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ABSTRACT 
 

The publicly available dataset poses a challenge in selecting the suitable data to train a defect prediction 
model to predict defect on other projects. Using a cross-project training dataset without a careful selection 
will degrade the defect prediction performance. Consequently, training data selection is an essential step to 
develop a defect prediction model. This paper aims to synthesize the state-of-the-art for training data 
selection methods published from 2009 to 2019. The existing approaches addressing the training data 
selection issue fall into three groups, which are nearest neighbour, cluster-based, and evolutionary method. 
According to the results in the literature, the cluster-based method tends to outperform the nearest 
neighbour method. On the other hand, the research on evolutionary techniques gives promising results but 
is still scarce. Therefore, the review concludes that there is still some open area for further investigation in 
training data selection. We also present research direction within this area. 

Keywords: Software Defect Prediction, Training Data Selection, Nearest-Neighbor, Cluster-based, 
Evolutionary-based  

 
1. INTRODUCTION  
 

Software defect prediction (SDP) becomes 
a critical activity to increase software quality and to 
reduce software testing effort. SDP develops a 
defect prediction model (SDP model) that enables 
the prediction of a defect-prone module [1]. The 
SDP model can categorize a software component as 
a defect or non-defect. The SDP model helps 
software developers to distribute the limited 
resources to test and review the modules that most 
likely contains defect  [2][3][4].  Therefore, the 
utilization of the SDP model would be of benefits 
for the software developers since the model helps 
the software developers to focus on inspecting or 
testing the high defect-prone modules judiciously.   

 
Many studies have developed models for 

the prediction of a software defect. They trained the 
SDP model using the past defect data from the 
same project to predict the defect in the next 
version [5]. This method is called With-in Project 
Defect Prediction (WPDP). Nevertheless, the past 
defect dataset is not always available, since the 
company either start a newly initiated project [6] or 

does not retain the historical defect from earlier 
projects [7]. Such a situation causes creating 
software defect prediction become unfeasible since 
the process of training cannot be conducted when 
defect dataset is unavailable. This problem is solved 
by leveraging data from other organizations in 
which local data from one organization is 
transferred to other organizations to make the 
training dataset available. Using those historical 
datasets, an SDP model is built and utilized to make 
prediction on the target projects [6], [8].  Such a 
strategy is known as cross-project defect prediction 
(CPDP).    

 
CPDP approach has been an attractive 

approach for the solution of unavailable historical 
data. However, it is also challenging since most 
SDP models are developed using machine learning 
algorithms, which work under the common 
assumption that the underlying distribution of 
training datasets is similar to that of the testing 
dataset. Using historical defect data from other 
projects introduces a critical issue since source 
datasets and target datasets have different data 
distribution [5], [8], [9]. CPDP model built using a 



Journal of Theoretical and Applied Information Technology 
30th June 2020. Vol.98. No 12 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
2093 

 

machine learning algorithm will suffer from 
unsatisfied predictive performance since the 
conventional machine learning algorithm performs 
well if it trains using training data posses a similar 
distribution with testing data. The solution to this 
problem is to lessen the divergence in distribution 
between the training and testing data.   

 
The conventional approaches to addressing 

such an issue are data transformation [9]–[12], 
normalization [9]. Both data transformation and 
normalization approaches use all training instances 
to train the prediction model, which may potentially 
contain irrelevant and noisy data. Zhang et al. [13] 
found that choosing a suitable transformation for a 
specific pair of training and testing instances is 
open to question. Prior studies [9], [14] even show 
that the effect of transformations on the modeling 
performance varies on the same dataset. Therefore, 
training data selection has a potential benefit to 
overcome the drawback of the previous approaches. 

 
Training data selection that attempts to 

select the most relevant training instance from the 
software repository has been a significant issue for 
CPDP [15]. On the one hand, some research 
revealed that using a cross-project training dataset 
without a careful selection degraded the defect 
prediction performance [5], [6], [8]. On the other 
hand, several studies also reported that the SDP 
model developed using suitable cross-project data 
has a satisfied predictive performance [6] [5][16]. 
The selection of relevant training data increases the 
prediction performance of the model, even though 
this performance still cannot compete with the 
performance of WPDP. Therefore, how to choose 
the relevant data gathered from other domains for 
training a defect prediction model becomes a 
challenge [16].  

 
There are many studies conducted on 

software defect prediction. Several excellent review 
papers have been published in this area [17]–[23]. 
Catal and Diri [21] conducted a review focusing on 
the conceptual classification of a software metric, 
datasets, and method. Later on, Radjenovic et al. 
[22] presented a survey on software metrics and the 
effect of context on the metric selection and metric 
performance. Malhotra [17] surveyed machine 
learning tehcniques, software metrics, and datasets 
used used to build the SDP mode. Hall et al. [18] 
presented a review paper discussing the 
independent variable, the effect of context in 
prediction performance, and methods to develop a 
software defect prediction model. Hosseini et al. 

[23] focused the survey on CPDP that summarizes 
and synthesis the independent variable, modeling 
techniques, and approaches to building defect 
prediction. However, there is no survey focusing on 
the training data selection works in the CPDP area. 
Since training data has been applied in SDP and 
indicated promising results to enhance the 
effectiveness of defect prediction, knowledge of 
current training data selection methods is required. 
The purpose of this paper is to present a review of 
training data selection techniques for researchers 
and practitioners. This paper offers a brief 
description of the background and state-of-the-art 
research progress. It also provides strength and 
limitation of the proposed methods as well as the 
potential challenges on this training data selection 
area. It also provides an opportunity for researchers 
to develop this specific research area further.   

 
This paper is structured as follows: Section 

2 defines training data selection, section 3 
overviews the studies on training data selection 
during the period of 2009 – 2019, section 4 presents 
a discussion on existing training data selection 
approaches, and part 5 draws on the conclusion and 
highlights research directions. 

 

2. ISSUES IN TRAINING DATA 
SELECTION 

 
2.1 Distribution Difference Problem in Cross-

Project Defect Prediction (CPDP)   
 CPDP develops an SDP model utilizing 

the historical datasets from the source project to 
make a defect prediction in the target projects [8]. 
CPDP becomes a common approach as it addresses 
the shortcoming of the training data that is required 
to construct a software defect predictor [6], [9], 
[11], [15], [24]–[29]. However, it also poses a 
challenging issue. Directly use cross-project 
datasets to learn a prediction model produces a 
model having unsatisfied predictive performance. 
Zimmerman et al. [8] investigated 622 cross-project 
predictions and found that the prediction 
performance was unacceptable; only 3.38% of the 
predictions worked successfully. Further on, He et 
al. [5] found that the successful ratio of five cross-
project predictors was inadequate, which is in the 
range of 0.32% to 4.7%. Later, Turhan et al. [6] 
also concluded that the software defect predictor 
developed using all available cross-company data 
would contribute to a high false alarm rate. This 
issue might result from the divergence in the 
distribution between the training and testing data. 
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[5], [8], [9]. Thus, the CPDP problem is how to deal 
with data distribution divergence among the sources 
and the targets project. 

   
CPDP is a kind of transfer learning 

problem [23] that corresponds to transductive 
transfer learning [30], [31], in which source task is 
the same as the target (i.e., predict the defect-prone 
module) and the source domain differs from target 
domain (i.e., source project and target project) [11], 
[32], [33]. There are three instance-based transfer 
learning approaches to deal with the distribution 
divergence issue in the literature namely: data 
transformation [9], [10], [12], [34], reweighting the 
training data [11], [25], [28] and selecting a part of 
the training data or training data selection. 
Therefore, related to transfer learning, training data 
selection is a type of instance-based transfer 
learning. This review paper focuses on the last 
strategy because of its higher applicability. 

 
2.2 Training Data Selection 

 Training data selection is a process that 
tries to select the most relevant training instance 
with regards to the target instance. More 
specifically, let SS be a source project dataset 
containing m instances, expressed as SS = {ss_1, 
ss_2, ss_3, …, ss_m}, ST be the selected training 
dataset having n instances, expressed as ST = {st_1, 
st_2, …, st_n}, and TT be the target dataset 
containing o instances expressed TT = {tt_1, tt2_, 
…, tt_o}. Training data selection aims at forming 
the training dataset (ST) from the source dataset 
(SS) that contains the most relevant source instances 
to target instances in the dataset (TT). The selected 
training instances are utilized to develop an SDP 
model, which is applied to predict the defect of 
unlabeled instances in the target dataset. Domain in 
which learning a defect prediction is conducted is 
called the target project, while the domain from 
which the relevant instance comes is called the 
source project. It is assumed that the target project 
has unlabeled instances, and the source projects 
contain many labeled instances. Training data 
selection attempts to select training instances from 
labeled source instances based on the (1). The 
similarity of the labeled source instances to the 
unlabeled target instances or (2). The similarity of 
data distribution of the source datasets to that of the 
target dataset.    

 
An essential factor pertinent to the training 

data selection is the relevant source instances. 
Relevant source instances mean that those instances 
are suitable for training a defect prediction model. 

Correct identification of appropriate training data is 
important, as the use of irrelevant training instances 
can harmfully impact the accuracy of an SDP 
model. A criterion that is used to determine the 
relevant training data is the similarity of the source 
instances to the instance in the target project 
[6][16]. Besides the similarity factor, there are other 
criteria to determine whether source instances are 
suitable for a building defect prediction. Training 
data instances may be unsuitable for building defect 
prediction if: (1). They contain noise [35], [36]. (2). 
They have labels conflicting with that of testing 
instances [25], [28], or (3). They do not have the 
same defect patterns as that of the target dataset [5].  
The selection for training data will remove some 
source instances, and the performance of the model 
trained using the selected training data does not 
decrease [37]. 

 
2.3 General Training Data Selection Process 

 Through a literature review of training 
data selection research, most training data selection 
approaches follow the general process in Figure 1. 
The first step is preparation of the source data 
instances collected from other projects (SS). The 
second step is to selection of the relevant training 
data instances from source data instances based on 
the similarity to the target data instances (TT). 
Later, a defect prediction model is trained using the 
selected training instances (ST) to predict the defect 
in the target data instances. 

 
Through the literature review, strategy to 

select relevant training data mainly implement the 
nearest neighbor, cluster-based, and evolutionary-
based methods. 

 
 

Figure 1: Training Data Selection Process (Taken 
from [16]) 

 
The description of each strategy is presented in 
Table 1, while Algorithm 1 – 3 depicts the general 
procedure for each strategy. 
 
Algorithm 1  Nearest neighbor-based approach 
input:    source instances (SS), target instances (TT) 
output:  selected training instances (ST) 
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for each training instance in target dataset do 
     calculate its distance to source instances 
     collect n nearest source instances based on distance 
end 
remove duplicate source instances 
collect the remaining source instances as the training 
instances 
 
return selected training instances 

 
 
Algorithm 2  Cluster based approach 
input:    source instances (SS), target instances (TT) 
output:  selected training instances (ST) 
 
combine source instances and target instances into one 
group.  
partition the group into clusters 
retain the cluster having at least one target instances 
collect the training instances in the retained subsets.  
 
return selected training instances 

 
 

Algorithm 3  Search-based approach 
input:    source instances (SS), target instances (TT)  
output:  selected training instances (ST) 
 
 
 
 
 
setup initial population collected randomly from 
source instances 
while termination condition is not satisfied do 
   evaluate individual according to fitness function  
   add the selected individual to the pool of generation 
   create new generation using evolutionary operator 
   replace population 
 
select the best generation as the selected training 

instance  
return selected training instances 

 
 
2.4 Training Data Source for Building Defect 

Prediction Model 
 The CPDP approach tries to leverage 

source data from one project to train a software 
defect predictor and then perform a defect 
prediction on the other software project. According 
to Herbold et al. [38], when building a software 
defect predictor, there are two approaches regarding 
the source of training data: defect prediction using 
only cross-project data (strict CPDP) and defect 
prediction using mixed data (mixed CPDP). For the 
first approach, the source of training data comes 
from either single or multiple cross-project data. 
For example, [6] proposed a relevancy filter to 
select the relevant data by employing cross-project 
data to train the software defect predictor model 
(Table 2 for the related studies).  

 
Meanwhile, for the second approach, the 

source of training data is mixed from cross-project 
and unlabeled within-project. Several studies 
investigated the performance of the prediction 
model developed using mixed data [25], [28], [39]. 
Turhan et al. [39] utilized mixed data to develop a 
defect prediction model. They inferred that when 
limited historical data are available, construction of 
software defect predictor having performance 
similar to full within project predictor is feasible. 
Later on, Chen et al. [25] confirmed this finding. 
Using mixed data, they presented a Double Transfer 
Boosting (DTB) algorithm to deal with the 
distribution mismatch between cross-project and 
within-project. 

 

 

Table 1: Overview of Training Data Selection Method 

1. Nearest Neighbor Filter  

 Description Nearest Neighbor Filter training data selection is an approach to select relevant training 
instance by measure the similarity of an instance in the source datasets with instance in 
the target datasets using the notion of distance, such as Euclidean distance. This 
approach selects n source instances nearest to target instances. 
 
 

 Related Studies [6][15] [16], [40]–[43] [44][45] 
    
 Strength 1. Most methods use KNN algorithm that has simple steps. 

2. For project level granularity, it has low computational cost 
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 Limitation 1. It has polynomial run time and scalability problem with large datasets. 

2. For project level granularity, the selected training data instances may include 
irrelevant source instance, which may result in false alarm rate. 

   
 

2. Cluster-based filter  
 Description Cluster-based filter uses clustering method to find homogeneous clusters, where each 

cluster contains instances having similar characteristics  [46], [47]. Based on this idea, a 
source instance is similar or relevant to the target instance if they are in the same 
cluster. Thus, the selected training instances are the source instances that are in the 
same cluster as the target instances.  
 
 

 Related Studies [27][28], [48] [16][44] 
 

 Strength 1. Generally, cluster-based method performs better than the distance-based 
approaches. 

2. Some cluster-based methods can remove noise [27], [28] 
 
 

 Limitation 1. The results is sensitive to the choice of the parameters of the clustering method, 
such the number of cluster, the radius [27], [28], initial centroid selection [46][44]. 

2. Clustering-based approaches suffer from computational complexity 
3. Performance depends on the quality of clustering. 

 
 
 

  

3. Evolutionary-based filter 

 Description A evolutionary-based method uses the meta-heuristics procedure [49] to find the 
optimal training data instances.  Hosseini and Turhan implemented the search-based 
procedure [50], [51] to select training data in software defect prediction research. They 
developed a search-based training data selection method using a genetic algorithm [52], 
[53].  Selected training data instancess are best chromosomes occured from the 
evolutionary process.  
 
 

 Related Studies [52], [53] 
 

 Strength 1. Can deal with noisy, incomplete, imbalance, and inaccurate data. 
2. This approach can use any classifier for the selection process. 

 
 Limitation 1. It has high computational time because of its iterative optimization process. 

 
 
  

Subsequently, Yu et al. [28] also explored the 
benefits of the mixed data approach. They 
combined unlabeled and a limited amount of 
labeled within-company data as well as cross-
company data to train defect predictor. The 
experiment showed that a mixed model for cross-
company defect prediction could perform well, 
which is comparable to the performance of WPDP. 

 

 

 

 

Table 2: Studies on Training Data Categorized 
According to the Source and Granularity of Training 

Data 

  Source of training data 

   Cross project 
data 

Mixed data 

Granularity 
of training 

data 
selection 

 

Source 
Project 
Level 

[5], [16], 
[40]–[43] 

[54] 

Instance 
Level 

[6], [15], [27], 
[48] 

[25], [28], 
[39] 
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2.5 Training Data Selection Granularity 
Besides the training data selection 

strategy, which is categorized into the distance-
based, cluster-based, and search-based approach, 
another factor of interest is the training data 
selection granularity. Based on the previous studies, 
there are two levels of training data selection 
granularity, namely instance-level [6] and project 
(dataset) level [5], [16]. Table 3 presents training 
data selection studies categorized according to the 
selection strategy and granularity of training data. 

 
At a project level, a dataset represents a 

release of a project (coarse-grained data). Figure 2 
illustrates a dataset that contains 100 instances. A 
dataset can be represented as a vector of 
distributional characteristics (statistical 
characteristics), such as mean, median, min, max. 
For example, if a dataset in Figure 2 is represented 
using two distributional characteristics (i.e., min 
and median) then the datasets is formulated as V_dc 
= {min(F_1), median(F_1), min(F_2), 
median(F_2), …, min(F_m), median(F_20)}, where 
V_dc is vector of distributional characteristics. 
 
 

Table 3: Studies on Training Data Categorized 
According to the Selection Strategy and Granularity of 

Training Data 

  Selection Strategy 

   Nearest-
neigbor 

Cluster
-based 

Evoluti
onary-
based 

Granularity 
of training 

data 
selection 

Instance 
Level 

[6][55][2][4
5] 

[27], 
[28], 
[48] 

[52], 
[53] 

Project 
Level 

[16][2] [16][44] NA 

 Mixed [2]  NA 

 
Meanwhile, at an instance level, an 

instance refers to any record (a row) in a dataset, 
which may represent a file or a package (fine-grain 
data). An instance is expressed as a vector of 
feature values, i.e., I_i = {F_i1, F_i2, F_im}, where 
m denotes the number of features.  
  

 F_1 F_2 F_3 F_4 … F_m   
Instances WMC DIT NOC CBO  LOC Defect 

I_1 14 1 0 11  290 0 
I_2 17 2 0 2  330 3 
I_3 5 1 5 17  45 2 
I_4 13 2 0 22  223 0 
I_5 14 2 2 3  123 0 
….        

I_100 12 1 0 4  400 1 

Figure 2: An Example of a Dataset 

3. PRACTICAL METHODS FOR TRAINING 
DATA SELECTION 

 
Studies in CPDP has investigated several 

training data selection methods. These include 
works on relevancy filter that using distance 
measure between datasets [6], [15], [16], [41], [42], 
clustering approach [27], [28], [44], [48] and 
evolutionary approach [52], [53]. The following 
section will discuss the detail of each specific 
training data selection. 

 
3.1. Nearest Neighbor Filter 

The basic idea of this filter is the similarity 
of an instance in source datasets to its near 
instances in target datasets. The notion of instance 
has a different meaning with regards to the 
granularity level of the datasets. At an instance 
level, an instance is any record in a dataset 
(expressed as a vector of metric values). In contrast, 
at a project level, it represents a vector of data 
characteristics. The similarity of the datasets is 
measured using the notion of distance [56]. 
Selecting relevant training datasets using a nearest 
neighbor approach can be conducted based on the 
granularity level of the source dataset. For example, 
the authors in [6] [15] [57] [26] proposed an 
instance-level approach while studies in [5], [16], 
[40]–[43] introduced a project level filter to select 
the relevant source data.  

 
Turhan et al. [6] present the idea of data 

filtering for the improvement of learning an SDP 
model. They introduced the Burak filter to choose 
the relevant training data using the K-Nearest 
Neighbor algorithm. This filter employs the testing 
instance as guidance for choosing the relevant 
training data instance (target-driven filter). It is a 
point-wise filter in which for each target instance, 
this filter chooses its ten nearest neighbor source 
data instances as the candidate for the training data. 
This filter, then, combines these selected instances 
(without duplication) to form a new training 
dataset, which is employed to develop an SDP 
model. Turhan et al. found that the developed 
model has performance close to that of an SDP 
model built using within-project data. They also 
claimed that identified information from cross-
project data leads to improvements in detection 
rates. Burak Filter has relatively simple steps; 
however, it has a disadvantage in that each time the 
testing dataset instance changes, this filter must be 
repeated. This filter was also adopted in the work of 
[25], [45], [58] .  
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To improve Burak Filter, Peter et al. [15] 
proposed a source-driven filter, which enables the 
source instances to find their nearest testing 
instances. The core idea of this filter is a conjecture 
that a large defect dataset has more defect 
information. The training dataset is usually more 
massive than the testing dataset; thus, it might be 
more suitable to use training instance when 
identifying the relevant training data. This filter 
combines the K-Means [46] method with K-Nearest 
Neighbor. It first combines the source dataset and 
the target datasets and then partitions the combined 
dataset using the K-Means algorithm. The cluster 
has at least one target data instance is retained. 
Subsequently, for each source data instance in the 
selected group, the filter finds the closest target 
instance. Finally, for each target instance, the 
nearest source instances are chosen as the training 
data, using Euclidean distance. Based on the results, 
Peter filter outperforms the within-project and the 
Burak filter. This filter has a simple step; however, 
it has an exponential run time, and it does not scale 
with large datasets  [59]. 

 
 Similar to Burak Filter, testing-driven 

filter at the instance level, He et al. [57] introduced 
an improved method to select training data by 
considering not only the similarity between the 
training and the target instance but also the number 
of the defect of each training instance.  They 
proposed a training data selection method, called 
TDSelector. When choosing the relevant training 
data instance, the TDSelector employs a scoring 
scheme that uses two rank scores of each training 
instance as the input. For each training instance, the 
first score calculated based on its similarity to the 
testing instances, and the second one according to 
the number of defects. The scoring scheme, 
subsequently, calculates the final score by 
considering the similarity ranking and defect 
ranking. Based on the final score, for each testing 
instance, the method will collect the top-k training 
instances. TDSelector then combines all set of the 
top-k training instances into final training datasets 
after removing the redundant instances. To validate 
the success of the proposed approach, they 
conducted an experiment using 15 open-source 
datasets from 14 different projects. This study 
concluded that information about the number of 
defects is valuable to build the defect prediction as 
this defect information could be used to predict 
defect proneness, which is proven by the 
improvement of the model performance in terms of 
G and AUC. TDSelector outperforms Peter Filter 
and TCA+. Although the result seems to promise, 

benchmarking of their proposed approach was 
conducted only to method Peter Filter and TCA+ 
[9]. Therefore, the generalizability of the 
TDSelector for other classification algorithms 
remains debatable. 

 
Ryu et al. [26] proposed selective learning 

to address the problem of the distribution 
gap between training and test data. They introduced 
the Hybrid Instance Selection using Nearest-
Neighbor (HISNN) to remove irrelevant training 
data instances. HISNN employed two-phase 
instance filtering, namely: test data instance 
selection and training data instance filtering, 
respectively. Training data selection is conducted in 
several steps, (1). identification and removal of an 
existing outlier in the source data, (2). identification 
of the source data that similar to test data using K 
Nearest Neighbor, and (3). combining the result of 
both previous steps as the selected training data set. 
HISSN performed classification of local knowledge 
and global knowledge, using K Nearest Neighbor 
naïve Bayes, respectively. The study validated the 
algorithm by using 13 selected public datasets and 
concluded that the HISSN algorithm provides a 
promising performance CPDP setting.  

 
To address the unsatisfied results and high 

computational time of the prior study, Herbold [16] 
proposed a strategy using the KNN algorithm to 
select a relevant training dataset. Following the 
result of [5], Herbold employed distributional 
characteristics (i.e., standard deviation and mean) to 
detect similarity among datasets. Based on the 
between Euclidean distance between characteristic 
vectors, Herbold employs the Nearest Neighbor 
filter to choose source data projects closest to the 
target project. Herbold experimented with a cross-
project prediction using 71 version datasets 
available from 38 different open source projects. 
The training data was predominantly imbalanced. 
This condition usually contributed to biased 
classifiers that were in favor of a non-defect-prone 
class.  To deal with this issue, Herbold adjusted the 
weight of each training instance to make the overall 
weight of training and testing instances to be the 
same. He concluded that predictive performance 
improves significantly, based on success rate and 
recall. Also, project-level selection (based on 
distributional characteristics) rather than point-wise 
instance-level selection results in the prediction 
model of low computational time. However, the 
result is still unfavorable for actual use. 
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He et al. [41] conducted a study to provide 
a guiding principle to choose the relevant training 
data available from other projects. Different from 
the prior studies, they suggested employing 
multilevel granularity in a single defect prediction 
model. They introduced a method to simplify 
training data by utilizing two levels of granularity, 
i.e., project level and instance level. At the project 
level, referred to as rTDS, training data 
simplification selects training data releases most 
similar to the testing data release based on the 
distributional characteristic of the dataset (median, 
mean, min, max, and standard deviation). While, at 
the instance level, referred to as iTDS, it tries to 
choose the most suitable training instances 
according to their distance to the testing instance. 
Both approaches use using the K Nearest Neighbor 
algorithm with Euclidean distance [6], [15], [16].  

 
To examine the effect of multilevel 

granularity on prediction performance, He et al. 
[41] combine both techniques (i.e., rTDS and iTDS) 
into a two-step method, namely riTDS. There are 
two instance selection approaches in the second 
step of the riTDS. The first strategy uses the testing 
instance as guidance in selecting the training 
instances nearest to the testing instance (identical to 
Turhan filter). At the same time, the second 
approach employs training instance as the guidance 
on labeling the testing instance and collecting the 
training instance closest to the testing instance 
(similar to Peter Filter). They validated the 
proposed approach using 34 datasets and J48, LR, 
NB, RF, and SVM as the predictors. The result 
shows that using a multilevel granularity approach 
can provide better performance provided that it uses 
the appropriate filter.  

 
In their study on predicting defect 

inducing changes, Fukushima et al. [60], later 
extended by [61], proposed a procedure for 
selection of the relevant training data using 
Spearman correlation. Spearman correlation is used 
to assess the similarity between training datasets 
and testing datasets. First, the procedure calculates 
the Spearman correlation between each metric 
(independent variable) with the class label of the 
training datasets (dependent variable). Second, it 
continues to select three metrics from source 
datasets (sr_1, sr_2, sr_3) having the highest 
Spearman correlation value. This procedure also 
chooses the same metrics from testing datasets 
(ts_1, ts_2, ts_3). Then, this method computes the 
pair-wise correlation between the selected metrics 
to define two correlation vector, such as the first 

vector has corr(sr_1, sr_2), corr(sr_1, sr_3), 
corr(sr_2, sr_3) as the elements, while the second 
vector contains corr(ts_1, ts_2), corr(ts_1, ts_3), 
corr(ts_2, ts_3). Last, the process calculates the 
distance between the two vectors using Euclidean 
distance. The training dataset having the lowest 
distance is chosen as the training dataset. This 
proposed method has a limitation in that it can only 
select one source project data. Xia et al. [33] 
identified that using multiple sources when 
constructing software defect prediction can prevent 
overfitting and improve performance.  

 
Liu et al. [43] adapt the training data 

selection to address the performance problem of 
TCA+ [9]. They found that if TCA+ is trained 
using only one randomly selected source project 
data, its performance is unstable, known as dataset 
shift problem [62]. They also revealed that using all 
source projects may lead to unsatisfied performance 
(in terms of F measure). Differ with Herbold [16] 
that uses an unsupervised approach, Liu et al. 
introduce a supervised approach by proposing a 
source project estimator (SPE) to choose the 
suitable training data. SPE tries to select two source 
project datasets having a similar distribution to the 
target project by learning two regression models. 
As the independent variables, the regression models 
employ the metric from source project data. The 
final regression model is the model that scores the 
best according to F measure and PofB20. The 
proposed method has an advantage in which the 
regression models do not necessarily need to update 
continuously, which leads to an acceptable 
developing time and opportunity for practical use. 
This approach, however, uses only two data sources 
when predicting the defect. Also, if the target 
project is unlabeled, this method uses a hypothetical 
source project as the target project when learning 
the regression model, which may not represent the 
typical properties of a defect in the target project.   

 
Addressing the same problem to Liu et al. 

[43], Wen et al. [42] investigated the training data 
selection method using data transformation. They 
proposed four strategies to select source project 
data according to the value of the mean, standard 
deviation, and median of the source and the target 
datasets. Logarithmic transformation transforms 
mean, standard deviation, and median of each 
dataset. The median value is also transformed using 
the Z score transformation. The closeness of each 
source project data to its target data is measured 
using Euclidean distance, taking as input the refined 
value of the mean, standard deviation, and median 
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of the source and target data. The source project 
data having minimum distance with the target data 
is selected as training data. The result shows that 
this method outperforms the training data selection 
method by Herbold in terms of F and accuracy. 
However, this proposed method has a limitation in 
that it can only select one source project data. Xia 
et al. [33] identified that using multiple sources 
when constructing software defect prediction can 
prevent overfitting and improve performance. Also, 
employing various source projects rather than a 
single project have the advantage of being able to 
provide more information when building an SDP 
model [59].    

 
He et al. [40] studied the use of an SDP 

model trained using open source data and applied to 
predict the defect on the proprietary project. They 
propose a procedure adapting Hido’s framework to 
measure the closeness of training and testing 
dataset by calculating the marginal distribution of 
training dataset and testing dataset. To measure the 
similarity, they sample k instances from the training 
and testing data randomly and combine both sample 
datasets into a single dataset. Then, they learn a 
logistic regression classifier on the combined 
dataset and calculate the model accuracy. The 
accuracy is used as the measurement of the distance 
between training and testing datasets. Based on an 
argument that characteristics of a project generating 
a dataset reflect the characteristics of its instances, 
He et al. [40] select the relevant training data at the 
data level [16] rather than at the instance level [6], 
[15]. Their procedure employs feature selection to 
address the distribution gap problem. This research 
experimented CPDP with using 34 version datasets 
available from 14 different open source projects 
and 34 version datasets available from 7 various 
proprietary projects. The results show that He et 
al.’s filter outperforms than Burak filter in terms of 
performance (better G-measure and PF than that of 
Burak filter) and runtime complexity. He et al. 
concluded that for CPDP to achieve the best 
performance, it does not need to use all features.  
This conclusion supports the finding of the previous 
studies [63], [64].  
3.2. Cluster-based Filter 

The cluster-based technique is a common 
approach in SDP research to overcoming the 
mismatch between source and target data 
distribution. In transfer learning research, Qiu et al. 
[65], for example, partition the source data into 
clusters and give different weights for instances in 
each subset to lessen the adverse impact of 
irrelevant training data. Chen et al. [66] cluster the 

source and target data to create Multi-view 
learning, and Zhang et al. [29], [67] divide the 
source data into partitions to investigate the 
context-aware rank transformation. While, in 
unsupervised learning, Zhang et al. [68], [69] 
utilized clustering to perform defect prediction 
using quad-tree and spectral clustering and Nam 
and Kim [70] used clustering to label the unlabeled 
datasets automatically. Moreover, the cluster-based 
approach is also used in the data filtering area, 
which is the emphasis of this paper.     

 
The notion of cluster-based methods is to 

find groups of instances (the combination of 
training instances and testing instances) such that 
the characteristics of an instance are as similar as 
possible to that of others in the same cluster [46], 
[47]. Based on this idea, the data similarity in each 
cluster is used to identify the training data near to 
the testing data. Jureczko and Madeyski [71] 
experimented with the clustering software project 
and determined that the clusters of software entities 
are available. They predicted that the prediction 
model performs well on all projects located in the 
same cluster. The cluster-based approach has a 
general procedure consisting of several steps, as 
shown in Algorithm 3. Selecting relevant training 
datasets using this approach can be conducted 
according to the granularity level of the source 
dataset. The studies in [27] [28] [48] proposed an 
instance-level approach, while the authors in [16] 
[44] employed a project-level approach to select the 
relevant source data. 

 
Kawata et al. [27] proposed to use density-

based spatial clustering (DBSCAN) [72] for the 
selection of relevant training data. Adopting the 
general procedure, they used DBSCAN to create 
clusters of training data. By using the selected 
training data, they construct a defect prediction 
model using linear regression, random forest, naive 
Bayes, and K Nearest Neighbor as the predictor. 
They conducted an empirical study using 56 
datasets available from different open source 
projects repository and concluded that using 
DBSCAN can improve the predictive performance 
of the model. Kawata et al. ‘s method outperforms 
Burak filter and Peter filter, with regards to G-
measure and AUC. This method, in part, employed 
a similar procedure to Peter’s, they partition cross-
project and within-project simultaneously. 
However, DBSCAN has a more straightforward 
procedure because this method itself removes 
irrelevant data.    
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Using the general procedure above, Yu et 
al. [48] studied the use of the clustering method to 
build a high-performance prediction model. They 
employed agglomerative clustering for partitioning 
the group into clusters. Differ to Kawata et al. ‘s 
work that five predictors, they used support vector 
machine and naive Bayes as the predictors. The 
result showed that this approach provides a 
promising result as it successfully reduces the 
detrimental effect of irrelevant training data. Their 
method outperforms Burak, Peter, and Kawata 
filter.   

 
Later, Yu et al. [28] also adopted the same 

approach as in [27][48]. However, to improve the 
previous studies [6], [15], [25], [27], [48] focusing 
on the distance between dataset when filtering 
training data, they consider class information (class 
label) when selecting the relevant training data.  Yu 
et al. used semi-supervised density-based spatial 
clustering [73] to filter out irrelevant training data. 
They employed mixed data as source data. This 
method creates clusters of source data, and then for 
each cluster selected, it chooses source data 
instances having the same class label as that of 
testing data instance as the relevant training data. 
To validate the success of their proposed approach, 
Yu et al. experimented with 15 datasets available 
from different open source projects repository. As 
the classifier, they use linear regression, random 
forest, and Naive Bayes (NB). This study concludes 
that using a cluster-based method could enhance the 
performance of defect predictor. The results show 
that Yu et al. ‘s method outperforms the Burak filter 
and Peter filter.  

 
To address the runtime and scalability 

problem, Herbold [16] proposed a characteristic-
based filtering method, which uses distributional 
characteristics to detect similarity among datasets 
(i.e., source datasets and target datasets). Firstly, it 
computes the distributional characteristics of each 
dataset. This characteristic is represented as the 
vector of distributional characteristics (i.e., mean 
and standard deviation). Secondly, this approach 
merges the vector of the distributional characteristic 
of the source dataset and the target dataset into a 
single set. Subsequently, this method partitions the 
combined set into clusters of distributional 
characteristic vectors using the K-Means and 
chooses the source data in the same group as target 
data as training data. Herbold experimented with a 
cross-project prediction using 71 version datasets 
available from 38 different open source projects.  
The proposed method has proven to be very 

efficient and be able to deal with the scalability 
problem. However, similar to [5], [6], the result is 
still unfavorable for actual use.  

 
Li et al. [44] introduced a two-level 

training data selection method to address the issue 
found in [16]. At the first level, they adopted 
Herbold’s method to filter the training data 
instances according to the source and the target 
project similarity, measured using four data 
characteristics (i.e., min, max, mean, and standard 
deviation). After collecting the training data 
instances, at the second level, the method employs 
the K-means algorithm to create clusters of similar 
instances [15]. The final training data instances are 
instances that are collected from each cluster 
having at least one target instance. The experiment 
concludes that the predictive performance of the 
proposed method showing a favorable result. This 
filter also outperforms the Burak Filter, Peter Filter, 
and Herbold with regards to the average of AUC. 

 
Each cluster-based method mentioned 

above develops a single defect prediction model 
using the instances collected from all clusters. 
Menzies et al. [74], [75] introduced the notion of 
the local filter. The core idea of this filter is to 
partitions the datasets into subsets of data whose 
similar properties, and then for each cluster, a 
defect prediction model is built accordingly. 
Menzies et al. [74] also introduced a global filter, 
which uses all available source data to construct an 
SDP model. Algorithm 4 presents a generic 
algorithm for local filters. Menzies et al. found that 
there may be an advantage of using such an 
approach when training a machine learning model. 
Later on, several studies such as [76], [77], [78], 
[79], [38], [58], have investigated the validity of 
using local model.  
 

Algorithm 4  Local cluster based approach [44] 
input:    source instances (SS), target instances (TT) 
output:  average predictive performance  
 
combine source instances and target instances into one group.  
partition the group into clusters 
retain the cluster having at least one target instances 
 
for each retained cluster do 
   Collect all training instances.  
   Collect all testing instances 
   Build defect prediction model using training instances 
   Predict defect on testing instances 
end 
 
return average predictive performance 
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The results of the studies were 
inconclusive. Bettenburg et al. [76], [77] confirmed 
the result of Menzies et al. They concluded that 
using local filter results in a better fit and predictive 
performance than the global filter. However, studies 
in [38], [58], [79] found rather different results. 
Herbold et al. [38] applied the local filter in the 
cross-project study and found that the performance 
of both models differs slightly according to F-
measure and precision.  Further studies explored the 
use of the local model in effort-aware [58] and just-
in-time defect prediction [79]. They concluded that 
the local model underperforms the global model 
with regards to the classification performance. 
However, the local model is superior to the global 
model, with regards to effort-aware performance. 
The result also discovered that the data size affects 
the performance of the local model. The small size 
of the dataset worsens the performance of the local 
model. Bettenburg et al. also revealed that the 
critical factors affecting the successful use of the 
local model are the variance of the datasets, the 
choice of the clustering algorithm as well as the 
careful setting of the algorithm parameters 
(especially for the parametric algorithm). 
 
3.3. Evolutionary-based Filter 

Recent research on training data selection 
has adopted an evolutionary-based approach. 
Hosseini et al. [52], [53] investigated a search-
based instance selection using a genetic algorithm 
filter to generate relevant training data. This 
approach aims to deal with the data quality issue, 
i.e., noisy data. They proposed a genetic algorithm 
to guide training data selection to take the dataset 
having the same characteristics as the testing 
dataset. Similar to Burak filter [6], this method 
employs the testing instance as guidance on 
choosing the relevant training data instance.   

 
Training data selection starts when this 

method divides the testing dataset into several parts 
at random. It then inputs each piece into the Nearest 
Neighbor filter to choose the most suitable training 
instances. These instances will later be used as the 
validation set. Subsequently, the genetic algorithm 
is utilized to generate the best training dataset. To 
validate their proposed approach, Hosseini et al. 
experimented with 13 open-source datasets. The 
selected training data are employed to train defect 
models using Naive Bayes (NB) as the predictor. 
The empirical result confirmed that the proposed 
method could enhance the defect prediction 
performance, which is better than NN filter, naive 
CPDP, and WPDP. Similar results of using an 

evolutionary-based method also found in [80]. It is 
consistent with the recommendation of Malhotra 
[81] stated that having high accuracy and high 
AUC, the search-based technique is suitable for 
building the defect prediction model. Because of its 
iterative optimization process, however, this 
method has a high computational time.  

 
4. DISCUSSION 

 
This section provides a brief discussion 

about the comparative performance of the 
approaches reviewed in section 3. Most training 
data selection method in the literature falls into a 
nearest-neighbor category, which consists of 
instance-level and project level filtering. The 
instance-level approach generally uses the K-
Nearest Neighbor algorithm. This algorithm is 
simple; however, it retains noisy instances [82] and 
does not scale with large data. Based on some 
reported results [44], [83], Peter Filter seems to 
outperform the other instance-level methods. It may 
because Peter Filter only selects the representative 
training data so that it enhances the suitability of 
selected training data.   

 
Meanwhile, project-based filter differs 

from the instance-based filter in the way they 
measure the source and target data similarity. In the 
instance-based filter, such as Turhan filter or Peter 
filter, measuring similarity is performed on each 
pair of training data instances and target data 
instance. While, in the project-based filter, the 
similarity between two project datasets is calculated 
based on the pair-wise project, which represented 
the distributional characteristics of the datasets. 
Therefore, the project-level filtering approach has a 
lower computational time than the instance-level 
methods. It is also scalable to large datasets. 
However, using such coarse-level granularity may 
result in false alarm as the selected training data 
may include irrelevant training instances [41].  

 
Most studies under review found that 

training data selection using a cluster-based method 
performs better than the distance-based approaches. 
For example, Li et al. [44] found that local filter 
outperforms Peter Filter, Burak Filter, and Herbold. 
The other studies, such as [27], [48] also provide 
similar results. Recent research by Bin et al. [83] 
proposed a retaining ratio, a measure that 
corresponds to the number of selected training data. 
They measured the retaining ratio for several filters 
and investigated the effect of the retaining ratio on 
the performance. They found that cluster-based 
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filters [27][76] have a higher training ratio than 
distance-based based filters [6], [15]. Based on the 
retaining ratio, cluster-based filter better than the 
pointwise based filter, which conforms to the above 
finding. 

 
With regards to the performance, the 

question about the effect of the dataset granularity 
on the predictive performance seems to be 
inconclusive. The result of [44], for example, shows 
that Herbold’s approach performs worse than 
Turhan Filter and Peter Filter when using NB as the 
predictor. However, when using SVM as the 
predictor, Herbold’s method outperforms the two 
instance-based filter.  This phenomenon may be 
explained using the conclusion of Menzies et al. 
[64] and Wanatabe et al. [84]. They argued that 
each dataset has different characteristics. Also, the 
behavior of a predictor is affected by the dataset 
characteristic. For example, C4.5 performs worse 
for imbalanced data, while K-Nearest Neighbor is 
sensitive to noise. Hall et al. [18] found that the 
predictive performance of model may be dependent 
on the predictor. Therefore, datasets characteristic 
rather than data granularity that affects the 
prediction performance. 

 
5. CONCLUSION AND RESEARCH 

DIRECTION 
 
This article presents the review of the 

current state of training data selection methods. 
Through a literature review, the existing methods 
are categorized into three groups of nearest-
neighbor, cluster-based, and evolutionary-based 
approaches. For each category, training data 
selection can be conducted at instance-level and 
project-level.  The strength and limitations of each 
group are summarized and presented in Table 1. 
Table 3 shows that most training data selection 
method in the literature falls into a nearest-neighbor 
category, which consists of instance-level and 
project level filtering. Most methods use the KNN 
algorithm that has simple steps; however, it has a 
polynomial run time and scalability problem with 
large datasets. Moreover, for project-level 
granularity, the selected training data instances may 
include irrelevant source instances, which may 
result in a false alarm rate. The cluster-based 
method performs better than the distance-based 
approaches. Nevertheless, it is sensitive to the 
choice of the parameters of the clustering method. 
The evolutionary-based method provides promising 
accuracy, but it much slower than the other 
methods. 

In software defect prediction, training data 
selection is an important task, since training data 
selection can select the training instances similar to 
testing instances, which can deal with the 
distribution difference problem. The selection of 
relevant training data increases the prediction 
performance of the model. Therefore, further 
research on this issue needs to be performed. 
Improving the method of selecting training data is a 
promising way to decrease distributional 
differences between training and test data. 

 
Several research challenges in this area 

need to be addressed. First, previous studies 
reported that using data characteristics is of benefit 
for training data selection. Several training data 
selection methods use distributional data 
characteristics to assess the datasets similarity 
among the source and target projects. This approach 
has proven to be able to deal with the run time and 
scalability problem. However, each study used a 
different combination of distributional data 
characteristics. For example, He et al. [5] used 
sixteen data characteristics, Herbold [16] used two 
data characteristics (mean, standard deviation), 
while Li et al. [44] used four data characteristics 
(max, min, mean, standard deviation). Most studies 
did not mention their reason for choosing such data 
characteristics. Those studies claimed that the 
predictive performance of their proposed model 
improved, even though the overall success rate was 
still incomparable to that within project defect 
prediction. Therefore, dealing with relevant training 
data is still an open issue. Further research needs to 
investigate the most suitable distributional 
characteristics for building a defect prediction 
model.  

 
Secondly, There are many clustering 

algorithms in the literature [46], [47], therefore 
exploring other clustering algorithms for selecting 
the training data is an excellent opportunity for 
investigation, especially for the parametric 
algorithm. Besides, the comparison of prediction 
performance among existing cluster-based method 
is limited; therefore, which cluster-based techniques 
present the best result still in question. What is 
more, most of the studies working on this area use 
the non-parameter clustering algorithm. Bettenburg 
et al. [77] point out that the clustering algorithm, 
along with its parameter calibration, affects the 
effectiveness of a clustering model. For further 
explanation, consult Bettenburg et al. [77] and 
Tantithamthavorn et al. [85]. 
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Finally, there is a limited study on the use 
of the evolutionary method, such as a search-based 
technique, to filter the training data. Results 
witnessed that the advanced approach provides 
promising predictive performance compared to the 
traditional way. Hossein et al. [52], [53] found that 
the genetic algorithm can boost the performance of 
a simple naive Bayes classifier. Therefore, more 
studies on this approach, combined with clustering 
and distributional characteristics, is still an open 
area for research. Malhotra et al. [86] also 
recommended further investigation reducing the the 
long computational time of this techniques. 
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