
Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2092

 A REVIEW OF TRAINING DATA SELECTION IN
SOFTWARE DEFECT PREDICTION

1,2 BENYAMIN LANGGU SINAGA, 2SABRINA AHMAD, 2ZURAIDA ABAL ABAS
1 Department of Informatics Engineering, Universitas Atma Jaya Yogyakarta, Indonesia

2 Center for Advanced Computing Technology, Faculty of Information and Communication Technology

Universiti Teknikal Malaysia Melaka, Malaysia

E-mail: benyamin.sinaga@uajy.ac.id, sabrinaahmad@utem.edu.my, zuraidaa@utem.edu.my

ABSTRACT

The publicly available dataset poses a challenge in selecting the suitable data to train a defect prediction
model to predict defect on other projects. Using a cross-project training dataset without a careful selection
will degrade the defect prediction performance. Consequently, training data selection is an essential step to
develop a defect prediction model. This paper aims to synthesize the state-of-the-art for training data
selection methods published from 2009 to 2019. The existing approaches addressing the training data
selection issue fall into three groups, which are nearest neighbour, cluster-based, and evolutionary method.
According to the results in the literature, the cluster-based method tends to outperform the nearest
neighbour method. On the other hand, the research on evolutionary techniques gives promising results but
is still scarce. Therefore, the review concludes that there is still some open area for further investigation in
training data selection. We also present research direction within this area.

Keywords: Software Defect Prediction, Training Data Selection, Nearest-Neighbor, Cluster-based,
Evolutionary-based

1. INTRODUCTION

Software defect prediction (SDP) becomes
a critical activity to increase software quality and to
reduce software testing effort. SDP develops a
defect prediction model (SDP model) that enables
the prediction of a defect-prone module [1]. The
SDP model can categorize a software component as
a defect or non-defect. The SDP model helps
software developers to distribute the limited
resources to test and review the modules that most
likely contains defect [2][3][4]. Therefore, the
utilization of the SDP model would be of benefits
for the software developers since the model helps
the software developers to focus on inspecting or
testing the high defect-prone modules judiciously.

Many studies have developed models for

the prediction of a software defect. They trained the
SDP model using the past defect data from the
same project to predict the defect in the next
version [5]. This method is called With-in Project
Defect Prediction (WPDP). Nevertheless, the past
defect dataset is not always available, since the
company either start a newly initiated project [6] or

does not retain the historical defect from earlier
projects [7]. Such a situation causes creating
software defect prediction become unfeasible since
the process of training cannot be conducted when
defect dataset is unavailable. This problem is solved
by leveraging data from other organizations in
which local data from one organization is
transferred to other organizations to make the
training dataset available. Using those historical
datasets, an SDP model is built and utilized to make
prediction on the target projects [6], [8]. Such a
strategy is known as cross-project defect prediction
(CPDP).

CPDP approach has been an attractive

approach for the solution of unavailable historical
data. However, it is also challenging since most
SDP models are developed using machine learning
algorithms, which work under the common
assumption that the underlying distribution of
training datasets is similar to that of the testing
dataset. Using historical defect data from other
projects introduces a critical issue since source
datasets and target datasets have different data
distribution [5], [8], [9]. CPDP model built using a

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2093

machine learning algorithm will suffer from
unsatisfied predictive performance since the
conventional machine learning algorithm performs
well if it trains using training data posses a similar
distribution with testing data. The solution to this
problem is to lessen the divergence in distribution
between the training and testing data.

The conventional approaches to addressing

such an issue are data transformation [9]–[12],
normalization [9]. Both data transformation and
normalization approaches use all training instances
to train the prediction model, which may potentially
contain irrelevant and noisy data. Zhang et al. [13]
found that choosing a suitable transformation for a
specific pair of training and testing instances is
open to question. Prior studies [9], [14] even show
that the effect of transformations on the modeling
performance varies on the same dataset. Therefore,
training data selection has a potential benefit to
overcome the drawback of the previous approaches.

Training data selection that attempts to

select the most relevant training instance from the
software repository has been a significant issue for
CPDP [15]. On the one hand, some research
revealed that using a cross-project training dataset
without a careful selection degraded the defect
prediction performance [5], [6], [8]. On the other
hand, several studies also reported that the SDP
model developed using suitable cross-project data
has a satisfied predictive performance [6] [5][16].
The selection of relevant training data increases the
prediction performance of the model, even though
this performance still cannot compete with the
performance of WPDP. Therefore, how to choose
the relevant data gathered from other domains for
training a defect prediction model becomes a
challenge [16].

There are many studies conducted on

software defect prediction. Several excellent review
papers have been published in this area [17]–[23].
Catal and Diri [21] conducted a review focusing on
the conceptual classification of a software metric,
datasets, and method. Later on, Radjenovic et al.
[22] presented a survey on software metrics and the
effect of context on the metric selection and metric
performance. Malhotra [17] surveyed machine
learning tehcniques, software metrics, and datasets
used used to build the SDP mode. Hall et al. [18]
presented a review paper discussing the
independent variable, the effect of context in
prediction performance, and methods to develop a
software defect prediction model. Hosseini et al.

[23] focused the survey on CPDP that summarizes
and synthesis the independent variable, modeling
techniques, and approaches to building defect
prediction. However, there is no survey focusing on
the training data selection works in the CPDP area.
Since training data has been applied in SDP and
indicated promising results to enhance the
effectiveness of defect prediction, knowledge of
current training data selection methods is required.
The purpose of this paper is to present a review of
training data selection techniques for researchers
and practitioners. This paper offers a brief
description of the background and state-of-the-art
research progress. It also provides strength and
limitation of the proposed methods as well as the
potential challenges on this training data selection
area. It also provides an opportunity for researchers
to develop this specific research area further.

This paper is structured as follows: Section

2 defines training data selection, section 3
overviews the studies on training data selection
during the period of 2009 – 2019, section 4 presents
a discussion on existing training data selection
approaches, and part 5 draws on the conclusion and
highlights research directions.

2. ISSUES IN TRAINING DATA
SELECTION

2.1 Distribution Difference Problem in Cross-

Project Defect Prediction (CPDP)
 CPDP develops an SDP model utilizing

the historical datasets from the source project to
make a defect prediction in the target projects [8].
CPDP becomes a common approach as it addresses
the shortcoming of the training data that is required
to construct a software defect predictor [6], [9],
[11], [15], [24]–[29]. However, it also poses a
challenging issue. Directly use cross-project
datasets to learn a prediction model produces a
model having unsatisfied predictive performance.
Zimmerman et al. [8] investigated 622 cross-project
predictions and found that the prediction
performance was unacceptable; only 3.38% of the
predictions worked successfully. Further on, He et
al. [5] found that the successful ratio of five cross-
project predictors was inadequate, which is in the
range of 0.32% to 4.7%. Later, Turhan et al. [6]
also concluded that the software defect predictor
developed using all available cross-company data
would contribute to a high false alarm rate. This
issue might result from the divergence in the
distribution between the training and testing data.

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2094

[5], [8], [9]. Thus, the CPDP problem is how to deal
with data distribution divergence among the sources
and the targets project.

CPDP is a kind of transfer learning

problem [23] that corresponds to transductive
transfer learning [30], [31], in which source task is
the same as the target (i.e., predict the defect-prone
module) and the source domain differs from target
domain (i.e., source project and target project) [11],
[32], [33]. There are three instance-based transfer
learning approaches to deal with the distribution
divergence issue in the literature namely: data
transformation [9], [10], [12], [34], reweighting the
training data [11], [25], [28] and selecting a part of
the training data or training data selection.
Therefore, related to transfer learning, training data
selection is a type of instance-based transfer
learning. This review paper focuses on the last
strategy because of its higher applicability.

2.2 Training Data Selection

 Training data selection is a process that
tries to select the most relevant training instance
with regards to the target instance. More
specifically, let SS be a source project dataset
containing m instances, expressed as SS = {ss_1,
ss_2, ss_3, …, ss_m}, ST be the selected training
dataset having n instances, expressed as ST = {st_1,
st_2, …, st_n}, and TT be the target dataset
containing o instances expressed TT = {tt_1, tt2_,
…, tt_o}. Training data selection aims at forming
the training dataset (ST) from the source dataset
(SS) that contains the most relevant source instances
to target instances in the dataset (TT). The selected
training instances are utilized to develop an SDP
model, which is applied to predict the defect of
unlabeled instances in the target dataset. Domain in
which learning a defect prediction is conducted is
called the target project, while the domain from
which the relevant instance comes is called the
source project. It is assumed that the target project
has unlabeled instances, and the source projects
contain many labeled instances. Training data
selection attempts to select training instances from
labeled source instances based on the (1). The
similarity of the labeled source instances to the
unlabeled target instances or (2). The similarity of
data distribution of the source datasets to that of the
target dataset.

An essential factor pertinent to the training

data selection is the relevant source instances.
Relevant source instances mean that those instances
are suitable for training a defect prediction model.

Correct identification of appropriate training data is
important, as the use of irrelevant training instances
can harmfully impact the accuracy of an SDP
model. A criterion that is used to determine the
relevant training data is the similarity of the source
instances to the instance in the target project
[6][16]. Besides the similarity factor, there are other
criteria to determine whether source instances are
suitable for a building defect prediction. Training
data instances may be unsuitable for building defect
prediction if: (1). They contain noise [35], [36]. (2).
They have labels conflicting with that of testing
instances [25], [28], or (3). They do not have the
same defect patterns as that of the target dataset [5].
The selection for training data will remove some
source instances, and the performance of the model
trained using the selected training data does not
decrease [37].

2.3 General Training Data Selection Process

 Through a literature review of training
data selection research, most training data selection
approaches follow the general process in Figure 1.
The first step is preparation of the source data
instances collected from other projects (SS). The
second step is to selection of the relevant training
data instances from source data instances based on
the similarity to the target data instances (TT).
Later, a defect prediction model is trained using the
selected training instances (ST) to predict the defect
in the target data instances.

Through the literature review, strategy to

select relevant training data mainly implement the
nearest neighbor, cluster-based, and evolutionary-
based methods.

Figure 1: Training Data Selection Process (Taken
from [16])

The description of each strategy is presented in
Table 1, while Algorithm 1 – 3 depicts the general
procedure for each strategy.

Algorithm 1 Nearest neighbor-based approach
input: source instances (SS), target instances (TT)
output: selected training instances (ST)

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2095

for each training instance in target dataset do
 calculate its distance to source instances
 collect n nearest source instances based on distance
end
remove duplicate source instances
collect the remaining source instances as the training
instances

return selected training instances

Algorithm 2 Cluster based approach
input: source instances (SS), target instances (TT)
output: selected training instances (ST)

combine source instances and target instances into one
group.
partition the group into clusters
retain the cluster having at least one target instances
collect the training instances in the retained subsets.

return selected training instances

Algorithm 3 Search-based approach
input: source instances (SS), target instances (TT)
output: selected training instances (ST)

setup initial population collected randomly from
source instances
while termination condition is not satisfied do
 evaluate individual according to fitness function
 add the selected individual to the pool of generation
 create new generation using evolutionary operator
 replace population

select the best generation as the selected training

instance
return selected training instances

2.4 Training Data Source for Building Defect

Prediction Model
 The CPDP approach tries to leverage

source data from one project to train a software
defect predictor and then perform a defect
prediction on the other software project. According
to Herbold et al. [38], when building a software
defect predictor, there are two approaches regarding
the source of training data: defect prediction using
only cross-project data (strict CPDP) and defect
prediction using mixed data (mixed CPDP). For the
first approach, the source of training data comes
from either single or multiple cross-project data.
For example, [6] proposed a relevancy filter to
select the relevant data by employing cross-project
data to train the software defect predictor model
(Table 2 for the related studies).

Meanwhile, for the second approach, the

source of training data is mixed from cross-project
and unlabeled within-project. Several studies
investigated the performance of the prediction
model developed using mixed data [25], [28], [39].
Turhan et al. [39] utilized mixed data to develop a
defect prediction model. They inferred that when
limited historical data are available, construction of
software defect predictor having performance
similar to full within project predictor is feasible.
Later on, Chen et al. [25] confirmed this finding.
Using mixed data, they presented a Double Transfer
Boosting (DTB) algorithm to deal with the
distribution mismatch between cross-project and
within-project.

Table 1: Overview of Training Data Selection Method

1. Nearest Neighbor Filter

 Description Nearest Neighbor Filter training data selection is an approach to select relevant training
instance by measure the similarity of an instance in the source datasets with instance in
the target datasets using the notion of distance, such as Euclidean distance. This
approach selects n source instances nearest to target instances.

 Related Studies [6][15] [16], [40]–[43] [44][45]

 Strength 1. Most methods use KNN algorithm that has simple steps.

2. For project level granularity, it has low computational cost

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2096

 Limitation 1. It has polynomial run time and scalability problem with large datasets.

2. For project level granularity, the selected training data instances may include
irrelevant source instance, which may result in false alarm rate.

2. Cluster-based filter
 Description Cluster-based filter uses clustering method to find homogeneous clusters, where each

cluster contains instances having similar characteristics [46], [47]. Based on this idea, a
source instance is similar or relevant to the target instance if they are in the same
cluster. Thus, the selected training instances are the source instances that are in the
same cluster as the target instances.

 Related Studies [27][28], [48] [16][44]

 Strength 1. Generally, cluster-based method performs better than the distance-based
approaches.

2. Some cluster-based methods can remove noise [27], [28]

 Limitation 1. The results is sensitive to the choice of the parameters of the clustering method,
such the number of cluster, the radius [27], [28], initial centroid selection [46][44].

2. Clustering-based approaches suffer from computational complexity
3. Performance depends on the quality of clustering.

3. Evolutionary-based filter

 Description A evolutionary-based method uses the meta-heuristics procedure [49] to find the
optimal training data instances. Hosseini and Turhan implemented the search-based
procedure [50], [51] to select training data in software defect prediction research. They
developed a search-based training data selection method using a genetic algorithm [52],
[53]. Selected training data instancess are best chromosomes occured from the
evolutionary process.

 Related Studies [52], [53]

 Strength 1. Can deal with noisy, incomplete, imbalance, and inaccurate data.
2. This approach can use any classifier for the selection process.

 Limitation 1. It has high computational time because of its iterative optimization process.

Subsequently, Yu et al. [28] also explored the
benefits of the mixed data approach. They
combined unlabeled and a limited amount of
labeled within-company data as well as cross-
company data to train defect predictor. The
experiment showed that a mixed model for cross-
company defect prediction could perform well,
which is comparable to the performance of WPDP.

Table 2: Studies on Training Data Categorized
According to the Source and Granularity of Training

Data

 Source of training data

 Cross project
data

Mixed data

Granularity
of training

data
selection

Source
Project
Level

[5], [16],
[40]–[43]

[54]

Instance
Level

[6], [15], [27],
[48]

[25], [28],
[39]

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2097

2.5 Training Data Selection Granularity
Besides the training data selection

strategy, which is categorized into the distance-
based, cluster-based, and search-based approach,
another factor of interest is the training data
selection granularity. Based on the previous studies,
there are two levels of training data selection
granularity, namely instance-level [6] and project
(dataset) level [5], [16]. Table 3 presents training
data selection studies categorized according to the
selection strategy and granularity of training data.

At a project level, a dataset represents a

release of a project (coarse-grained data). Figure 2
illustrates a dataset that contains 100 instances. A
dataset can be represented as a vector of
distributional characteristics (statistical
characteristics), such as mean, median, min, max.
For example, if a dataset in Figure 2 is represented
using two distributional characteristics (i.e., min
and median) then the datasets is formulated as V_dc
= {min(F_1), median(F_1), min(F_2),
median(F_2), …, min(F_m), median(F_20)}, where
V_dc is vector of distributional characteristics.

Table 3: Studies on Training Data Categorized
According to the Selection Strategy and Granularity of

Training Data

 Selection Strategy

 Nearest-
neigbor

Cluster
-based

Evoluti
onary-
based

Granularity
of training

data
selection

Instance
Level

[6][55][2][4
5]

[27],
[28],
[48]

[52],
[53]

Project
Level

[16][2] [16][44] NA

 Mixed [2] NA

Meanwhile, at an instance level, an

instance refers to any record (a row) in a dataset,
which may represent a file or a package (fine-grain
data). An instance is expressed as a vector of
feature values, i.e., I_i = {F_i1, F_i2, F_im}, where
m denotes the number of features.

 F_1 F_2 F_3 F_4 … F_m
Instances WMC DIT NOC CBO LOC Defect

I_1 14 1 0 11 290 0
I_2 17 2 0 2 330 3
I_3 5 1 5 17 45 2
I_4 13 2 0 22 223 0
I_5 14 2 2 3 123 0
….

I_100 12 1 0 4 400 1

Figure 2: An Example of a Dataset

3. PRACTICAL METHODS FOR TRAINING
DATA SELECTION

Studies in CPDP has investigated several

training data selection methods. These include
works on relevancy filter that using distance
measure between datasets [6], [15], [16], [41], [42],
clustering approach [27], [28], [44], [48] and
evolutionary approach [52], [53]. The following
section will discuss the detail of each specific
training data selection.

3.1. Nearest Neighbor Filter

The basic idea of this filter is the similarity
of an instance in source datasets to its near
instances in target datasets. The notion of instance
has a different meaning with regards to the
granularity level of the datasets. At an instance
level, an instance is any record in a dataset
(expressed as a vector of metric values). In contrast,
at a project level, it represents a vector of data
characteristics. The similarity of the datasets is
measured using the notion of distance [56].
Selecting relevant training datasets using a nearest
neighbor approach can be conducted based on the
granularity level of the source dataset. For example,
the authors in [6] [15] [57] [26] proposed an
instance-level approach while studies in [5], [16],
[40]–[43] introduced a project level filter to select
the relevant source data.

Turhan et al. [6] present the idea of data

filtering for the improvement of learning an SDP
model. They introduced the Burak filter to choose
the relevant training data using the K-Nearest
Neighbor algorithm. This filter employs the testing
instance as guidance for choosing the relevant
training data instance (target-driven filter). It is a
point-wise filter in which for each target instance,
this filter chooses its ten nearest neighbor source
data instances as the candidate for the training data.
This filter, then, combines these selected instances
(without duplication) to form a new training
dataset, which is employed to develop an SDP
model. Turhan et al. found that the developed
model has performance close to that of an SDP
model built using within-project data. They also
claimed that identified information from cross-
project data leads to improvements in detection
rates. Burak Filter has relatively simple steps;
however, it has a disadvantage in that each time the
testing dataset instance changes, this filter must be
repeated. This filter was also adopted in the work of
[25], [45], [58] .

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2098

To improve Burak Filter, Peter et al. [15]
proposed a source-driven filter, which enables the
source instances to find their nearest testing
instances. The core idea of this filter is a conjecture
that a large defect dataset has more defect
information. The training dataset is usually more
massive than the testing dataset; thus, it might be
more suitable to use training instance when
identifying the relevant training data. This filter
combines the K-Means [46] method with K-Nearest
Neighbor. It first combines the source dataset and
the target datasets and then partitions the combined
dataset using the K-Means algorithm. The cluster
has at least one target data instance is retained.
Subsequently, for each source data instance in the
selected group, the filter finds the closest target
instance. Finally, for each target instance, the
nearest source instances are chosen as the training
data, using Euclidean distance. Based on the results,
Peter filter outperforms the within-project and the
Burak filter. This filter has a simple step; however,
it has an exponential run time, and it does not scale
with large datasets [59].

 Similar to Burak Filter, testing-driven

filter at the instance level, He et al. [57] introduced
an improved method to select training data by
considering not only the similarity between the
training and the target instance but also the number
of the defect of each training instance. They
proposed a training data selection method, called
TDSelector. When choosing the relevant training
data instance, the TDSelector employs a scoring
scheme that uses two rank scores of each training
instance as the input. For each training instance, the
first score calculated based on its similarity to the
testing instances, and the second one according to
the number of defects. The scoring scheme,
subsequently, calculates the final score by
considering the similarity ranking and defect
ranking. Based on the final score, for each testing
instance, the method will collect the top-k training
instances. TDSelector then combines all set of the
top-k training instances into final training datasets
after removing the redundant instances. To validate
the success of the proposed approach, they
conducted an experiment using 15 open-source
datasets from 14 different projects. This study
concluded that information about the number of
defects is valuable to build the defect prediction as
this defect information could be used to predict
defect proneness, which is proven by the
improvement of the model performance in terms of
G and AUC. TDSelector outperforms Peter Filter
and TCA+. Although the result seems to promise,

benchmarking of their proposed approach was
conducted only to method Peter Filter and TCA+
[9]. Therefore, the generalizability of the
TDSelector for other classification algorithms
remains debatable.

Ryu et al. [26] proposed selective learning

to address the problem of the distribution
gap between training and test data. They introduced
the Hybrid Instance Selection using Nearest-
Neighbor (HISNN) to remove irrelevant training
data instances. HISNN employed two-phase
instance filtering, namely: test data instance
selection and training data instance filtering,
respectively. Training data selection is conducted in
several steps, (1). identification and removal of an
existing outlier in the source data, (2). identification
of the source data that similar to test data using K
Nearest Neighbor, and (3). combining the result of
both previous steps as the selected training data set.
HISSN performed classification of local knowledge
and global knowledge, using K Nearest Neighbor
naïve Bayes, respectively. The study validated the
algorithm by using 13 selected public datasets and
concluded that the HISSN algorithm provides a
promising performance CPDP setting.

To address the unsatisfied results and high

computational time of the prior study, Herbold [16]
proposed a strategy using the KNN algorithm to
select a relevant training dataset. Following the
result of [5], Herbold employed distributional
characteristics (i.e., standard deviation and mean) to
detect similarity among datasets. Based on the
between Euclidean distance between characteristic
vectors, Herbold employs the Nearest Neighbor
filter to choose source data projects closest to the
target project. Herbold experimented with a cross-
project prediction using 71 version datasets
available from 38 different open source projects.
The training data was predominantly imbalanced.
This condition usually contributed to biased
classifiers that were in favor of a non-defect-prone
class. To deal with this issue, Herbold adjusted the
weight of each training instance to make the overall
weight of training and testing instances to be the
same. He concluded that predictive performance
improves significantly, based on success rate and
recall. Also, project-level selection (based on
distributional characteristics) rather than point-wise
instance-level selection results in the prediction
model of low computational time. However, the
result is still unfavorable for actual use.

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2099

He et al. [41] conducted a study to provide
a guiding principle to choose the relevant training
data available from other projects. Different from
the prior studies, they suggested employing
multilevel granularity in a single defect prediction
model. They introduced a method to simplify
training data by utilizing two levels of granularity,
i.e., project level and instance level. At the project
level, referred to as rTDS, training data
simplification selects training data releases most
similar to the testing data release based on the
distributional characteristic of the dataset (median,
mean, min, max, and standard deviation). While, at
the instance level, referred to as iTDS, it tries to
choose the most suitable training instances
according to their distance to the testing instance.
Both approaches use using the K Nearest Neighbor
algorithm with Euclidean distance [6], [15], [16].

To examine the effect of multilevel

granularity on prediction performance, He et al.
[41] combine both techniques (i.e., rTDS and iTDS)
into a two-step method, namely riTDS. There are
two instance selection approaches in the second
step of the riTDS. The first strategy uses the testing
instance as guidance in selecting the training
instances nearest to the testing instance (identical to
Turhan filter). At the same time, the second
approach employs training instance as the guidance
on labeling the testing instance and collecting the
training instance closest to the testing instance
(similar to Peter Filter). They validated the
proposed approach using 34 datasets and J48, LR,
NB, RF, and SVM as the predictors. The result
shows that using a multilevel granularity approach
can provide better performance provided that it uses
the appropriate filter.

In their study on predicting defect

inducing changes, Fukushima et al. [60], later
extended by [61], proposed a procedure for
selection of the relevant training data using
Spearman correlation. Spearman correlation is used
to assess the similarity between training datasets
and testing datasets. First, the procedure calculates
the Spearman correlation between each metric
(independent variable) with the class label of the
training datasets (dependent variable). Second, it
continues to select three metrics from source
datasets (sr_1, sr_2, sr_3) having the highest
Spearman correlation value. This procedure also
chooses the same metrics from testing datasets
(ts_1, ts_2, ts_3). Then, this method computes the
pair-wise correlation between the selected metrics
to define two correlation vector, such as the first

vector has corr(sr_1, sr_2), corr(sr_1, sr_3),
corr(sr_2, sr_3) as the elements, while the second
vector contains corr(ts_1, ts_2), corr(ts_1, ts_3),
corr(ts_2, ts_3). Last, the process calculates the
distance between the two vectors using Euclidean
distance. The training dataset having the lowest
distance is chosen as the training dataset. This
proposed method has a limitation in that it can only
select one source project data. Xia et al. [33]
identified that using multiple sources when
constructing software defect prediction can prevent
overfitting and improve performance.

Liu et al. [43] adapt the training data

selection to address the performance problem of
TCA+ [9]. They found that if TCA+ is trained
using only one randomly selected source project
data, its performance is unstable, known as dataset
shift problem [62]. They also revealed that using all
source projects may lead to unsatisfied performance
(in terms of F measure). Differ with Herbold [16]
that uses an unsupervised approach, Liu et al.
introduce a supervised approach by proposing a
source project estimator (SPE) to choose the
suitable training data. SPE tries to select two source
project datasets having a similar distribution to the
target project by learning two regression models.
As the independent variables, the regression models
employ the metric from source project data. The
final regression model is the model that scores the
best according to F measure and PofB20. The
proposed method has an advantage in which the
regression models do not necessarily need to update
continuously, which leads to an acceptable
developing time and opportunity for practical use.
This approach, however, uses only two data sources
when predicting the defect. Also, if the target
project is unlabeled, this method uses a hypothetical
source project as the target project when learning
the regression model, which may not represent the
typical properties of a defect in the target project.

Addressing the same problem to Liu et al.

[43], Wen et al. [42] investigated the training data
selection method using data transformation. They
proposed four strategies to select source project
data according to the value of the mean, standard
deviation, and median of the source and the target
datasets. Logarithmic transformation transforms
mean, standard deviation, and median of each
dataset. The median value is also transformed using
the Z score transformation. The closeness of each
source project data to its target data is measured
using Euclidean distance, taking as input the refined
value of the mean, standard deviation, and median

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2100

of the source and target data. The source project
data having minimum distance with the target data
is selected as training data. The result shows that
this method outperforms the training data selection
method by Herbold in terms of F and accuracy.
However, this proposed method has a limitation in
that it can only select one source project data. Xia
et al. [33] identified that using multiple sources
when constructing software defect prediction can
prevent overfitting and improve performance. Also,
employing various source projects rather than a
single project have the advantage of being able to
provide more information when building an SDP
model [59].

He et al. [40] studied the use of an SDP

model trained using open source data and applied to
predict the defect on the proprietary project. They
propose a procedure adapting Hido’s framework to
measure the closeness of training and testing
dataset by calculating the marginal distribution of
training dataset and testing dataset. To measure the
similarity, they sample k instances from the training
and testing data randomly and combine both sample
datasets into a single dataset. Then, they learn a
logistic regression classifier on the combined
dataset and calculate the model accuracy. The
accuracy is used as the measurement of the distance
between training and testing datasets. Based on an
argument that characteristics of a project generating
a dataset reflect the characteristics of its instances,
He et al. [40] select the relevant training data at the
data level [16] rather than at the instance level [6],
[15]. Their procedure employs feature selection to
address the distribution gap problem. This research
experimented CPDP with using 34 version datasets
available from 14 different open source projects
and 34 version datasets available from 7 various
proprietary projects. The results show that He et
al.’s filter outperforms than Burak filter in terms of
performance (better G-measure and PF than that of
Burak filter) and runtime complexity. He et al.
concluded that for CPDP to achieve the best
performance, it does not need to use all features.
This conclusion supports the finding of the previous
studies [63], [64].
3.2. Cluster-based Filter

The cluster-based technique is a common
approach in SDP research to overcoming the
mismatch between source and target data
distribution. In transfer learning research, Qiu et al.
[65], for example, partition the source data into
clusters and give different weights for instances in
each subset to lessen the adverse impact of
irrelevant training data. Chen et al. [66] cluster the

source and target data to create Multi-view
learning, and Zhang et al. [29], [67] divide the
source data into partitions to investigate the
context-aware rank transformation. While, in
unsupervised learning, Zhang et al. [68], [69]
utilized clustering to perform defect prediction
using quad-tree and spectral clustering and Nam
and Kim [70] used clustering to label the unlabeled
datasets automatically. Moreover, the cluster-based
approach is also used in the data filtering area,
which is the emphasis of this paper.

The notion of cluster-based methods is to

find groups of instances (the combination of
training instances and testing instances) such that
the characteristics of an instance are as similar as
possible to that of others in the same cluster [46],
[47]. Based on this idea, the data similarity in each
cluster is used to identify the training data near to
the testing data. Jureczko and Madeyski [71]
experimented with the clustering software project
and determined that the clusters of software entities
are available. They predicted that the prediction
model performs well on all projects located in the
same cluster. The cluster-based approach has a
general procedure consisting of several steps, as
shown in Algorithm 3. Selecting relevant training
datasets using this approach can be conducted
according to the granularity level of the source
dataset. The studies in [27] [28] [48] proposed an
instance-level approach, while the authors in [16]
[44] employed a project-level approach to select the
relevant source data.

Kawata et al. [27] proposed to use density-

based spatial clustering (DBSCAN) [72] for the
selection of relevant training data. Adopting the
general procedure, they used DBSCAN to create
clusters of training data. By using the selected
training data, they construct a defect prediction
model using linear regression, random forest, naive
Bayes, and K Nearest Neighbor as the predictor.
They conducted an empirical study using 56
datasets available from different open source
projects repository and concluded that using
DBSCAN can improve the predictive performance
of the model. Kawata et al. ‘s method outperforms
Burak filter and Peter filter, with regards to G-
measure and AUC. This method, in part, employed
a similar procedure to Peter’s, they partition cross-
project and within-project simultaneously.
However, DBSCAN has a more straightforward
procedure because this method itself removes
irrelevant data.

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2101

Using the general procedure above, Yu et
al. [48] studied the use of the clustering method to
build a high-performance prediction model. They
employed agglomerative clustering for partitioning
the group into clusters. Differ to Kawata et al. ‘s
work that five predictors, they used support vector
machine and naive Bayes as the predictors. The
result showed that this approach provides a
promising result as it successfully reduces the
detrimental effect of irrelevant training data. Their
method outperforms Burak, Peter, and Kawata
filter.

Later, Yu et al. [28] also adopted the same

approach as in [27][48]. However, to improve the
previous studies [6], [15], [25], [27], [48] focusing
on the distance between dataset when filtering
training data, they consider class information (class
label) when selecting the relevant training data. Yu
et al. used semi-supervised density-based spatial
clustering [73] to filter out irrelevant training data.
They employed mixed data as source data. This
method creates clusters of source data, and then for
each cluster selected, it chooses source data
instances having the same class label as that of
testing data instance as the relevant training data.
To validate the success of their proposed approach,
Yu et al. experimented with 15 datasets available
from different open source projects repository. As
the classifier, they use linear regression, random
forest, and Naive Bayes (NB). This study concludes
that using a cluster-based method could enhance the
performance of defect predictor. The results show
that Yu et al. ‘s method outperforms the Burak filter
and Peter filter.

To address the runtime and scalability

problem, Herbold [16] proposed a characteristic-
based filtering method, which uses distributional
characteristics to detect similarity among datasets
(i.e., source datasets and target datasets). Firstly, it
computes the distributional characteristics of each
dataset. This characteristic is represented as the
vector of distributional characteristics (i.e., mean
and standard deviation). Secondly, this approach
merges the vector of the distributional characteristic
of the source dataset and the target dataset into a
single set. Subsequently, this method partitions the
combined set into clusters of distributional
characteristic vectors using the K-Means and
chooses the source data in the same group as target
data as training data. Herbold experimented with a
cross-project prediction using 71 version datasets
available from 38 different open source projects.
The proposed method has proven to be very

efficient and be able to deal with the scalability
problem. However, similar to [5], [6], the result is
still unfavorable for actual use.

Li et al. [44] introduced a two-level

training data selection method to address the issue
found in [16]. At the first level, they adopted
Herbold’s method to filter the training data
instances according to the source and the target
project similarity, measured using four data
characteristics (i.e., min, max, mean, and standard
deviation). After collecting the training data
instances, at the second level, the method employs
the K-means algorithm to create clusters of similar
instances [15]. The final training data instances are
instances that are collected from each cluster
having at least one target instance. The experiment
concludes that the predictive performance of the
proposed method showing a favorable result. This
filter also outperforms the Burak Filter, Peter Filter,
and Herbold with regards to the average of AUC.

Each cluster-based method mentioned

above develops a single defect prediction model
using the instances collected from all clusters.
Menzies et al. [74], [75] introduced the notion of
the local filter. The core idea of this filter is to
partitions the datasets into subsets of data whose
similar properties, and then for each cluster, a
defect prediction model is built accordingly.
Menzies et al. [74] also introduced a global filter,
which uses all available source data to construct an
SDP model. Algorithm 4 presents a generic
algorithm for local filters. Menzies et al. found that
there may be an advantage of using such an
approach when training a machine learning model.
Later on, several studies such as [76], [77], [78],
[79], [38], [58], have investigated the validity of
using local model.

Algorithm 4 Local cluster based approach [44]
input: source instances (SS), target instances (TT)
output: average predictive performance

combine source instances and target instances into one group.
partition the group into clusters
retain the cluster having at least one target instances

for each retained cluster do
 Collect all training instances.
 Collect all testing instances
 Build defect prediction model using training instances
 Predict defect on testing instances
end

return average predictive performance

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2102

The results of the studies were
inconclusive. Bettenburg et al. [76], [77] confirmed
the result of Menzies et al. They concluded that
using local filter results in a better fit and predictive
performance than the global filter. However, studies
in [38], [58], [79] found rather different results.
Herbold et al. [38] applied the local filter in the
cross-project study and found that the performance
of both models differs slightly according to F-
measure and precision. Further studies explored the
use of the local model in effort-aware [58] and just-
in-time defect prediction [79]. They concluded that
the local model underperforms the global model
with regards to the classification performance.
However, the local model is superior to the global
model, with regards to effort-aware performance.
The result also discovered that the data size affects
the performance of the local model. The small size
of the dataset worsens the performance of the local
model. Bettenburg et al. also revealed that the
critical factors affecting the successful use of the
local model are the variance of the datasets, the
choice of the clustering algorithm as well as the
careful setting of the algorithm parameters
(especially for the parametric algorithm).

3.3. Evolutionary-based Filter

Recent research on training data selection
has adopted an evolutionary-based approach.
Hosseini et al. [52], [53] investigated a search-
based instance selection using a genetic algorithm
filter to generate relevant training data. This
approach aims to deal with the data quality issue,
i.e., noisy data. They proposed a genetic algorithm
to guide training data selection to take the dataset
having the same characteristics as the testing
dataset. Similar to Burak filter [6], this method
employs the testing instance as guidance on
choosing the relevant training data instance.

Training data selection starts when this

method divides the testing dataset into several parts
at random. It then inputs each piece into the Nearest
Neighbor filter to choose the most suitable training
instances. These instances will later be used as the
validation set. Subsequently, the genetic algorithm
is utilized to generate the best training dataset. To
validate their proposed approach, Hosseini et al.
experimented with 13 open-source datasets. The
selected training data are employed to train defect
models using Naive Bayes (NB) as the predictor.
The empirical result confirmed that the proposed
method could enhance the defect prediction
performance, which is better than NN filter, naive
CPDP, and WPDP. Similar results of using an

evolutionary-based method also found in [80]. It is
consistent with the recommendation of Malhotra
[81] stated that having high accuracy and high
AUC, the search-based technique is suitable for
building the defect prediction model. Because of its
iterative optimization process, however, this
method has a high computational time.

4. DISCUSSION

This section provides a brief discussion

about the comparative performance of the
approaches reviewed in section 3. Most training
data selection method in the literature falls into a
nearest-neighbor category, which consists of
instance-level and project level filtering. The
instance-level approach generally uses the K-
Nearest Neighbor algorithm. This algorithm is
simple; however, it retains noisy instances [82] and
does not scale with large data. Based on some
reported results [44], [83], Peter Filter seems to
outperform the other instance-level methods. It may
because Peter Filter only selects the representative
training data so that it enhances the suitability of
selected training data.

Meanwhile, project-based filter differs

from the instance-based filter in the way they
measure the source and target data similarity. In the
instance-based filter, such as Turhan filter or Peter
filter, measuring similarity is performed on each
pair of training data instances and target data
instance. While, in the project-based filter, the
similarity between two project datasets is calculated
based on the pair-wise project, which represented
the distributional characteristics of the datasets.
Therefore, the project-level filtering approach has a
lower computational time than the instance-level
methods. It is also scalable to large datasets.
However, using such coarse-level granularity may
result in false alarm as the selected training data
may include irrelevant training instances [41].

Most studies under review found that

training data selection using a cluster-based method
performs better than the distance-based approaches.
For example, Li et al. [44] found that local filter
outperforms Peter Filter, Burak Filter, and Herbold.
The other studies, such as [27], [48] also provide
similar results. Recent research by Bin et al. [83]
proposed a retaining ratio, a measure that
corresponds to the number of selected training data.
They measured the retaining ratio for several filters
and investigated the effect of the retaining ratio on
the performance. They found that cluster-based

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2103

filters [27][76] have a higher training ratio than
distance-based based filters [6], [15]. Based on the
retaining ratio, cluster-based filter better than the
pointwise based filter, which conforms to the above
finding.

With regards to the performance, the

question about the effect of the dataset granularity
on the predictive performance seems to be
inconclusive. The result of [44], for example, shows
that Herbold’s approach performs worse than
Turhan Filter and Peter Filter when using NB as the
predictor. However, when using SVM as the
predictor, Herbold’s method outperforms the two
instance-based filter. This phenomenon may be
explained using the conclusion of Menzies et al.
[64] and Wanatabe et al. [84]. They argued that
each dataset has different characteristics. Also, the
behavior of a predictor is affected by the dataset
characteristic. For example, C4.5 performs worse
for imbalanced data, while K-Nearest Neighbor is
sensitive to noise. Hall et al. [18] found that the
predictive performance of model may be dependent
on the predictor. Therefore, datasets characteristic
rather than data granularity that affects the
prediction performance.

5. CONCLUSION AND RESEARCH

DIRECTION

This article presents the review of the

current state of training data selection methods.
Through a literature review, the existing methods
are categorized into three groups of nearest-
neighbor, cluster-based, and evolutionary-based
approaches. For each category, training data
selection can be conducted at instance-level and
project-level. The strength and limitations of each
group are summarized and presented in Table 1.
Table 3 shows that most training data selection
method in the literature falls into a nearest-neighbor
category, which consists of instance-level and
project level filtering. Most methods use the KNN
algorithm that has simple steps; however, it has a
polynomial run time and scalability problem with
large datasets. Moreover, for project-level
granularity, the selected training data instances may
include irrelevant source instances, which may
result in a false alarm rate. The cluster-based
method performs better than the distance-based
approaches. Nevertheless, it is sensitive to the
choice of the parameters of the clustering method.
The evolutionary-based method provides promising
accuracy, but it much slower than the other
methods.

In software defect prediction, training data
selection is an important task, since training data
selection can select the training instances similar to
testing instances, which can deal with the
distribution difference problem. The selection of
relevant training data increases the prediction
performance of the model. Therefore, further
research on this issue needs to be performed.
Improving the method of selecting training data is a
promising way to decrease distributional
differences between training and test data.

Several research challenges in this area

need to be addressed. First, previous studies
reported that using data characteristics is of benefit
for training data selection. Several training data
selection methods use distributional data
characteristics to assess the datasets similarity
among the source and target projects. This approach
has proven to be able to deal with the run time and
scalability problem. However, each study used a
different combination of distributional data
characteristics. For example, He et al. [5] used
sixteen data characteristics, Herbold [16] used two
data characteristics (mean, standard deviation),
while Li et al. [44] used four data characteristics
(max, min, mean, standard deviation). Most studies
did not mention their reason for choosing such data
characteristics. Those studies claimed that the
predictive performance of their proposed model
improved, even though the overall success rate was
still incomparable to that within project defect
prediction. Therefore, dealing with relevant training
data is still an open issue. Further research needs to
investigate the most suitable distributional
characteristics for building a defect prediction
model.

Secondly, There are many clustering

algorithms in the literature [46], [47], therefore
exploring other clustering algorithms for selecting
the training data is an excellent opportunity for
investigation, especially for the parametric
algorithm. Besides, the comparison of prediction
performance among existing cluster-based method
is limited; therefore, which cluster-based techniques
present the best result still in question. What is
more, most of the studies working on this area use
the non-parameter clustering algorithm. Bettenburg
et al. [77] point out that the clustering algorithm,
along with its parameter calibration, affects the
effectiveness of a clustering model. For further
explanation, consult Bettenburg et al. [77] and
Tantithamthavorn et al. [85].

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2104

Finally, there is a limited study on the use
of the evolutionary method, such as a search-based
technique, to filter the training data. Results
witnessed that the advanced approach provides
promising predictive performance compared to the
traditional way. Hossein et al. [52], [53] found that
the genetic algorithm can boost the performance of
a simple naive Bayes classifier. Therefore, more
studies on this approach, combined with clustering
and distributional characteristics, is still an open
area for research. Malhotra et al. [86] also
recommended further investigation reducing the the
long computational time of this techniques.

ACKNOWLEDGEMENT
 This research has been supported by
Universitas Atma Jaya Yogyakarta Indonesia and
Universiti Teknikal Malaysia Melaka.

REFERENCES:

[1] S. Lessmann, B. Baesens, C. Mues, and S.

Pietsch, “Benchmarking classification models
for software defect prediction: A proposed
framework and novel findings,” IEEE Trans.
Softw. Eng., vol. 34, no. 4, pp. 485–496, 2008.

[2] P. He et al., “Simplification of Training Data
for Cross-Project Defect Prediction,” in
http://arxiv.org/, 2014.

[3] Y. Zhou et al., “How far we have progressed
in the journey? An examination of cross-
project defect prediction,” ACM Trans. Softw.
Eng. Methodol., vol. 27, no. 1, pp. 1:1--1:51,
Apr. 2018.

[4] H. Ji and S. Huang, “A New Framework
Consisted of Data Preprocessing and
Classifier Modelling for Software Defect
Prediction,” Math. Probl. Eng., vol. 2018,
2018.

[5] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang,
“An investigation on the feasibility of cross-
project defect prediction,” Autom. Softw. Eng.,
vol. 19, no. 2, pp. 167–199, Jun. 2012.

[6] B. Turhan, T. Menzies, B. Bener, A. B. Bener,
and J. Di Stefano, “On the Relative Value of
Cross-Company and Within-Company Data
for Defect Prediction,” Empir. Softw. Eng.,
vol. 14, no. 5, pp. 540–578, Oct. 2009.

[7] B. A. Kitchenham, E. Mendes, and G. H.
Travassos, “Cross versus within-company cost
estimation studies: A systematic review,”
IEEE Trans. Softw. Eng., vol. 33, no. 5, pp.
316–329, 2007.

[8] T. Zimmermann, N. Nagappan, H. Gall, E.
Giger, and B. Murphy, “Cross-Project Defect
Prediction,” in Proceedings of the 7th joint
meeting of the European software engineering
conference and the ACM SIGSOFT
symposium on The foundations of software
engineering on European software
engineering conference and foundations of
software engineering symposium - E, 2009,
pp. 91–100.

[9] J. Nam, S. J. Pan, and S. Kim, “Transfer
defect learning,” in Proceedings -
International Conference on Software
Engineering, 2013, pp. 382–391.

[10] A. E. C. Cruz and K. Ochimizu, “Towards
logistic regression models for predicting fault-
prone code across software projects,” 2009
3rd Int. Symp. Empir. Softw. Eng. Meas.
ESEM 2009, pp. 460–463, 2009.

[11] Y. Ma, G. Luo, X. Zeng, and A. Chen,
“Transfer learning for cross-company
software defect prediction,” Inf. Softw.
Technol., vol. 54, no. 3, pp. 248–256, Mar.
2012.

[12] S. Watanabe, H. Kaiya, and K. Kaijiri,
“Adapting a fault prediction model to allow
inter language reuse,” Proc. - Int. Conf. Softw.
Eng., pp. 19–24, 2008.

[13] F. Zhang, I. Keivanloo, and Y. Zou, “Data
Transformation in Cross-project Defect
Prediction,” Empir. Softw. Eng., vol. 22, no. 6,
pp. 3186–3218, Dec. 2017.

[14] Y. Jiang, B. Cukic, and T. Menzies, “Can data
transformation help in the detection of fault-
prone modules?,” in DEFECTS’08: 2008
International Symposium on Software Testing
and Analysis - Proceedings of the 2008
Workshop on Defects in Large Software
Systems 2008, DEFECTS’08, 2008, pp. 16–
20.

[15] F. Peters, T. Menzies, and A. Marcus, “Better
cross company defect prediction,” in IEEE
International Working Conference on Mining
Software Repositories, 2013, pp. 409–418.

[16] S. Herbold, “Training data selection for cross-
project defect prediction,” in Proceedings of
the 9th International Conference on Predictive
Models in Software Engineering - PROMISE
’13, 2013, pp. 1–10.

[17] R. Malhotra, “A systematic review of machine
learning techniques for software fault
prediction,” Appl. Soft Comput. J., vol. 27, pp.
504–518, Feb. 2015.

[18] T. Hall, S. Beecham, D. Bowes, D. Gray, and

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2105

S. Counsell, “A Systematic Literature Review
on Fault Prediction Performance in Software
Engineering,” IEEE Trans. Softw. Eng., vol.
38, no. 6, pp. 1276–1304, 2012.

[19] S. S. Rathore and S. Kumar, “A study on
software fault prediction techniques,” Artif.
Intell. Rev., pp. 1–73, 2017.

[20] C. Catal, “Expert Systems with Applications
Software fault prediction : A literature review
and current trends,” Expert Syst. Appl., vol.
38, no. 4, pp. 4626–4636, 2011.

[21] C. Catal and B. Diri, “A systematic review of
software fault prediction studies,” Expert Syst.
Appl., vol. 36, no. 4, pp. 7346–7354, 2009.

[22] D. Radjenović, M. Heričko, R. Torkar, A.
Živkovič, and D. Radjenovic, “Software Fault
Prediction Metrics : A Systematic Literature
Review,” Inf. Softw. Technol., vol. 55, no. 8,
pp. 1397–1418, Aug. 2013.

[23] S. Hosseini, B. Turhan, and D. Gunarathna,
“A Systematic Literature Review and Meta-
Analysis on Cross Project Defect Prediction,”
IEEE Trans. Softw. Eng., vol. X, no. 2, pp.
111–147, 2019.

[24] B. Turhan, A. Tosun Misirli, and A. Bener,
“Empirical evaluation of the effects of mixed
project data on learning defect predictors,” in
Information and Software Technology, 2013,
vol. 55, no. 6, pp. 1101–1118.

[25] L. Chen, B. Fang, Z. Shang, and Y. Tang,
“Negative samples reduction in cross-
company software defects prediction,” Inf.
Softw. Technol., vol. 62, no. 1, pp. 67–77, Jun.
2015.

[26] D. Ryu, J. I. Jang, and J. Baik, “A Hybrid
Instance Selection Using Nearest-Neighbor
for Cross-Project Defect Prediction,” J.
Comput. Sci. Technol., vol. 30, no. 5, pp. 969–
980, Sep. 2015.

[27] K. Kawata, S. Amasaki, and T. Yokogawa,
“Improving relevancy filter methods for cross-
project defect prediction,” in Proceedings -
3rd International Conference on Applied
Computing and Information Technology and
2nd International Conference on
Computational Science and Intelligence,
ACIT-CSI 2015, 2016, pp. 2–7.

[28] X. Yu, M. Wu, Y. Jian, K. E. Bennin, M. Fu,
and C. Ma, “Cross-company defect prediction
via semi-supervised clustering-based data
filtering and MSTrA-based transfer learning,”
Soft Comput., vol. 22, no. 10, pp. 3461–3472,
May 2018.

[29] F. Zhang, A. Mockus, I. Keivanloo, and Y.
Zou, “Towards building a universal defect
prediction model with rank transformed
predictors,” Empir. Softw. Eng., vol. 21, no. 5,
pp. 2107–2145, Oct. 2016.

[30] S. J. Pan and Q. Yang, “A survey on transfer
learning,” IEEE Trans. Knowl. Data Eng., vol.
22, no. 10, pp. 1345–1359, 2010.

[31] A. Arnold, R. Nallapati, and W. W. Cohen, “A
comparative study of methods for transductive
transfer learning,” in Proceedings - IEEE
International Conference on Data Mining,
ICDM, 2007, pp. 77–82.

[32] Y. Shi, Z. Lan, W. Liu, and W. Bi, “Extending
semi-supervised learning methods for
inductive transfer learning,” Proc. - IEEE Int.
Conf. Data Mining, ICDM, pp. 483–492,
2009.

[33] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X.
Wang, “HYDRA: Massively Compositional
Model for Cross-Project Defect Prediction,”
IEEE Trans. Softw. Eng., vol. 42, no. 10, pp.
977–998, Oct. 2016.

[34] F. Zhang, A. Mockus, I. Keivanloo, and Y.
Zou, “Towards building a universal defect
prediction model with rank transformed
predictors,” Empir. Softw. Eng., vol. 21, no. 5,
pp. 2107–2145, 2016.

[35] S. Kim, H. Zhang, R. Wu, and L. Gong,
“Dealing with noise in defect prediction,” in
Proceedings of the 33rd International
Conference on Software Engineering, 2011,
pp. 481–490.

[36] W. Tang and T. M. Khoshgoftaar, “Noise
identification with the k-means algorithm,” in
16th IEEE International Conference on Tools
with Artificial Intelligence, 2005, pp. 373–
378.

[37] E. Kocaguneli, T. Menzies, J. Keung, D. Cok,
and R. Madachy, “Active Learning and effort
estimation: Finding the essential content of
software effort estimation data,” IEEE Trans.
Softw. Eng., vol. 39, no. 8, pp. 1040–1053,
2013.

[38] S. Herbold, A. Trautsch, and J. Grabowski,
“Global vs. local models for cross-project
defect prediction: A replication study,” Empir.
Softw. Eng., vol. 22, no. 4, pp. 1866–1902,
2017.

[39] B. Turhan, A. Tosun Misirli, A. Bener, A.
Tosun Mısırlı, and A. Bener, “Empirical
evaluation of the effects of mixed project data
on learning defect predictors,” in Information
and Software Technology, 2013, vol. 55, no. 6,

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2106

pp. 1101–1118.
[40] Z. He, F. Peters, T. Menzies, and Y. Yang,

“Learning from open-source projects: An
empirical study on defect prediction,” in
International Symposium on Empirical
Software Engineering and Measurement,
2013, pp. 45–54.

[41] P. He, B. Li, D. Zhang, and Y. Ma,
“Simplification of Training Data for Cross-
Project Defect Prediction,” 2014.

[42] W. Wen, B. Zhang, X. Gu, and X. Ju, “An
Empirical Study on Combining Source
Selection and Transfer Learning for Cross-
Project Defect Prediction,” in IBF 2019 - 2019
IEEE 1st International Workshop on
Intelligent Bug Fixing, 2019, pp. 29–38.

[43] C. Liu, D. Yang, X. Xia, M. Yan, and X.
Zhang, “A two-phase transfer learning model
for cross-project defect prediction,” Inf. Softw.
Technol., vol. 107, no. November 2018, pp.
125–136, Mar. 2018.

[44] Y. Li, Z. Huang, Y. Wang, and B. Fang,
“Evaluating data filter on cross-project defect
prediction: Comparison and improvements,”
IEEE Access, vol. 5, pp. 25646–25656, 2017.

[45] A. Bispo, R. Prudencio, and D. Veras,
“Instance selection and class balancing
techniques for cross project defect prediction,”
Proc. - 2018 Brazilian Conf. Intell. Syst.
BRACIS 2018, pp. 552–557, 2018.

[46] A. K. Jain, “Data clustering: 50 years beyond
K-means,” Pattern Recognit. Lett., vol. 31, no.
8, pp. 651–666, 2010.

[47] D. Xu and Y. Tian, “A Comprehensive Survey
of Clustering Algorithms,” Ann. Data Sci.,
vol. 2, no. 2, pp. 165–193, 2015.

[48] X. Yu, J. Liu, W. Peng, and X. Peng,
“Improving Cross-Company Defect Prediction
with Data Filtering,” Int. J. Softw. Eng.
Knowl. Eng., vol. 27, no. 09n10, pp. 1427–
1438, Nov. 2017.

[49] R. Malhotra, M. Khanna, and R. R. Raje, “On
the application of search-based techniques for
software engineering predictive modeling : A
systematic review and future directions,”
Swarm Evol. Comput., vol. 32, no. August
2016, pp. 85–109, 2017.

[50] R. Malhotra, “Search based techniques for
software fault prediction: Current trends and
future directions,” 7th Int. Work. Search-
Based Softw. Testing, SBST 2014 - Proc., pp.
35–36, 2014.

[51] M. Harman and B. F. Jones, “Search-based

software engineering,” Inf. Softw. Technol.,
vol. 43, no. 14, pp. 833–839, 2001.

[52] S. Hosseini, B. Turhan, and M. Mäntylä, “A
benchmark study on the effectiveness of
search-based data selection and feature
selection for cross project defect prediction,”
Inf. Softw. Technol., vol. 95, pp. 296–312,
Mar. 2018.

[53] S. Hosseini, B. Turhan, and M. Mäntylä,
“Search Based Training Data Selection For
Cross Project Defect Prediction,” in
Proceedings of the The 12th International
Conference on Predictive Models and Data
Analytics in Software Engineering -
PROMISE 2016, 2016, pp. 1–10.

[54] Aarti, G. Sikka, and R. Dhir, “An
investigation on the effect of cross project data
for prediction accuracy,” Int. J. Syst. Assur.
Eng. Manag., vol. 8, no. 2, pp. 352–377, Jun.
2017.

[55] P. He, Y. He, L. Yu, and B. Li, “An Improved
Method for Cross-Project Defect Prediction by
Simplifying Training Data,” Math. Probl.
Eng., vol. 2018, 2018.

[56] J. Soler, F. Tenc, L. Gaubert, and B. Cedric,
“Data Clustering and Similarity,” in Twenty-
Sixth International Florida Artificial
Intelligence Research Society Conference,
2013, pp. 492–495.

[57] P. He, Y. He, L. Yu, and B. Li, “An Improved
Method for Cross-Project Defect Prediction by
Simplifying Training Data,” Math. Probl.
Eng., vol. 2018, 2018.

[58] X. Yang, H. Yu, G. Fan, K. Shi, and L. Chen,
“Local versus Global Models for Just-In-Time
Software Defect Prediction,” Sci. Program.,
vol. 2019, pp. 1–13, 2019.

[59] Z. Li, X. Y. Jing, X. Zhu, H. Zhang, B. Xu,
and S. Ying, “On the Multiple Sources and
Privacy Preservation Issues for Heterogeneous
Defect Prediction,” IEEE Trans. Softw. Eng.,
vol. 45, no. 4, pp. 391–411, Apr. 2019.

[60] T. Fukushima, Y. Kamei, S. McIntosh, K.
Yamashita, and N. Ubayashi, “An empirical
study of just-in-time defect prediction using
cross-project models,” dl.acm.org, pp. 172–
181, 2014.

[61] Y. Kamei, T. Fukushima, S. McIntosh, K.
Yamashita, N. Ubayashi, and A. E. Hassan,
“Studying just-in-time defect prediction using
cross-project models,” Empir. Softw. Eng.,
vol. 21, no. 5, pp. 2072–2106, Oct. 2016.

[62] B. Turhan, “On the dataset shift problem in

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2107

software engineering prediction models,”
Empir. Softw. Eng., vol. 17, no. 1–2, pp. 62–
74, 2012.

[63] H. Wang, T. M. Khoshgoftaar, and N. Seliya,
“How Many Software Metrics Should be
Selected for Defect Prediction ?,” Proc.
Twenty-Fourth Int. Florida Artif. Intell. Res.
Soc. Conf., no. Mi, pp. 69–74, 2011.

[64] T. Menzies, J. Greenwald, and A. Frank,
“Data Mining Static Code Attributes to Learn
Defect Predictors,” IEEE Trans. Softw. Eng.,
vol. 33, no. 1, pp. 2–14, 2007.

[65] S. Qiu, L. Lu, and S. Jiang, “Multiple-
Components Weights Model for Cross-Project
Software Ddefect Prediction,” IET Softw., vol.
12, no. 4, pp. 345–355, Aug. 2018.

[66] J. Chen et al., “Multiview Transfer Learning
for Software Defect Prediction,” IEEE Access,
vol. 7, no. c, pp. 8901–8916, 2019.

[67] F. Zhang, A. Mockus, I. Keivanloo, and Y.
Zou, “Towards building a universal defect
prediction model,” in Proceedings of the 11th
Working Conference on Mining Software
Repositories, 2014, pp. 182–191.

[68] F. Zhang, Q. Zheng, Y. Zou, and A. E.
Hassan, “Cross-project defect prediction using
a connectivity-based unsupervised classifier,”
in Proceedings - International Conference on
Software Engineering, 2016, vol. 14-22-May-,
pp. 309–320.

[69] P. S. Bishnu and V. Bhattacherjee, “Software
fault prediction using quad tree-based K-
means clustering algorithm,” IEEE Trans.
Knowl. Data Eng., vol. 24, no. 6, pp. 1146–
1150, 2012.

[70] J. Nam and S. Kim, “CLAMI: Defect
prediction on unlabeled datasets,” in
Proceedings - 2015 30th IEEE/ACM
International Conference on Automated
Software Engineering, ASE 2015, 2015, pp.
452–463.

[71] M. Jureczko and L. Madeyski, “Towards
identifying software project clusters with
regard to defect prediction,” in Proceedings of
the 6th International Conference on Predictive
Models in Software Engineering - PROMISE
’10, 2010, p. 1.

[72] M. Ester, H. P. Kriegel, J. Sander, and X. Xu,
“A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with
Noise,” Kdd, vol. 96, no. 34, pp. 226–231,
1996.

[73] L. Lelis and J. Sander, “Semi-supervised

density-based clustering,” in Proceedings -
IEEE International Conference on Data
Mining, ICDM, 2009, pp. 842–847.

[74] T. Menzies, A. Butcher, A. Marcus, T.
Zimmermann, and D. Cok, “Local vs. global
models for effort estimation and defect
prediction,” in 2011 26th IEEE/ACM
International Conference on Automated
Software Engineering, ASE 2011,
Proceedings, 2011, pp. 343–351.

[75] T. Menzies et al., “Local versus global lessons
for defect prediction and effort estimation,”
IEEE Trans. Softw. Eng., vol. 39, no. 6, pp.
822–834, 2013.

[76] N. Bettenburg, M. Nagappan, and A. E.
Hassan, “Think locally, act globally:
Improving defect and effort prediction
models,” in IEEE International Working
Conference on Mining Software Repositories,
2012, pp. 60–69.

[77] N. Bettenburg, M. Nagappan, and A. E.
Hassan, “Towards improving statistical
modeling of software engineering data: think
locally, act globally!,” Empir. Softw. Eng.,
vol. 20, no. 2, pp. 294–335, 2015.

[78] G. Scanniello, C. Gravino, A. Marcus, and T.
Menzies, “Class level fault prediction using
software clustering,” in 2013 28th IEEE/ACM
International Conference on Automated
Software Engineering, ASE 2013 -
Proceedings, 2013, pp. 640–645.

[79] M. El Mezouar, F. Zhang, and Y. Zou, “Local
versus Global Models for Effort-aware Defect
Prediction,” in Proceedings of the 26th Annual
International Conference on Computer
Science and Software Engineering, 2016, pp.
178–187.

[80] W. Rhmann, “Cross project defect prediction
using hybrid search based algorithms,” Int. J.
Inf. Technol., Aug. 2018.

[81] R. Malhotra, “Search based techniques for
software fault prediction: current trends and
future directions,” 2014, pp. 35–36.

[82] J. A. Olvera-López, J. A. Carrasco-Ochoa, J.
F. Martínez-Trinidad, and J. Kittler, “A
review of instance selection methods,” Artif.
Intell. Rev., vol. 34, no. 2, pp. 133–143, 2010.

[83] Y. Bin, K. Zhou, H. Lu, Y. Zhou, and B. Xu,
“Training Data Selection for Cross-Project
Defection Prediction: Which Approach Is
Better?,” in International Symposium on
Empirical Software Engineering and
Measurement, 2017, vol. 2017-Novem, pp.
354–363.

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2108

[84] S. Watanabe, H. Kaiya, and K. Kaijiri,
“Adapting a fault prediction model to allow
inter languagereuse,” in Proceedings of the
4th international workshop on Predictor
models in software engineering - PROMISE
’08, 2008, p. 19.

[85] C. Tantithamthavorn, S. McIntosh, A. E.
Hassan, and K. Matsumoto, “Automated
parameter optimization of classification
techniques for defect prediction models,” in
ieeexplore.ieee.org, 2016, pp. 321–332.

[86] R. Malhotra, M. Khanna, and R. R. Raje, “On
the application of search-based techniques for
software engineering predictive modeling: A
systematic review and future directions,”
Swarm Evol. Comput., vol. 32, no. October
2016, pp. 85–109, Feb. 2017.

