors has a mark, current 

cell Mr(xi,yj) is labeled with a new mark in 
compliance with the order of passing, and a new 
mark is added into the table of equivalence (the 
starting value of the marks is 5). 

The union-find data structure was used to 
create the table of equivalence. During the 
backward pass, all the marks of the matrix are 
updated with the minimum value from the table of 
equivalence. Also, during this pass, information on 
the number of cells in each connected component, 
the start point (the first instance of the element of 
the connected domain in case of line-by-line 
scanning) of each connected component and its area 
is collected. This information can be useful for 
further segmentation and object specification. The 
mapping result is shown in figure 2. 

 

 
Figure 2: Detecting Connected Components of Furniture 

 
C. Room borders closure 

Figure 2 shows that the border layout 
(mark 1) has an unclosed structure and significant 
surges. Therefore, the key idea of this algorithm 
was to close the chain of room wall points. It was 
suggested that the shortest path would “cut” the 
surges upon closing the chain of points. In order to 
obtain a closed curve of room borders, the authors 
used the mathematic morphology operations and 
Lee algorithm. 

At first, all the marked cells (non-zero 
values) were copied to buffer matrix MH. Then 
buffer matrix MH sequentially underwent the 
dilation operation with two structural elements: 5x5 
element with completely colored cells and 3x3 
element with zero angle units. The results were 
copied to buffer array Me. The erosion operation 
was performed twice with structural element 5x5 
and completely colored cells. Matrix Me was 

subtracted from array MH. A heavy room border 
was obtained as the result of these operations. In 
order to speed up the algorithm, these operations 
can be combined with the dilation and erosion 
operations performed in relation to furniture 
objects. 

The selection of structural elements for the 
mathematic morphology operations depends on the 
degree of the noise pollution of data determining 
borders. Structural elements can be chosen for 
every specific type of data sets. This border is 
demonstrated in figure 3. As shown in figure 3, 
some parts of the border were removed. These 
objects can be analyzed later. For instance, the 
surges in the corners of the room can be ignored, as 
they are unapproachable, while the points 
displaying lighting fixtures can be segmented and 
analyzed from the viewpoint of motion restrictions. 

 

 
Figure 3: Dilation and Closure of the Room Border Via 

Mathematic Morphology Operations 
 

This border can be used to create the 
shortest path and, by that, number the sequence of 
points the chain of which closes the room borders. 
It allows obtaining data in a form that is convenient 
for analyzing room parameters, specifically, a serial 
chain of border points that can be easily processed 
by means of approximation and interpolation 
algorithms, the Hough Transform and other 
methods to determine curve characteristics.  

In order to perform further operations, the 
following values were entered into matrix MLee: “-
1” – room borders from array MH, “-5” – virgin 
space from array Mr (mark “0”), “-4” – room space: 
free space and furniture (marks “2” and “3” from 
array Mr). Then all the cells with value “-1” in 
matrix MLee were marked with a two-pass eight-
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connected components search algorithm. The 
difference between this method and the procedure 
that was previously performed on furniture objects 
in array Mr is that the neighbors of MLee(xi,yj) will 
be not only Mr(xi-1,yj) and Mr(xi,yj-1) but also Mr(xi-

1,yj-1) and Mr(xi+1,yj-1) (eight-connected neighbors). 
It will allow considering the components where the 
cells have neighbors in the diagonal direction to be 
connected ones. Also, in this case, new components 
are numbered with start value “-6” and counter 
decrementation rather than incrementation. During 
the final run, the list is supplemented not only with 
information on the number of cells in each 
connected component and its start point but also 
with information on the area where it is located 
(maximum and minimum point coordinates by rows 
and columns). 

As room borders had a closed chain, and 
launching the Lee algorithm on these data would 
make it difficult to determine the closing point, the 
authors decided to open the area of each 
component. In order to do this, they used 
information on the location area of the connected 
component, more specifically, this area was 
horizontally divided into two halves based on 
information on the rectangular area where it was 
located. Switching from mark “-5” or “-4” to the 
marks of the current connected component index 
and vice versa was registered from top downward 
on the border of intersection. If the number of such 
“switches” was equal to or more than two, this 
connected component was considered to be a room 
border, otherwise it was marked as a furniture 
object. The first “switch” was labeled with mark “-
2,” mark “-3” was used to label eight-connected 
neighbors of all the cells with mark “-2” on the left 
(MLee(xi-1,yj-1), MLee(xi,yj-1), MLee(xi+1,yj-1)). 
Therefore, parallel opening lines were created 
during the first “switch.” As it has already been 
mentioned, the first line with mark “-2” would 
ensure movements to pass over the chain of the 
connected component’s border to one side (in this 
case, in a clockwise manner), the second line with 
mark “-3” would ensure the identification of the 
end of path and ambiguity of the eight-connected 
analysis of neighbors. It is noteworthy that dividing 
the area of the connected component into two 
halves vertically or adding a constraint line on the 
right would not change the essence of this 
algorithm, it would only change the direction of cell 
scanning.  

Before launching the Lee algorithm, a list 
to save the coordinates of the “end of path” cells is 
created. 

In this case, the Lee algorithm has the 

following format: 
1) eight-connected neighbors of all the 

cells with mark “-2” on the right (MLee(xi-1,yj+1), 
MLee(xi,yj+1), MLee(xi-1,yj+1)) are added into a line and 
marked with start value “1”; 

2) while this line is not empty, the Lee 
algorithm marks all the cells with the value of the 
current connected component index; if the current 
cells has a neighbor with mark “-3,” this cell is 
added into the list of the “end of path” cells; 

3) the coordinates of the cell with the 
minimum value of MLee(xi

end,yj
end) are derived from 

the list of the “end of path” cells; 
4) a path from this point to cell with mark 

“1” MLee(xi
start,yj

start) is laid by means of a backward 
pass and stack; if there are several options for the 
next step, preference is given for the step that has a 
neighbor with mark “-4,” as it allows making a path 
bordering on furniture or free room space; 

5) points MLee(xi
start,yj

start) and 
MLee(xi

end,yj
end) are connected via marks “-2” and “-

3.” 
This path can be transferred into matrix Mr 

and saved as a list for further convenient 
processing. The result of this algorithm is shown in 
figure 4. 

This result can be used to separate wall 
sections on depth maps that can be easily 
transferred to RGB image sections. It will allow 
pattern recognition algorithms to ignore the sections 
that are unimportant to recognition. The closed 
nature of the room borders allows localizing 
obstacle points spaced within the premises. Also, 
the border data storage structure ensures a linear 
pass across all the points, which allows optimizing 
the speed of by-passing to complete external tasks. 

 
Figure 4: Result of Algorithm 

 
D. Robot trajectory plotting 



Journal of Theoretical and Applied Information Technology 
15th July 2020. Vol.98. No 13 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
2652 

 

The following aspects should be considered during 
robot trajectory plotting: 
- a motion scenario consists of a set of movement 
and turning operations; 
- a potential travel distance should be larger than 
Dmin; 
- a movement operation should not exceed Dmax to 
control motion; 
- it is necessary to generate a trajectory that will 
minimize the probability of crashing into detected 
environment objects; 
- in addition to the covered distance, the number of 
turning operations can be used as a criterion to 
generate an optimal trajectory. 

Matrix Mr is copied to new matrix Mt to 
store the motion trajectory layout. To comply with 
the safe path criteria, it is necessary to add sections 
where the robot can crash into obstacles if it gets on 
the points of these sections. Also, it is important to 
make the robot be able to turn around its radial axis 
in every point of the trajectory, as it will allow the 
robot to maneuver to prevent crashing into moving 
objects. In this connection, all Mt points located 
farther than value  from the closest obstacle 

are used as a safe zone. This value is calculated in 
the following way: 

  (1) 

where  - robot width (mm); 

 - robot height (mm); 

 - value of the robot’s potential 

deviation from its current location point as it makes 
a turn. 

Hereinafter in the description of this 
algorithm, let us assume that value  equals 150 

mm. This value will allow more completely 
demonstrating the operation of this algorithm with a 
test data set [19]. 

To exclude the sections marked as unsafe 
zones within the robot’s motion area, a set of marks 
was introduced within formed matrix Mt: 

- mark “2” – a zone free for motion; 
- mark “3” – a zone attributed to 

furniture inside the room; 
- mark “1”- a zone characterized as 

furniture borders. 
When the algorithm is executed, a 

neighborhood is generated for every point marked 
as “1” and “3.” This neighborhood represents a 
circle where the center is located in the analyzed 
point. The circle radius is defined with value . 

All marks “2” located within this circle are 
identified as unsafe and labeled with mark “-1”. 

Marks “2” that do not comply with this condition 
are labeled with mark “-2.” 

To create a template determining the offset 
of all points located inside the circle in relation to 
its center, the simplest circular formula was used. In 
the parametric form, it is written as: 

  (2) 

where ,  - offsets along x 
and y from the center of the circle with radius R for 
the points located on the border of this circle when 
positive axis ox is turned by angle . 

Let us name this template the “impassable 
area mask.” Therefore, the “impassable area mask” 
includes all x and y values that are unique for the 
multitude of offset coordinates and calculated from 
the formula (2) for parameter ranges R=[00,3590] 
and =[1, ]. This template can be used to 

determine an area the robot will occupy when 
making standing turns (figure 5). 
 

 
 

Figure 5: Robot’s Turning Area 
 

In this case, matrix Mt has the look shown 
in figure 6. Marks “-2” (gray color) indicate a path 
that is free for motion, while marks “-1” indicate 
unreachable zones (black color), and marks “-3” 
indicate the space outside the room (transparent 
sections). 
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Figure 6: Safe Zone Layout 

 
Then the start point of the trajectory is 

marked within matrix Mt, and the shortest paths for 
the robot to every point of the safe zone are mapped 
out from this start point. In order to increase the 
processing speed, it is possible to preliminarily set 
the end point of the trajectory. When this point is 
reached, it is necessary to stop mapping-out the 
regions where the reachability index (minimum 
number of cells that can be passed through to get to 
this point from the start point) is higher or equal to 
the reachability index of the trajectory end. This 
condition is especially important to maps having 
considerable dimensions. As for the data described 
in the article, the execution speed did not reduce, as 
the start and end points chosen to demonstrate the 
functionality of the algorithm were located far from 
each other (figure 7). 

Then it is necessary to map out the 
sections of matrix Mt where the reachability index 
will be minimum when the robot moves from the 
start point to the end point. Hereinafter these 
sections will be referred to as trajectory regions. To 
do this, the authors used the depth-first search 
algorithm with a stack as opposed to the previous 
stage where the width-first search algorithm with 
the “queue” data structure was used. Also, logic 
(boolean) array Mtb is formed in advance. This 
array stores a flag indicating that the current cell 
belongs to the trajectory zone. As a type of 
elements included into the stack, the authors used a 
structure with the following fields: cell coordinates, 
cell reachability index and pointer to the element 
from which the path to this cell was traveled. To 
optimize memory utilization, every neighborhood 
element under consideration was included into 
“map” data structure mtz, so a pointer to this 
element in “map” mtz was included into the stack or 
into the pointer to the previous element.  

 

 
Figure 7: Safe Zone Layout Based on The Lee Algorithm  

 
During the execution of the described 

algorithm, depth-first search was performed at the 
initial stage. It ensured mapping out matrix Mt from 
the end point to the start point of the path. Then 
matrix Mtb ensuring trajectory restoration (it is not 
performed if the start point of the trajectory is 
reached) was mapped out.  

An informal description of the trajectory 
variation generation algorithm can be formulated in 
the following way: 

- the end element is included into 
the stack; 

- subsequent operations are being 
performed while the stack is not full; 

- if the current element is not 
marked in Mtb, and it is not the start point of the 
trajectory: let us examine the eight-neighborhood of 
this point. If the reachability index of a 
neighborhood point is one point lower than the 
current element, and it is marked in Mtb, the current 
element is marked in Mtb; if it is not marked, the 
current element and this neighborhood point are 
included into the stack (indicating that we have 
reached this neighborhood point from the current 
element); 

- if the current element is marked 
in Mtb, or this is the start point of the trajectory, and 
there is a pointer to the previous element, it is 
included into Mtb; 

- the algorithm moves to the next 
iteration of the stack cycle. 

The result of this algorithm is shown in 
figure 8. 
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Figure 8: Array Mtz Mapping Out 

 
 Then, for every mapped-out point of 

matrix Mtb, it is necessary to calculate the number 
of eight-neighborhood elements that are not 
mapped out in matrix Mtb. To do this, it is sufficient 
to pass all mapped-out elements in matrix Mtz 

(figure 8) and analyze their neighborhoods. Also, in 
matrix Mt, all the points with a positive value (Lee 
algorithm) and without a signaled state in a 
corresponding cell of matrix Mtb, are marked as “-
1.”  

 Then a set of turning and movement 
operations is formed from the layout obtained 
inside matrix Mt.  

Let us analyze figure 9 and imagine that a 
decision on generating a motion trajectory for the 
robot is made by a human. Let us mark the start of 
the robot’s path as “*” and the end of the robot’s 
path as “?.” It is obvious that the following options 
would be considered in this case: from “*” to “+,” 
and then to “?,” or from “*” to “-,” and then to “?.” 

When a path from “*” to “^” is chosen, the 
number of turning operations is increased, as it is 
necessary to move from “^” to “19” and travel to 
“?” only after this. 
 

 
Figure 9: Array Mtz Layout  

 
Also, it is possible to use point “*” to get 

to any point on the line from “+” to “-.” It will 
require the same number of turns as when moving 
through points “+” and “-,” but it will lead to the 
higher variability of solutions that are practically 
identical. 

If one attentively examines figure 9, one 
will easily notice the following regularity: points 
“+,” “-,” “?” and “^” fit the same condition that can 
be formulated in the following way. A point is 
“terminal” if it has five virgin neighbors or it has 
the maximum possible straight-lined deviation from 
the previous step in the trajectory zone. The 
presence of six virgin neighbors implies that there 
is only one possible continuous straight-lined path 
through this point (elements “22”-“25” in figure 9). 

Therefore, in order to create a trajectory 
plotting algorithm, it is necessary to define a 
mechanism for verifying the existence of a straight-
lined path of length D through the mapped-out 
region from point (xc,yc) to a virgin area with a 
robot’s turn by angle . To achieve this, the 
authors formed a data structure containing the 
following fields: an offset (dx;dy) along axes x and 
y against the current zero point (0,0), a set of angles 
and distances from which this point can be reached, 
a length of the line segment from the zero point to 
point (dx;dy). A combination of unique points that 
define the neighborhood of the point in the circle of 
radius Dmax is included into a data set consisting of 
the elements belonging to the structure described 
above – point neighborhood or trajectory node. The 
points located in the neighborhood of the trajectory 
point should be normalized to the value of cells in 
Mt. Value Dmax defines the maximum straight-lined 
path the robot can cover to the target point. If value 
Dmax reduces, it suggests that the number of 
trajectory nodes increases. If value Dmax is optimal, 
it allows covering all the longest straight-lined 


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paths within mapped-out region Mt. If value Dmax 
increases, the size of the trajectory point 
neighborhood will also increase, which will require 
increasing the turning angle by a lower value when 
forming this neighborhood. 

Then it is necessary to examine all 
possible optimal motion scenarios. Straight-lined 
motion from this node is considered optimal if it 
longest and leads to a point that has five virgin 
eight-neighbors. In addition, it is important that 
only one longest straight-lined motion is defined 
under the current node, and several motions can be 
considered towards the point with five virgin eight-
neighbors. For this purpose, the authors used buffer 
NodeMax for the longest motion and list NodeOpt for 
the motions to the point with five eight-neighbors. 

The algorithm should not consider 
straight-lined motions where the end points can be 
used to generate a path by other straight-lined 
motions from the same node. That is, if a straight-
lined path from the current node can be generated 
above a point, and this point is not terminal for this 
straight-lined motion, it cannot be the end of a 
straight-lined path for other motions from this node. 
In this connection, a passability matrix is formed to 
ensure the operation of the algorithm where such a 
condition is met for every node analyzed. 

Other straight-lined motions from the 
current node are not considered if a straight-lined 
path to the end of the trajectory (end point of the 
robot’s path) already exists from this node. Such a 
node is marked as the end of path. 

Also, there is no need to consider straight-
lined motions with the same end point for the node 
under study. For this purpose, the authors created a 
“map” of unique potential nodes that can be 
reached from the node under study. 

To restore the path, all the end nodes of the 
trajectory (that reached the end of path) are 
included into the list of the end of path. For every 
node, information on the parent node from which it 
was reached is saved. Inside the node, there is a 
data structure that keeps a trajectory point 
neighborhood element determining the turning 
angle and length of the straight-lined motion 
necessary to reach this node from the parent node. 

In this connection, the authors created the 
following algorithm: 

- place a start point to a node, specify the 
robot’s current turning angle, and place the node 
into a queue; 

- if the queue is not empty, take the next 
node in the order of priority, otherwise complete 
the algorithm; 

- if the path ends in this node (the target 

point is reached), put this node into the “end of 
path” list; 

- if the current node is detected on the path 
with the number of nodes that is significantly 
higher than that of the already obtained destination 
path, move to the next iteration of the cycle; 

- initiate a passability matrix, buffer 
NodeMax, list NodeOpt, end of path flag, “map” of 
unique potential nodes for motion from this node; 

- launch two cycles: an external cycle – 
movement within the turning angle, and an internal 
cycle – movement along the straight-lined path; 

- take a trajectory point neighborhood 
element that fits the current turning angle and 
straight-lined motion defined by the cycle 
parameters; 

- if this movement goes beyond the 
boundaries of matrix Mt, move to the next iteration 
of the external cycle; 

- if the Lee algorithm mark (in matrix Mt) 
is lower in the movement point vs. the current node, 
move to the next iteration of the external cycle; 

- if the mark of the current movement 
point is defined, and Dmax is not reached, record this 
point in the passability matrix and move to the next 
iteration of the internal cycle; 

- if the end of path is reached with this 
movement, add this node into the queue, put an end 
of path flag and exit from the internal and external 
cycles; 

- if this movement reaches a virgin area in 
matrix Mt (mark “-1”), calculate the previous 
movement of the internal cycle; 

- if this movement reaches a virgin area, or 
Dmax is achieved, check the availability of five 
virgin eight-neighbors in this node. If this condition 
is met, add this node into array NodeOpt and include 
it into the “map” of unique potential nodes for 
motion from this node. If buffer NodeMax contains a 
node with a lower value of mark Mt, add the value 
of this node into buffer NodeMax. If buffer NodeMax 
contains a node with the same value of mark Mt as 
that of the current node, leave the node with the 
minimum vector value in NodeMax. If this node is 
added into NodeMax, register it in the “map” of 
unique potential nodes for motion from this node. 
The nodes already included into the “map” of 
unique potential nodes for motion from this node 
are not added into NodeOpt and NodeMax; 

- if the end of path flag is not marked, put 
all the nodes from NodeMax and NodeOpt into the 
queue, if the node is not added into the passability 
matrix; 

- move to the next iteration of the queue 
cycle. 
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The execution of this algorithm for the 
selected points of the generated map resulted in 
four paths: two five-node paths, one six-node path 
and one seven-node path.  

Two optimal paths are shown in figures 
10-11. 
 

 
Figure 10: Safe Zone Layout, Optimal Path #1 

 

 
Figure 11: Safe Zone Layout, Optimal Path #2 

 
The trajectories can be easily restored from 

the list of end points, while the nodes with the 
minimum number of nodes will be stored at the 
very beginning of this list. 
 
4. RESULTS AND DISCUSSION 

The article describes the local navigation 

map of premises having the area of 965x880 
centimeters (matrix with the dimensions of 
193x175 elements) obtained by means of data 
processing [19]. The algorithm output is shown in 
figure 4 and 10-11. It represents a local navigation 
map divided into separate interior objects, free 
space for motion, connected room borders 
described with a list containing a sequentially 
closed chain of points, trajectory plotting. The 
processing speed of the algorithm stages for this 
data set is shown in table 1. 

 
Table 1: Processing speed of algorithm stages 

 Stage Worst 
execution 
time, ms 

Mean 
execution 
time, ms 

1 Dilation and 
erosion of 
furniture and room 
components 

2 1.5 

 Subtraction of 
erosion results 
from the results of 
room components 
dilation 

1 0.2 

2 Looking for the 
connected 
components of 
furniture 

2 1.3 

3 Looking for the 
connected 
components of 
borders 

1 0.3 

4 Looking for the 
shortest path 

1 0.2 

5 Safe zone template 29 28.8 
6 Safe zone layout 3 3 
7 Wave algorithm 2 2 
8 Trajectory region 

layout 
1 1 

9 Neighborhood 
template 

407 404.3 

10 Trajectory 
scenario 
generation 

2 1.8 

 
It is noteworthy that, when using the data 

set [19], the number of connected border 
components at stage 3 was equal to 1. It raises the 
following question: under what conditions is it 
possible to single out a connected border 
component that will describe the room border in the 
presence of several connected components? Such a 
case can be connected with the presence of columns 
or installations inside the room. In order to solve 
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this issue, it can be limited to solving the point in 
polygon problem [20]. It is obvious that every point 
where a capturing device (lidar, RGBD camera or 
stereopair) is located will lie within a polygon that 
describes room borders. At stage 4, all the points of 
the connected component border are in fact the 
vertices of the polygon, which easily fits into the 
initial data of this task. 
Stages 5 and 9 can be loaded once upon the launch 
of the application, and their execution speed is not 
crucial for the algorithms in general. 
 
5. CONCLUSION 

This paper has demonstrated the successful 
implementation of the algorithm used to segment a 
local indoor navigation map based on the data set 
[19]. The algorithm allows detecting the connected 
components of furniture, closing and opening room 
borders and representing them in the form of a 
traversal sequence by the points of the border on a 
local navigation map containing room borders and 
marked furniture objects. 

The data obtained by means of this 
algorithm can be later used to identify and segment 
furniture objects, determine room parameters and 
develop scenarios for interaction with objects and 
navigation within this room. 

The trajectory obtained by means of these 
algorithms can be used to directly execute a list of 
commands or to transform it into diagonal, sideway 
movements and other operations that can be defined 
with the turns and linear motion of the 
anthropomorphic robot. 
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