
Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2646

LOCAL NAVIGATION MAP PROCESSING ALGORITHM TO
IDENTIFY INDOOR OBJECTS AND GENERATE MOTION

TRAJECTORY FOR ANTHROPOMORPHIC ROBOT

1YANA KOSTELEY, 2DMITRY ZHDANOV, 3ARTEM BUREEV, 4LIUDMILA KHOKHLOVA

1“Instrument-Making” research laboratory, National Research Tomsk State University, Lenin Avenue,
36, Tomsk, 634050, Russia

2“Instrument-Making” research laboratory, National Research Tomsk State University, Lenin Avenue,
36, Tomsk, 634050, Russia

3“Instrument-Making” research laboratory, National Research Tomsk State University, Lenin Avenue,
36, Tomsk, 634050, Russia

 4“Instrument-Making” research laboratory, National Research Tomsk State University, Lenin Avenue,
36, Tomsk, 634050, Russia

ABSTRACT

The article describes an approach to the analysis of a local indoor navigation map derived from a lidar point
cloud represented as a projection on a horizontal plane. The article analyzes the applicability of the graph
theory and binary image processing methods for structuring and uniting the elements of a noisy and
segmental local navigation map layout. On an initial map layout (walls, free space and internal environment
objects), stand-alone interior elements are detected, and the points of wall borders are filtered and closed
up. Mathematical morphology methods and shortest path and connected component separation algorithms
are used to complete these tasks. The authors have developed a trajectory generation algorithm consisting
of several turning and straight-line motion commands.

Keywords: Local Navigation Map, Mathematical Morphology, Flood Fill, Lee Algorithm, Connected

Component Separation

1. INTRODUCTION

Segmenting initial data received from
lidars, RGBD cameras and stereopairs is important
to ensure the navigation of robotic systems and to
map indoor premises. It allows evaluating the
dimensions of objects that can be used to develop
interaction scenarios. The primary segmentation
parameters are dividing an indoor map into separate
rooms and detecting walls and internal environment
objects for every room.

Detecting indoor objects is the site of
special interest for this article. A lot of approaches
exist to cope with this task. One of the solutions is
the use of multiple lidars. For instance, the authors
[1] use two lidars to segment floor and wall points
from a point cloud received from a laser scanner.
The first lidar scans the floor, the second one –
other environment objects. Other methods are based
on plane segmentation. It is confirmed with many
papers devoted to separating objects or planes on
the basis of data sets received from RGBD cameras.
Many of these methods involve segmentation only
[2-5], while others also imply the classification of

objects [6, 7] on detected planes. Special interest
should be paid to paper [8], as in this paper
environment objects are identified, structured and
complemented to create a complete indoor map. In
this case [8], individual premises are segmented by
time labels (the system stops in the process of map
scanning, which signalizes about stoppage in an
individual room), then the region growing method
is used to identify planes inside this room; their set
is divided into vertical and horizontal planes; in
their turn, vertical planes are segmented into the
walls and planes of indoor premises; the
intersecting walls of two different premises are
analyzed to segment a door aperture.

Another task was to develop safe trajectory
planning algorithms to make the robot move from
one space point to another inside premises. The
motion of the anthropomorphic robot in a plane
space along a curved trajectory is characterized by
the following peculiarity: all motion operations
come down to a set of turns and straight-line
movements. For instance, diagonal motion and
sidewise motion are described using the same
parameters as turns for a preset angle and onward

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2647

motion. Therefore, at the initial anthropomorphic
robot trajectory planning stage, it is sufficient to
compose a list of paired “turn-movement”
operations and then to develop a scenario of motion
along an optimal trajectory depending on the speed
of movement and a set of preferable motion
operations for a specific anthropomorphic robotic
system. Several motion space representation
methods are available to solve this task. The best-
known methods are road-map, cell decomposition
and potential field [9].

The road-map method implies representing
potential robot movements as a connected graph
that describes a standardized motion path. The best
example of this representation method is the maps
of cities, streets, railroad tracks and routes. In this
case, motion scenario variability is influenced by a
chosen motion edge, while there is no variability
within the edge, which cannot be used for the
anthropomorphic robot that moves inside indoor
premises.

The potential field method is based on the
following space representation: all obstacles are
marked with a virtual negative charge, while the
target point is marked with a positive charge. A
negatively charged particle is placed at the
departure point. A potential antigradient is
considered to be an artificial force applied to the
robot. An optimal choice is a path with the
minimum artificial force applied [10]. This method
allows rather quickly finding an optimal motion
trajectory that is well suitable for wheeled robots.
In order to develop curvilinear motion scenarios
using an available set of movement operations for
the anthropomorphic robot, it is necessary to
additionally analyze the obtained trajectory and
update the algorithm.

The cell decomposition or occupancy grids
map method describes space as a set of cells where
space point connectivity is determined by the
neighborhood of the cells at which these points are
located [9]. This representation of spatial data often
serves as an interim container to mark obstacles that
are dictated by points obtained via lidars, stereo
cameras and other sensors. It results from the fact
that they can indicate the likelihood of obstacles in
a predetermined cell based on the number of points
in this cell. The Dijkstra algorithm, A* search
algorithm (and its modifications), Lee algorithm (as
well as Moore algorithm or wave algorithm) are
often used to create a trajectory in the cell
decomposition space [11]. The Dijkstra algorithm
helps find all shortest paths on a chart (with due
account for the weight of every edge). In its turn,
the A* search algorithm is used to find an optimal

path [12]. The Lee algorithm analyzes the distance
to all cells that are free for movements. One of the
A* search algorithm modifications, the LIAN
algorithm, is interesting from the viewpoint of
dividing the path into a set of turning and
movement operations [13]. This algorithm limits
the displacement of a motion angle in every node of
the trajectory that consists of equally spaced nodes.
The larger the allowable offset angle is, the more
curvilinear the path is and vice versa. The general
classification of robot path planning algorithms
presented in [14].

Also, there is a class of trajectory plotting
algorithms based on intelligent technologies. These
methods demonstrate good results, but they are
often characterized by a lower execution speed [9].
In this connection, this group of methods was not
considered.

High speed of command execution and fast
response are important for robotic systems when
dealing with big global maps and data streams.
Authors propose an approach based on the
limitation of an area of interest when dealing with
external algorithms. For example, when searching
for certain objects using computer vision, separate
objects in the room can be selected on a map and
subsequently their dimensions, vertical position
assessed. Then only the data that corresponds to an
area of interest obtained from the detected object is
transmitted to a pattern recognition algorithm.
Another example of this approach can be full path
planning by obtaining local paths inside of each
isolated space, where only this specific space
boundaries are relevant. In turn, segmentation
algorithms for walls and free-standing objects
should also have a high data update rate, which
ensures an optimal response speed. As mentioned
above, in most works, a 3D representation of the
space is used to segment objects on a map. As an
option to optimize the segmentation algorithm, an
approach is proposed for analyzing a two-
dimensional representation of a map for the primary
segmentation of three-dimensional objects in an
image.

Therefore, the overall goal was to examine
the approach to the analysis of initial data received
from the lidar (and, subsequently, from RGBD
cameras and stereopairs) not from the viewpoint of
working with 3D planes but in terms of processing
2D projections of obtained data to the horizontal
floor plane. A scientific team has studied the
applicability of the graph theory and binary image
processing methods for structuring data on indoor
objects. The team has examined the possibility of
filtering and processing the initial layout of walls,

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2648

room space and interior objects. It is suggested that
this segmentation will subsequently allow
performing the preliminary classification of a room
point cloud into separate structured elements that
might later be individually processed with more
complex algorithms.

The resulting set of algorithms can serve
as a basis for algorithms development that solve
specific tasks of a robotic system.

The conducted review shows that there are
two types of input data for path planning
algorithms: a two-dimensional map with 8 or 4 cell
connectivity and a graph. The output data of
algorithms are coordinates of the path cells in the
case of a two-dimensional matrix, and nodes
through which the path goes, in the case of a graph.
In robotic systems with a limited set of movement
operations, both in terms of the number of available
commands and movement parameters (e.g. angle
and length of movement), it becomes necessary to
plan a path on a two-dimensional map by forming a
graph of shortest paths, where the edges of the
graph and their relative position satisfy the
conditions of available robot commands.

Therefore, the findings were used to study
an opportunity of adapting the Lee algorithm to
generate a motion trajectory for the
anthropomorphic robot to ensure the shortest path
of safe curvilinear motion. It is suggested that, as
opposed to the methods discussed, adapting this
algorithm will allow parametrically controlling the
variability of potential motion scenarios, ensuring
the fast adaptation of an obtained path for the set of
operations available to the robot and evaluating this
path from the viewpoint of preferred or non-
preferred motion operations in space.

Developed path planning algorithm can be
adapted for specific tasks and functional
capabilities of a robotic system.

2. LITERATURE REVIEW

Singling out connected components is
important for both map analysis and the analysis of
binarized images. There are several approaches to
solve this problem: recursive, multi- and two-pass
algorithms [15]. Two-pass algorithms are often
used to ensure high processing speed and lower
memory usage rates. These algorithms also have
multiple implementation options. The other side of
this question is to outline the connectivity of one
component with another. Usually, four-connected
(cross) and eight-connected (quadrate) components
are examined. These components differ in the
possibility of diagonal connections between
components. This article will describe both types of

connectivity depending on the tasks and will utilize
a two-pass algorithm with a union-find data
structure as a table of equivalence. This structure
allows storing and uniting disjoint sets or
determining the belonging of elements to one of the
disjoint sets [16]. Usually, a union-find data
structure is implemented by means of trees to
ensure an element instance search rate.

Shortest path search is a fundamental
approach to solve the problem of mapping.
However, this article examines this class of
algorithms not from the viewpoint of navigation but
to lay out indoor objects for the purpose of
successive by-passing and closing these elements.
One of the best solutions in terms of the speed rate
and introduction of additional path development
conditions is the Lee algorithm. This algorithm
implies the performance of forward and backward
passes. The forward pass is performed to mark out
an area with an algorithm similar to the flood fill
algorithm. The only difference is that the distance
to the beginning of the motion path is used as a
label. The “line” data structure is often used to
perform the forward pass. This structure ensures the
consecutive processing of elements in the order of
emergence. The backward pass consists in looking
for the first path from the end point to the start
point by using the stack data structure [17].

Quite often, maps created via lidars,
RGBD cameras and stereo vision show the borders
and parts of objects disjointedly or with false
surges. It is convenient to additionally process these
data by means of mathematic morphology methods.
Mathematic morphology allows deriving important
properties from binary images. The basic notions of
mathematic morphology are “structural element”,
as well as “dilation” and “erosion” operations. The
structural element is used to perform operations and
represents a two-dimensional binary element with
odd dimensionalities. During mathematic
morphology operations, the central part of this
element is applied onto the pixel under study. The
dilation operation consists in using logical
multiplication between the structural element and
the neighborhood of the point processed when
every point has a true value. The erosion operation
leaves the pixel under study with its true value,
while the true cells of the structural element and
underlying neighborhood of the pixel coincide. The
combination of these operations allows segmenting
different elements of objects, e.g., increasing the
connectivity of components or singling out their
borders [18].

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2649

3. MATERIALS AND METHODS
3.1. Proposed Methodology

The authors implemented an algorithm to
construct and segment a local navigation map based
on data from the lidar, stereo vision and depth
sensor in an application written in the C++
language in the QT Creator programming
environment with the use of the MinGW platform.
To visualize data, they used the OpenGL library
implemented in the cross-platform QT framework.
The algorithms were tested on a personal computer
with the following features: Intel Core i5-4440
CPU 3.10 GHz, 8 GB RAM.

The authors used a data set received by
Dorit Borrmann and Hassan Afzal from Jacobs
University Bremen gGmbH, Germany. The data are
available in 4TU.Datacentrum at [19]. These data
were derived from the following resources available
in the public domain [20]. The data (three-
dimensional coordinate points) consist of room
scans obtained via the Riegl VZ-400 lidar and
positions (offsets and angles of rotation in three
axes) for each scan received via the odometry
system. The indoor premises consist of a room with
furniture and other moveable objects as well as part
of a corridor. Scanning was limited to one story. In
addition to the side walls, the data include the
images of the ceiling and the floor.

3.2. Algorithm
A. Pre-processing

The article describes an algorithm to
segment a local indoor navigation map and does not
consider the method used to obtain this layout. The
repository data layout [19] used in this article was
obtained by means of the following operations:

1) constructing an occupancy grid map
with the cell size of 5x5x5 cm;

2) analyzing the layers of the occupancy
grid map from the bottom upwards by the number
of marked cells in each layer, singling out the level
of the ceiling, interval located below the ceiling
(including walls) and interval located between the
ceiling and the floor (furniture interval);

3) transferring the wall and furniture
intervals into two-dimensional representations Mw
and Mf;

4) mapping two-dimensional wall interval
representation Mw by means of vertical and
horizontal passes up to obstacles, uniting the results
of these passes via the logical multiplication
procedure with the construction of a resulting two-
dimensional map of the walls in the current
premises, saving the layout of the passage area as
array Mw (obstacles are marked with value 1, free

space – 2, virgin area – 0);
5) mapping free space by means of the

flood fill algorithm (value 3) on array Mf with the
construction of a resulting two-dimensional map of
the free space in the current premises that is copied
to Mf;

6) uniting layouts 1 and 2 of array Mf and
layout 3 of array Mw; the layout of the passage area
(value 2) obtained at stage 4 and transferred to the
current map without overlapping with layout 3 will
contain the layout of furniture.

The consecutive use of the mathematic
dilation and erosion morphology operations allows
joining the isolated elements of interior objects
(value 2). In this case, the authors used a chain of
the above mentioned operations with structural
element 3x3 where the angle units are zero. It
allowed constructing a map shown in figure 1.

Then two-dimensional array Mr was
created. This array contains the layout of the
current room. It will be used to represent the output
of the initial algorithm. Therefore, array Mr will
store the following layout values: 0 – virgin area; 1
– layout of wall borders; 2 – layout of furniture; 3 –
layout of free space for movements within the
room.

Figure 1: Two-Dimensional Map of Room Layout Mr

B. Connected furniture component separation

A two-pass four-connected components
search algorithm was used to segment separate
(connected) furniture objects. The first pass
consisted in the line-by-line analysis of each filled
(value 2) cell of matrix Mr(xi,yj) and its neighbors
Mr(xi-1,yj) and Mr(xi,yj-1) with due account for the
following situations:

- both neighbors have marks, current cell
Mr(xi,yj) is filled with the minimum value of the
neighbors’ marks, connection between marks Mr(xi-

1,yj) and Mr(xi,yj-1) is indicated in the table of
equivalence, if these marks are not equal;

- one of the neighbors has a mark, current

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2650

cell Mr(xi,yj) is labeled with its mark;
- none of the neighbors has a mark, current

cell Mr(xi,yj) is labeled with a new mark in
compliance with the order of passing, and a new
mark is added into the table of equivalence (the
starting value of the marks is 5).

The union-find data structure was used to
create the table of equivalence. During the
backward pass, all the marks of the matrix are
updated with the minimum value from the table of
equivalence. Also, during this pass, information on
the number of cells in each connected component,
the start point (the first instance of the element of
the connected domain in case of line-by-line
scanning) of each connected component and its area
is collected. This information can be useful for
further segmentation and object specification. The
mapping result is shown in figure 2.

Figure 2: Detecting Connected Components of Furniture

C. Room borders closure

Figure 2 shows that the border layout
(mark 1) has an unclosed structure and significant
surges. Therefore, the key idea of this algorithm
was to close the chain of room wall points. It was
suggested that the shortest path would “cut” the
surges upon closing the chain of points. In order to
obtain a closed curve of room borders, the authors
used the mathematic morphology operations and
Lee algorithm.

At first, all the marked cells (non-zero
values) were copied to buffer matrix MH. Then
buffer matrix MH sequentially underwent the
dilation operation with two structural elements: 5x5
element with completely colored cells and 3x3
element with zero angle units. The results were
copied to buffer array Me. The erosion operation
was performed twice with structural element 5x5
and completely colored cells. Matrix Me was

subtracted from array MH. A heavy room border
was obtained as the result of these operations. In
order to speed up the algorithm, these operations
can be combined with the dilation and erosion
operations performed in relation to furniture
objects.

The selection of structural elements for the
mathematic morphology operations depends on the
degree of the noise pollution of data determining
borders. Structural elements can be chosen for
every specific type of data sets. This border is
demonstrated in figure 3. As shown in figure 3,
some parts of the border were removed. These
objects can be analyzed later. For instance, the
surges in the corners of the room can be ignored, as
they are unapproachable, while the points
displaying lighting fixtures can be segmented and
analyzed from the viewpoint of motion restrictions.

Figure 3: Dilation and Closure of the Room Border Via

Mathematic Morphology Operations

This border can be used to create the
shortest path and, by that, number the sequence of
points the chain of which closes the room borders.
It allows obtaining data in a form that is convenient
for analyzing room parameters, specifically, a serial
chain of border points that can be easily processed
by means of approximation and interpolation
algorithms, the Hough Transform and other
methods to determine curve characteristics.

In order to perform further operations, the
following values were entered into matrix MLee: “-
1” – room borders from array MH, “-5” – virgin
space from array Mr (mark “0”), “-4” – room space:
free space and furniture (marks “2” and “3” from
array Mr). Then all the cells with value “-1” in
matrix MLee were marked with a two-pass eight-

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2651

connected components search algorithm. The
difference between this method and the procedure
that was previously performed on furniture objects
in array Mr is that the neighbors of MLee(xi,yj) will
be not only Mr(xi-1,yj) and Mr(xi,yj-1) but also Mr(xi-

1,yj-1) and Mr(xi+1,yj-1) (eight-connected neighbors).
It will allow considering the components where the
cells have neighbors in the diagonal direction to be
connected ones. Also, in this case, new components
are numbered with start value “-6” and counter
decrementation rather than incrementation. During
the final run, the list is supplemented not only with
information on the number of cells in each
connected component and its start point but also
with information on the area where it is located
(maximum and minimum point coordinates by rows
and columns).

As room borders had a closed chain, and
launching the Lee algorithm on these data would
make it difficult to determine the closing point, the
authors decided to open the area of each
component. In order to do this, they used
information on the location area of the connected
component, more specifically, this area was
horizontally divided into two halves based on
information on the rectangular area where it was
located. Switching from mark “-5” or “-4” to the
marks of the current connected component index
and vice versa was registered from top downward
on the border of intersection. If the number of such
“switches” was equal to or more than two, this
connected component was considered to be a room
border, otherwise it was marked as a furniture
object. The first “switch” was labeled with mark “-
2,” mark “-3” was used to label eight-connected
neighbors of all the cells with mark “-2” on the left
(MLee(xi-1,yj-1), MLee(xi,yj-1), MLee(xi+1,yj-1)).
Therefore, parallel opening lines were created
during the first “switch.” As it has already been
mentioned, the first line with mark “-2” would
ensure movements to pass over the chain of the
connected component’s border to one side (in this
case, in a clockwise manner), the second line with
mark “-3” would ensure the identification of the
end of path and ambiguity of the eight-connected
analysis of neighbors. It is noteworthy that dividing
the area of the connected component into two
halves vertically or adding a constraint line on the
right would not change the essence of this
algorithm, it would only change the direction of cell
scanning.

Before launching the Lee algorithm, a list
to save the coordinates of the “end of path” cells is
created.

In this case, the Lee algorithm has the

following format:
1) eight-connected neighbors of all the

cells with mark “-2” on the right (MLee(xi-1,yj+1),
MLee(xi,yj+1), MLee(xi-1,yj+1)) are added into a line and
marked with start value “1”;

2) while this line is not empty, the Lee
algorithm marks all the cells with the value of the
current connected component index; if the current
cells has a neighbor with mark “-3,” this cell is
added into the list of the “end of path” cells;

3) the coordinates of the cell with the
minimum value of MLee(xi

end,yj
end) are derived from

the list of the “end of path” cells;
4) a path from this point to cell with mark

“1” MLee(xi
start,yj

start) is laid by means of a backward
pass and stack; if there are several options for the
next step, preference is given for the step that has a
neighbor with mark “-4,” as it allows making a path
bordering on furniture or free room space;

5) points MLee(xi
start,yj

start) and
MLee(xi

end,yj
end) are connected via marks “-2” and “-

3.”
This path can be transferred into matrix Mr

and saved as a list for further convenient
processing. The result of this algorithm is shown in
figure 4.

This result can be used to separate wall
sections on depth maps that can be easily
transferred to RGB image sections. It will allow
pattern recognition algorithms to ignore the sections
that are unimportant to recognition. The closed
nature of the room borders allows localizing
obstacle points spaced within the premises. Also,
the border data storage structure ensures a linear
pass across all the points, which allows optimizing
the speed of by-passing to complete external tasks.

Figure 4: Result of Algorithm

D. Robot trajectory plotting

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2652

The following aspects should be considered during
robot trajectory plotting:
- a motion scenario consists of a set of movement
and turning operations;
- a potential travel distance should be larger than
Dmin;
- a movement operation should not exceed Dmax to
control motion;
- it is necessary to generate a trajectory that will
minimize the probability of crashing into detected
environment objects;
- in addition to the covered distance, the number of
turning operations can be used as a criterion to
generate an optimal trajectory.

Matrix Mr is copied to new matrix Mt to
store the motion trajectory layout. To comply with
the safe path criteria, it is necessary to add sections
where the robot can crash into obstacles if it gets on
the points of these sections. Also, it is important to
make the robot be able to turn around its radial axis
in every point of the trajectory, as it will allow the
robot to maneuver to prevent crashing into moving
objects. In this connection, all Mt points located
farther than value from the closest obstacle

are used as a safe zone. This value is calculated in
the following way:

 (1)

where - robot width (mm);

 - robot height (mm);

 - value of the robot’s potential

deviation from its current location point as it makes
a turn.

Hereinafter in the description of this
algorithm, let us assume that value equals 150

mm. This value will allow more completely
demonstrating the operation of this algorithm with a
test data set [19].

To exclude the sections marked as unsafe
zones within the robot’s motion area, a set of marks
was introduced within formed matrix Mt:

- mark “2” – a zone free for motion;
- mark “3” – a zone attributed to

furniture inside the room;
- mark “1”- a zone characterized as

furniture borders.
When the algorithm is executed, a

neighborhood is generated for every point marked
as “1” and “3.” This neighborhood represents a
circle where the center is located in the analyzed
point. The circle radius is defined with value .

All marks “2” located within this circle are
identified as unsafe and labeled with mark “-1”.

Marks “2” that do not comply with this condition
are labeled with mark “-2.”

To create a template determining the offset
of all points located inside the circle in relation to
its center, the simplest circular formula was used. In
the parametric form, it is written as:

 (2)

where , - offsets along x
and y from the center of the circle with radius R for
the points located on the border of this circle when
positive axis ox is turned by angle .

Let us name this template the “impassable
area mask.” Therefore, the “impassable area mask”
includes all x and y values that are unique for the
multitude of offset coordinates and calculated from
the formula (2) for parameter ranges R=[00,3590]
and =[1,]. This template can be used to

determine an area the robot will occupy when
making standing turns (figure 5).

Figure 5: Robot’s Turning Area

In this case, matrix Mt has the look shown
in figure 6. Marks “-2” (gray color) indicate a path
that is free for motion, while marks “-1” indicate
unreachable zones (black color), and marks “-3”
indicate the space outside the room (transparent
sections).

saved

extra
robotrobot

save d
hw

d )
2

,
2

max(

robotw

roboth

extrad

saved

saved

)sin(),(

)cos(),(




RRy

RRx




),(Rx),(Ry



 saved

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2653

Figure 6: Safe Zone Layout

Then the start point of the trajectory is

marked within matrix Mt, and the shortest paths for
the robot to every point of the safe zone are mapped
out from this start point. In order to increase the
processing speed, it is possible to preliminarily set
the end point of the trajectory. When this point is
reached, it is necessary to stop mapping-out the
regions where the reachability index (minimum
number of cells that can be passed through to get to
this point from the start point) is higher or equal to
the reachability index of the trajectory end. This
condition is especially important to maps having
considerable dimensions. As for the data described
in the article, the execution speed did not reduce, as
the start and end points chosen to demonstrate the
functionality of the algorithm were located far from
each other (figure 7).

Then it is necessary to map out the
sections of matrix Mt where the reachability index
will be minimum when the robot moves from the
start point to the end point. Hereinafter these
sections will be referred to as trajectory regions. To
do this, the authors used the depth-first search
algorithm with a stack as opposed to the previous
stage where the width-first search algorithm with
the “queue” data structure was used. Also, logic
(boolean) array Mtb is formed in advance. This
array stores a flag indicating that the current cell
belongs to the trajectory zone. As a type of
elements included into the stack, the authors used a
structure with the following fields: cell coordinates,
cell reachability index and pointer to the element
from which the path to this cell was traveled. To
optimize memory utilization, every neighborhood
element under consideration was included into
“map” data structure mtz, so a pointer to this
element in “map” mtz was included into the stack or
into the pointer to the previous element.

Figure 7: Safe Zone Layout Based on The Lee Algorithm

During the execution of the described

algorithm, depth-first search was performed at the
initial stage. It ensured mapping out matrix Mt from
the end point to the start point of the path. Then
matrix Mtb ensuring trajectory restoration (it is not
performed if the start point of the trajectory is
reached) was mapped out.

An informal description of the trajectory
variation generation algorithm can be formulated in
the following way:

- the end element is included into
the stack;

- subsequent operations are being
performed while the stack is not full;

- if the current element is not
marked in Mtb, and it is not the start point of the
trajectory: let us examine the eight-neighborhood of
this point. If the reachability index of a
neighborhood point is one point lower than the
current element, and it is marked in Mtb, the current
element is marked in Mtb; if it is not marked, the
current element and this neighborhood point are
included into the stack (indicating that we have
reached this neighborhood point from the current
element);

- if the current element is marked
in Mtb, or this is the start point of the trajectory, and
there is a pointer to the previous element, it is
included into Mtb;

- the algorithm moves to the next
iteration of the stack cycle.

The result of this algorithm is shown in
figure 8.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2654

Figure 8: Array Mtz Mapping Out

 Then, for every mapped-out point of

matrix Mtb, it is necessary to calculate the number
of eight-neighborhood elements that are not
mapped out in matrix Mtb. To do this, it is sufficient
to pass all mapped-out elements in matrix Mtz

(figure 8) and analyze their neighborhoods. Also, in
matrix Mt, all the points with a positive value (Lee
algorithm) and without a signaled state in a
corresponding cell of matrix Mtb, are marked as “-
1.”

 Then a set of turning and movement
operations is formed from the layout obtained
inside matrix Mt.

Let us analyze figure 9 and imagine that a
decision on generating a motion trajectory for the
robot is made by a human. Let us mark the start of
the robot’s path as “*” and the end of the robot’s
path as “?.” It is obvious that the following options
would be considered in this case: from “*” to “+,”
and then to “?,” or from “*” to “-,” and then to “?.”

When a path from “*” to “^” is chosen, the
number of turning operations is increased, as it is
necessary to move from “^” to “19” and travel to
“?” only after this.

Figure 9: Array Mtz Layout

Also, it is possible to use point “*” to get

to any point on the line from “+” to “-.” It will
require the same number of turns as when moving
through points “+” and “-,” but it will lead to the
higher variability of solutions that are practically
identical.

If one attentively examines figure 9, one
will easily notice the following regularity: points
“+,” “-,” “?” and “^” fit the same condition that can
be formulated in the following way. A point is
“terminal” if it has five virgin neighbors or it has
the maximum possible straight-lined deviation from
the previous step in the trajectory zone. The
presence of six virgin neighbors implies that there
is only one possible continuous straight-lined path
through this point (elements “22”-“25” in figure 9).

Therefore, in order to create a trajectory
plotting algorithm, it is necessary to define a
mechanism for verifying the existence of a straight-
lined path of length D through the mapped-out
region from point (xc,yc) to a virgin area with a
robot’s turn by angle . To achieve this, the
authors formed a data structure containing the
following fields: an offset (dx;dy) along axes x and
y against the current zero point (0,0), a set of angles
and distances from which this point can be reached,
a length of the line segment from the zero point to
point (dx;dy). A combination of unique points that
define the neighborhood of the point in the circle of
radius Dmax is included into a data set consisting of
the elements belonging to the structure described
above – point neighborhood or trajectory node. The
points located in the neighborhood of the trajectory
point should be normalized to the value of cells in
Mt. Value Dmax defines the maximum straight-lined
path the robot can cover to the target point. If value
Dmax reduces, it suggests that the number of
trajectory nodes increases. If value Dmax is optimal,
it allows covering all the longest straight-lined



Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2655

paths within mapped-out region Mt. If value Dmax
increases, the size of the trajectory point
neighborhood will also increase, which will require
increasing the turning angle by a lower value when
forming this neighborhood.

Then it is necessary to examine all
possible optimal motion scenarios. Straight-lined
motion from this node is considered optimal if it
longest and leads to a point that has five virgin
eight-neighbors. In addition, it is important that
only one longest straight-lined motion is defined
under the current node, and several motions can be
considered towards the point with five virgin eight-
neighbors. For this purpose, the authors used buffer
NodeMax for the longest motion and list NodeOpt for
the motions to the point with five eight-neighbors.

The algorithm should not consider
straight-lined motions where the end points can be
used to generate a path by other straight-lined
motions from the same node. That is, if a straight-
lined path from the current node can be generated
above a point, and this point is not terminal for this
straight-lined motion, it cannot be the end of a
straight-lined path for other motions from this node.
In this connection, a passability matrix is formed to
ensure the operation of the algorithm where such a
condition is met for every node analyzed.

Other straight-lined motions from the
current node are not considered if a straight-lined
path to the end of the trajectory (end point of the
robot’s path) already exists from this node. Such a
node is marked as the end of path.

Also, there is no need to consider straight-
lined motions with the same end point for the node
under study. For this purpose, the authors created a
“map” of unique potential nodes that can be
reached from the node under study.

To restore the path, all the end nodes of the
trajectory (that reached the end of path) are
included into the list of the end of path. For every
node, information on the parent node from which it
was reached is saved. Inside the node, there is a
data structure that keeps a trajectory point
neighborhood element determining the turning
angle and length of the straight-lined motion
necessary to reach this node from the parent node.

In this connection, the authors created the
following algorithm:

- place a start point to a node, specify the
robot’s current turning angle, and place the node
into a queue;

- if the queue is not empty, take the next
node in the order of priority, otherwise complete
the algorithm;

- if the path ends in this node (the target

point is reached), put this node into the “end of
path” list;

- if the current node is detected on the path
with the number of nodes that is significantly
higher than that of the already obtained destination
path, move to the next iteration of the cycle;

- initiate a passability matrix, buffer
NodeMax, list NodeOpt, end of path flag, “map” of
unique potential nodes for motion from this node;

- launch two cycles: an external cycle –
movement within the turning angle, and an internal
cycle – movement along the straight-lined path;

- take a trajectory point neighborhood
element that fits the current turning angle and
straight-lined motion defined by the cycle
parameters;

- if this movement goes beyond the
boundaries of matrix Mt, move to the next iteration
of the external cycle;

- if the Lee algorithm mark (in matrix Mt)
is lower in the movement point vs. the current node,
move to the next iteration of the external cycle;

- if the mark of the current movement
point is defined, and Dmax is not reached, record this
point in the passability matrix and move to the next
iteration of the internal cycle;

- if the end of path is reached with this
movement, add this node into the queue, put an end
of path flag and exit from the internal and external
cycles;

- if this movement reaches a virgin area in
matrix Mt (mark “-1”), calculate the previous
movement of the internal cycle;

- if this movement reaches a virgin area, or
Dmax is achieved, check the availability of five
virgin eight-neighbors in this node. If this condition
is met, add this node into array NodeOpt and include
it into the “map” of unique potential nodes for
motion from this node. If buffer NodeMax contains a
node with a lower value of mark Mt, add the value
of this node into buffer NodeMax. If buffer NodeMax
contains a node with the same value of mark Mt as
that of the current node, leave the node with the
minimum vector value in NodeMax. If this node is
added into NodeMax, register it in the “map” of
unique potential nodes for motion from this node.
The nodes already included into the “map” of
unique potential nodes for motion from this node
are not added into NodeOpt and NodeMax;

- if the end of path flag is not marked, put
all the nodes from NodeMax and NodeOpt into the
queue, if the node is not added into the passability
matrix;

- move to the next iteration of the queue
cycle.

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2656

The execution of this algorithm for the
selected points of the generated map resulted in
four paths: two five-node paths, one six-node path
and one seven-node path.

Two optimal paths are shown in figures
10-11.

Figure 10: Safe Zone Layout, Optimal Path #1

Figure 11: Safe Zone Layout, Optimal Path #2

The trajectories can be easily restored from

the list of end points, while the nodes with the
minimum number of nodes will be stored at the
very beginning of this list.

4. RESULTS AND DISCUSSION

The article describes the local navigation

map of premises having the area of 965x880
centimeters (matrix with the dimensions of
193x175 elements) obtained by means of data
processing [19]. The algorithm output is shown in
figure 4 and 10-11. It represents a local navigation
map divided into separate interior objects, free
space for motion, connected room borders
described with a list containing a sequentially
closed chain of points, trajectory plotting. The
processing speed of the algorithm stages for this
data set is shown in table 1.

Table 1: Processing speed of algorithm stages

 Stage Worst
execution
time, ms

Mean
execution
time, ms

1 Dilation and
erosion of
furniture and room
components

2 1.5

 Subtraction of
erosion results
from the results of
room components
dilation

1 0.2

2 Looking for the
connected
components of
furniture

2 1.3

3 Looking for the
connected
components of
borders

1 0.3

4 Looking for the
shortest path

1 0.2

5 Safe zone template 29 28.8
6 Safe zone layout 3 3
7 Wave algorithm 2 2
8 Trajectory region

layout
1 1

9 Neighborhood
template

407 404.3

10 Trajectory
scenario
generation

2 1.8

It is noteworthy that, when using the data

set [19], the number of connected border
components at stage 3 was equal to 1. It raises the
following question: under what conditions is it
possible to single out a connected border
component that will describe the room border in the
presence of several connected components? Such a
case can be connected with the presence of columns
or installations inside the room. In order to solve

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2657

this issue, it can be limited to solving the point in
polygon problem [20]. It is obvious that every point
where a capturing device (lidar, RGBD camera or
stereopair) is located will lie within a polygon that
describes room borders. At stage 4, all the points of
the connected component border are in fact the
vertices of the polygon, which easily fits into the
initial data of this task.
Stages 5 and 9 can be loaded once upon the launch
of the application, and their execution speed is not
crucial for the algorithms in general.

5. CONCLUSION

This paper has demonstrated the successful
implementation of the algorithm used to segment a
local indoor navigation map based on the data set
[19]. The algorithm allows detecting the connected
components of furniture, closing and opening room
borders and representing them in the form of a
traversal sequence by the points of the border on a
local navigation map containing room borders and
marked furniture objects.

The data obtained by means of this
algorithm can be later used to identify and segment
furniture objects, determine room parameters and
develop scenarios for interaction with objects and
navigation within this room.

The trajectory obtained by means of these
algorithms can be used to directly execute a list of
commands or to transform it into diagonal, sideway
movements and other operations that can be defined
with the turns and linear motion of the
anthropomorphic robot.

REFRENCES:
[1] G. Ajay Kumar, Ashok Kumar Patil, Rekha

Patil, Seong Sill Park, and Young Ho Chai, “A
LiDAR and IMU Integrated Indoor Navigation
System for UAVs and Its Application in Real-
Time Pipeline Classification”, Sensors, Vol. 17,
No. 6, 2017, p. 1268.

[2] R. Finman, T. Whelan, M. Kaess, and J. J.
Leonard, “Efficient incremental map
segmentation in dense RGB-D maps”, 2014
IEEE International Conference on Robotics and
Automation (ICRA), 2014.

[3] A. Morar, F. Moldoveanu, L. Petrescu, O.
Balan, and A. Moldoveanu, “Time-consistent
segmentation of indoor depth video frames”,
40th International Conference on
Telecommunications and Signal Processing
(TSP), 2017.

[4] E. Che and M. Olsen, “Lidar Point Cloud
Segmentation”, GIM International, 2019.

[Online]. Available: https://www.gim-
international.com/content/article/lidar-point-
cloud-segmentation. [Accessed: 09-Feb-2020].

[5] Zhe Zhao and Xiaoping Chen, “Building
temporal consistent semantic maps for indoor
scenes”, 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), 2015.

[6] N. Silberman, D. Hoiem, P. Kohli, and R.
Fergus, “Indoor Segmentation and Support
Inference from RGBD Images”, Lecture Notes
in Computer Science, 2012, pp. 746-760.

[7] S. Tang, Y. Zhang, Y. Li, Z. Yuan, Y. Wang, X.
Zhang, and W. Wang, “Fast and Automatic
Reconstruction of Semantically Rich 3D Indoor
Maps from Low-quality RGB-D Sequences”,
Sensors, Vol. 19, No. 3, 2019, p. 533.

[8] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y.
Chao, “The connected-component labeling
problem: A review of state-of-the-art
algorithms”, Pattern Recognition, 70, 2017, pp.
25-43.

[9] A. Gasparetto, P. Boscariol, A. Lanzutti, and R.
Vidoni, “Trajectory Planning in Robotics”,
Mathematics in Computer Science, Vol. 6, No.
3, 2012, pp. 269-279. DOI: 10.1007/s11786-
012-0123-8.

[10] T. Tsuji, P.G. Morasso, and M. Kaneko,
“Trajectory generation for manipulators based
on artificial potential field approach with
adjustable temporal behaviour”, Proceedings of
IEEE/RSJ International Conference on
Intelligent Robots and Systems. IROS ’96. DOI:
10.1109/iros.1996.570811.

[11] P. Zwierzykowski, M. Glabowski, P. Nowak,
and B. Musznicki, “Review and Performance
Analysis of Shortest Path Problem Solving
Algorithms”, The International Journal on
Advances in Software, Vol. 7, No. 1 & 2, 2014.

[12] C. Jinhyung and Z. Bo, “The shortest path from
shortest distance on a polygon mesh”, Journal
of Theoretical and Applied Information
Technology, Vol. 95., No.18, 2017, pp. 4446-
4454.

[13] A.I. Panov and K. Yakovlev, “Behavior and
Path Planning for the Coalition of Cognitive
Robots in Smart Relocation Tasks”, Robot
Intelligence Technology and Applications, Vol.
4, 2016, pp. 3-20. DOI: 10.1007/978-3-319-
31293-4_1

[14] M.N. Rastgoo, Mohammad, N. Naim, N.
Bahareh, F. Mohammad, N. Ahmad, and Z.
Mohd, “A critical evaluation of literature on
robot path planning in dynamic environment”,

Journal of Theoretical and Applied Information Technology
15th July 2020. Vol.98. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2658

Journal of Theoretical and Applied Information
Technology, Vol. 70, No.1, 2014, pp. 177-185.

[15] C. Fiorio and J. Gustedt, “Two linear time
Union-Find strategies for image processing”,
Theoretical Computer Science, Vol. 154, No. 2,
1996, pp. 165-181.

[16] M. Nosrati, R. Karimi, and H.A. Hasanvand,
“Investigation of the * (Star) Search
Algorithms: Characteristics, Methods and
Approaches”, World Applied Programming,
Vol. 2, No. 4, 2012, pp. 251-256.

[17] H.J.A. Heijmans and C. Ronse, “The algebraic
basis of mathematical morphology I. Dilations
and erosions”, Computer Vision, Graphics, and
Image Processing, Vol. 50, No. 3, 1990, pp.
245-295.

[18] D. Borrmann and H. Afzal, “3D scans taken
around the Automation Lab at Jacobs University
Bremen”, 4TU.Datacentrum. DOI:
https://doi.org/10.4121/uuid:066f1025-5151-
4d28-8405-954026e584b0

[19] D. Borrmann and H. Afzal, “Robotic 3D scan
repository”, Universität Osnabrück, Tech. Rep.,
2011. [Online]. Available:
http://kos.informatik.uni-
osnabrueck.de/3Dscans/ [Accessed: 09-Feb-
2020].

[20] C.-W. Huang and T.-Y. Shih, “On the
complexity of point-in-polygon algorithms”,
Computers & Geosciences, Vol. 23, No. 1, pp.
1997, pp. 109-118.

