
Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2063

APPLICATION OF LOAD BALANCING ALGORITHMS
TO IMPROVE THE QUALITY OF SERVICE DELIVERY

USING MODIFICATIONS OF THE LEAST CONNECTIONS
ALGORITHM

SERIK JOLDASBAYEV, GULNAR. BALAKAYEVA, ORYNBASAR JOLDASBAYEV

AL-FARABI KAZAKH NATIONAL UNIVERSITY

E-mail: serykjoldasbaev@mail.ru

ABSTRACT

To develop solutions to the problems of providing high-speed Internet, that is, a high-quality service, up to a
certain point, there is the possibility of improving quality by increasing the hardware resources of the system,
but, as practice shows, quantity does not always mean quality, and the effectiveness of the service delivery
system takes into account the advantageous positioning of resources with algorithmic load balancing on
servers with maximum benefit, both for the user and for the party providing services .

This article provides the results of research and analysis of balancing algorithms, implementation
methods for load balancing on servers and improving the quality of service delivery. Research in this
direction is very relevant and in demand, the article provides an analysis and description of static and dynamic
solutions, the advantages and disadvantages of algorithms. A modernization of the Least Connections
algorithm is proposed.

Keywords: Improving The Quality Of Service Delivery, Qos, Load Balancing, Balancing Algorithms.

1. INTRODUCTION

Currently, Internet use is growing rapidly

around the world. So, in Kazakhstan, for the first
time, the real Internet appeared back in 1997 and
cost $ 10 per hour, with an average of 14,400 bps
of services. The Internet was a luxury, its
accessibility and speed increased over time, but
nevertheless it still leaves much to be desired in
many regions of the country, even in the radius of
large megacities [7]. It will be correct if we note
that the project “Kazakhtelecom” OJSC -
“Internet Zone” played a large role [8]. At the end
of 2000, 1,945 sites were registered in
Kazakhstan, while now 8-12 new sites appear in
one week, and the number of resources and users
around the world doubles in about one year [4].

The constant increase in volumes and
resources when using the Internet leads to the fact
that for many services it is important to be able to
work stably under heavy loads, since for many
competitive companies that use this or that
service, this plays a significant role in all
production issues, up to customer migration to
competitors. And it is not surprising that many
prefer to use the services of large companies
advanced in this area, for example, Amazon,

Google, etc., which use server clusters as a means
of application deployment and as load balancers
[5]. Such server clusters (hereinafter referred to
simply as servers) make it possible to not worry
about system failures - well-designed load
balancers provide optimal control of incoming
requests to servers, which contributes to the
implementation of uniform load on nodes, reduces
performance losses and ensures the maximum
possible response time to a request.

To date, many load balancing algorithms

have been developed on servers, but not all
algorithms are applied in practice. Server load
balancing algorithms are the division of the
computational load between the processors of the
computing system, which determines the optimal
load of each processor as much as possible for
most of the time [26]. Basically, many algorithms
work taking into account the load on a particular
server (server clusters), taking into account only
its computing power. In many cases, development
testing is carried out in homogeneous systems.

Typically, large services are deployed on
clusters consisting of many, in particular,

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2064

heterogeneous nodes [6]. Under such conditions,
the problem arises of distributing balancing
dynamically, possibly even by different operating
systems. Load balancing in such services is an
urgent task, since there is no universal solution for
all servers. Nevertheless, in order to expand the
capabilities of such systems, certain balancing
algorithms are applicable.

With static balancing, the algorithm is
predefined, distributes requests to nodes
according to certain rules, does not take into
account a load of servers in real-time [27].

Semi-dynamic load balancing on servers
is due to the separation of computing tasks at the
initialization stage and as requests arrive on the
server.

Dynamic load balancing - the separation
and distribution of objects is periodically updated
throughout the entire response time to user
requests and objects are moved across computing
nodes in accordance with a more optimal plan.
Separation of requests can be determined by
various specified criteria - workload, the
performance of nodes, etc. heuristic indicators
[28].

2 MODELLING OF SERVICE DELIVERY

SYSTEMS USING QUEUING SYSTEMS

Queuing systems (QS) describes the
totality of interactions between servers and
applications representing requests to these
servers. Applications processed by one system
can freely enter the input to another. The system
is closed if the number of applications in it is set
by the final, constant, number of customers, and
each customer expects a processed application
before sending the next application. An example
of such systems is usually local area networks. If
the applications come from outside in the form of
an incoming stream and the processed
applications are displayed from the network, then
the system is open. Networks of systems where
both types of applications can be mixed systems
[29].

An open network consisting of one
server works by the following principle: requests
are received in the system, they are waiting in a
queue, they are processed by the server one by one
and submitted as processed requests at the output.

Figure - 1. Scheme For Submitting And
Processing Applications On The Server

Queuing systems can be divided into

classes according to many parameters, such as the
type of distribution function, distribution function
of the processing time of an application, etc. For
the network, parameters can be set, such as the
intensity of the incoming stream and the average
time for servicing the application on the server.
Having solved the equations of the theory of
queuing, one can determine the following
characteristics of system performance:

- system load - a fraction of the time
required to process applications;

- time spent - the average time during
which the application has been in the system from
the time it was sent to the response;

- queue length - the number of
applications on the server;

- throughput - the average number of
applications processed by the system per unit
time.

A queuing network can be described as a
graph 𝐺 ൌ൏ 𝑁, 𝐸 ൐, where 𝑁 ൌ ሼ𝐶, 𝑄, 𝑆, 𝑇ሽ: 𝐶 –
plenty of sources corresponding to application
classes,
𝑄 – plenty of queues, 𝑆 – plenty of drains for
withdrawing requests from the system. The rules
for setting the system operation are determined by
the probability of sending a request along the
edges of the graph when sending it from a vertex
to another vertex. For queues, the priority policy
for servicing requests is set, for example, FIFO
policy: first-come-first-served [30].

The Kendall method is mainly used to
classify Queuing systems [31]. We introduce the
following relations are valid for all arbitrary
Queuing systems:

𝑇 – length of time monitoring the system;
𝐴 – the number of applications received

in the queue;
𝐶 – the number of applications

processed;
Using these notations, we describe the

following system characteristics:
Incoming flow rate:

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2065

𝜆 ൌ
𝐴
𝑇

,

System throughput:

𝑋 ൌ
𝐶
𝑇

.

If the system consists of one server and

the processing time of applications is known 𝑇௣,
system load can be determined 𝑈 and average
application processing time 𝑇௔:

𝑈 ൌ
𝑇௣

𝑇
,

 𝑇௔ ൌ
𝑇௣

𝐶

In this case, the workload can be

expressed as follows:

𝑈 ൌ 𝑋𝑇௔.

According to Little's definition [32], the

average number of applications 𝐿 in the system is
equal to the average input stream intensity 𝜆௔
times the average time the application spent in the
system R (time equal to the sum of the waiting
time and processing the application):

𝐿 ൌ 𝜆௔𝑅,

where
𝑅 ൌ 𝑇௣ ൅ 𝑇௔

These descriptions fully satisfy the

conditions of Jackson networks [33], consisting of
m servers, which is characterized by the
following:

- the incoming flow of applications is
Poisson,

- the time for processing applications on
each server has an exponential distribution,

- the processed application on one server
can go to another server or leave the system with
a fixed probability 𝑃௜௝, provided that the transition
events are independent of each other and have the
same distribution,

- the load on all servers is less than one
𝑈 ൏ 1.

Figure - 2. Example QS for computer

For the Jackson network, you can specify
that the servers should be considered
independently of each other and each server
creates a separate Poisson stream of processed
applications. An example of such a network is a
network of two servers connected in series with
an incoming Poisson stream of applications. The
transfer of applications from one network to
another is caused by the absence of loops in the
network graph. If this condition is not met, then it
will violate the Markov property of the system and
the flows of processed applications will not be
Poisson. It should be noted that for networks with
loops, Jackson's theorem is valid - in such a
network, servers can be considered independently
and the distribution of the number of applications
in server queues can be represented as a product:

𝑝ሺ𝑘ଵ, … , 𝑘௡ሻ ൌ 𝑝ଵሺ𝑘ଵሻ ∙. .∙ 𝑝௡ሺ𝑘௡ሻ,

𝑝௜ሺ𝑘௜ሻ – the probability of finding 𝑘௜

applications on the 𝑖-th server. This representation
is called the multiplicative form (product forms).

A generalized Jackson network is called
a BCMP network [34], where multiple request
classes can be present and servers must belong to
one of the following types:

- FCFS - processing requests in order of
receipt, indicative distribution of processing time
with the same intensity for all classes;

- PS - processor split mode, each
requested class is served independently with
different processing time distributions;

- IS - infinite server-requests stay for
some time, regardless of the number of requests;

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2066

- LCFS-PR - the processing of the last
received application with the displacement of the
processing one.

The BCMR theorem states that in BCMR
networks, servers can be considered
independently of each other and the probability
that a certain number of requests are located on
the system servers can be obtained as the product
of the corresponding probabilities for individual
servers:

𝑝൫𝑘ത൯ ൌ 𝑝ଵ൫𝑘ത௜൯ ∗. .∗ 𝑝௡൫𝑘ത௡൯

where 𝑘ത ൌ ൫𝑘തଵ, … , 𝑘ത௡൯, 𝑘ഥ ௜ ൌ
൫𝑘௜,ଵ, . . 𝑘௜,௥, … , 𝑘௜,ோ൯ and 𝑘௜,௥ – number of requests
𝑟 on server 𝑖.

When considering flows in transport
networks, a Braess-type paradox was formulated.
The paradox is that when using a suboptimal
algorithm for distributing traffic flows, adding
additional paths in the system can lead to an
increase in the time of passing the request from
the source to the recipient. Similar paradoxes
occur in load distribution in distributed and
parallel systems. In [35], we consider a system of
two different servers that can transmit requests to
each other for processing. It is shown that if each
server tries to minimize the average time spent on
requests (a criterion for a class of requests), then
for some positive values of the communication
channel bandwidth between servers, the average
time spent on each of them is longer than in the
absence of an exchange of requests. At the same
time, it seems obvious that the stay time, at least,
should not increase. This is the paradox. Note that
if the average stay time for two servers is
minimized (the criterion for all requests) or for
each request (an individual criterion), then there is
no paradox. The phenomenon of a Braess-type
paradox is related to the structure of the
equilibrium achieved in the system. In the case of
a class criterion, a Nash equilibrium occurs, which
may not correspond to the global optimum
achieved using the General criterion. A detailed
analysis of the types of equilibrium and paradoxes
that arise during load balancing in distributed
systems can be found in work [36].

2. REVIEW OF PROCEEDINGS

A large number of well-known scientists,

for example, Kleinrock, S. Blake, D. Grossman,
Z. Wang, Steklov VK, Berkman LN, as well as
research centres such as Mobile Ad-hoc
Networks, Internet Engineering Task Force,

Center for Embedded Networked Sensing deals
with the management and distribution of traffic.
However, despite the huge number of publications
and the efforts of manufacturers, the task of
constructing traffic patterns that best reflects its
functioning in real conditions is still not solved
[21-25].

In [37], the problem of constructing
optimal tree structures for distributed service
networks (Grid) is investigated. A system of N
nodes is considered. the average request
processing time in the open model for various
configurations of interactions between nodes is
calculated using the QS network theory. In this
case, the system structure is a tree, and the master-
slave paradigm is used to organize interaction
between nodes. In our opinion, the main value of
the work consists of using several QS models to
describe a single computational system. To
describe the process of testing the status of slave
nodes and the process of processing requests by
slave nodes, various models are used, the
parameters of which are related to each other.

In [38] the task of minimizing the
response time of a distributed system is set. The
system is modelled by a Queuing network
consisting of servers connected to a network with
an arbitrary topology. The performance
characteristics of the nodes can be different. It is
assumed only that each request can be processed
on any server. Requests from outside come in the
form of a Poisson intensity stream.

The average value analysis (MVA)
method is used to calculate the characteristics of
closed Queuing networks. There is an exact MVA
method and an approximate one. In [39], the exact
MVA method for closed networks with a single
request class was considered.

The Satin system described in the work
of Nieuwpoort [40] is intended for executing
programs, solving the problems on the principle
of "divide and conquer" on systems with
distributed memory. The Satin system uses an
algorithm for Random Stealing (RS) subtasks to
distribute the load between locally distributed
nodes. For the case of load distribution between
nodes of different clusters connected by a slow
WAN, another paper by Newport, [41] proposed
an algorithm for random borrowing taking into
account Cluster-Aware Random Stealing (CRS).
The proof of the stability of the RS algorithm for
systems with a complete graph of the structure is
given in [42]. Taking into account the place of the
algorithm in the classification based on the
research presented in [41], it follows that the

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2067

algorithm is stable, will be ineffective for a
medium and lightly loaded system, and also for
solving a large number of small tasks, since only
one task is transferred during balancing. for a
large load, the algorithm will be highly efficient,
as the author's research shows.

In [43] the PICO system is described,
which is a Framework developed in C ++ using
MPI to implement general branch and bound
method algorithms. The environment of this
system is a mechanism for implementing various
algorithms based on the application of the
Inversion of Control (IoC) principle [44] for the
interaction of branches and borders. According to
the description of the authors, PICO was
developed as a result of generalizing the
experience of developing other systems that solve
optimization problems using the algorithms of the
branch and bound method in distributed
environments. In balancing this method, not all
nodes are involved, only those whose loading
deviates from the average by more than a given
value. The algorithm implies the availability of
global information about the workload of nodes in
the system and is distributed by a complex
mechanism based on the construction of a tree of
connections between nodes.

In [45], the author proposed a load
balancing algorithm for systems built using the
master-slave paradigm. The balancing algorithm
can be described as centralized, initiated by the
coordinator, using the free sub-tasks in the pool
for balancing. The algorithm collects loading
information at fixed intervals. Note that the
algorithm will be poorly scalable in terms of the
number of masters in the system, as well as when
solving a large number of simple subtasks since
the number of nodes on the master will change
faster than the period of the state polling. As a
result, the coordinator will have incorrect
download data. In addition, the absence of a local
subtask pool on child nodes leads to a large
overhead for the transfer of subtasks.

Specifically, because reinforcement
learning offers the potential to develop optimal
allocation policies without explicit model
knowledge by learning from the consequences of
each action, existing works on ML algorithms
mainly focus on reinforcement learning [15,16].
They require neither an explicit system model nor
an explicit traffic model to learn.

RL refers to a learning process, where a
learning agent can learn to make appropriate
decisions through interactions with an external
environment [3]. Specifically, beyond the

learning agent and the environment, a
reinforcement learning system consists of a
policy, a reward function and a value function. Let
S be the set of environment states and A be the set
of actions, respectively.

Another popular machine learning
algorithm is the support vector machine (SVM). It
has been widely applied for different areas such as
pattern recognition, classification and data
mining. However, SVMs are not preferred in on-
line applications since the training and testing
complexity of standard SVM are O(nm + m3) and
(m) respectively, where n is the data size and m
denotes the number of support vectors. On the
other hand, some approximated methods have
been proposed to reduce the complexity [19]. For
example, [20] reduces the complexity to O(nd 2
max), where d max is the number of basis
functions elected.

A few works on machine learning
algorithms have been proposed for the resource
management problem [14-19]. For admission
control, [27] derived a complex rule set that can
be used to identify the optimal configuration for
unobserved workload based on machine learning
algorithms. [19] applied RL to configure
parameters automatically in multi-tier Web
systems, where eight parameters at the web tier
and application tier are selected to consist of the
state space. For each parameter, there are three
possible actions: increase, decrease and keep. The
policy is based on the e-greedy method. In order
to suppress the poor performance due to bad
initialization, they proposed an algorithm to
construct different initialization policies for
different scenarios. For VM scaling, [18]
proposed an iterative model training technique
based on artificial neural network (ANN) to
predict computing resource demand in virtual
environments. [17] applied RL to train nonlinear
approximators (e.g., multi-layer perceptrons)
instead of the lookup table for VM horizontal
scaling, where the state is defined as the request
arrival rate and the action is to determine the
number of servers allocated. Since the state space
grows exponentially with the number of
parameters in practice, the authors applied a
nonlinear function approximator as an external
policy to avoid poor performance that would be
expected during online learning.

Recently, a few works on fuzzy control
for resource management have been proposed in
[15,16,28]. In [28], the admission control is
conducted by fuzzy control in order to manage the
QoS, where the turning parameter Maxclients in

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2068

each interval is controlled by the fuzzy controller.
For VM scaling, [15] attempted to capture the
non-linear behaviors in VM resource usages by
designing a fuzzy model estimator. The approach
is divided into two steps. First, fuzzy logic-based
modelling method is used to learn the system
behaviors without requiring any prior knowledge.
Then a predictive controller predicts the resource
demand of all VMs and takes actions based on this
model. [16] proposed a neural fuzzy controller for
percentile-based end-to-end delay guarantee
through a virtualized multi-tier server cluster,
where Gaussian membership functions are first
used to fuzzify the average service time, s i , and
the variance of service time, sigma 2i , distribution
of requests at tier i, respectively. Then a fuzzy
neural network is applied for online learning at the
Inference stage. In addition, an output scaling
factor is introduced to further enhance
performance. It is model-independent and capable
of adapting control parameters through fast online
learning. Compared with other supervised
machine learning techniques, it does not require
off-line training.

In [46] authors propose HovercRaft, a
new approach by which adding nodes increases
both the resilience and the performance of
general-purpose state-machine replication. They
achieve this through an extension of the Raft
protocol that carefully eliminates CPU and I/O
bottlenecks and load balances requests. Their
implementation uses state-of-the-art kernel-
bypass techniques, datacenter transport protocols,
and in-network programmability to deliver up to
1 million operations / second for clusters of up to
9 nodes, linear speedup over unreplicated
configuration for selected workloads, and a 4×
speedup for the YCSBE-E benchmark running on
Redis over an unreplicated deployment.

A raft is a consensus algorithm that
depends on a strong leader and exposes the
abstraction of a replicated log. The leader receives
client requests, puts them in its log, thus
guaranteeing a total order, and replicates those to
the follower through an append entries request
[47].

3. ANALYSIS OF METHODS FOR

DEVELOPING BALANCING
ALGORITHMS

From the point of view of efficiency, the
algorithm is considered good if it satisfies certain
requirements that are acceptable within the real-
time operation. For example, if the algorithm

allows the system to provide horizontal scaling,
continue to work when some nodes fail, that is, be
fault tolerant.

The methods for developing balancing
algorithms [8,9], although they have different
approaches, meet the following requirements:

1. Predictability.
2. Uniform or fair loading of system

resources.
3. Scalability.
In many works, today they focus on the

main balancing algorithms that have the most
practical application, such algorithms as Round
Robin, Weighted Round Robin, Least Queue,
Load Least, Sticky session, Least Connections
(Least Connections, Locality-Based Least)
algorithms Connection Scheduling, Locality-
Based Least Connection Scheduling with
Replication Scheduling) [5-10].

In many works, today they emphasize as
the main balancing algorithms that have the most
practical application, such algorithms as Round
Robin, Weighted Round Robin, Least Queue,
Load Least, Sticky session, algorithms of the
Least Connections group (Least Connections,
Locality-Based Least Connection Scheduling,
Locality-Based Least Connection Scheduling
with Replication Scheduling) [5-10].

Using the following notation of the
properties of the algorithms, we will try to give a
detailed description of them:

𝜔௜ – service intensity,
𝑝௜ ൌ 𝜆௜ 𝜆⁄ – the probability of sending a

request to the i-th server,
𝜆௜ ൌ 𝜙௜ ൅ ∑ 𝑥௝௜

௡
௝ୀଵ – the intensity of the

flow of applications arriving at i-th server,
𝜌௜ ൌ 𝜆௜/𝜔௜ – server i load.

1) Round Robin (RR) - the distribution

of applications takes place in turn, from the first
to the final cyclic, all servers receive an average
of the same number of applications:

𝑝௜ ൌ
1
𝑛

ൌ 𝑐𝑜𝑛𝑠𝑡,

𝜆௜ ൌ
𝜆
𝑛

,

 𝑇 ൌ ෍
1

𝑛𝜔௜ െ 𝜆

௡

௜ୀଵ

.

2) Weighted Round Robin (WRR) - the

distribution of applications in order, provided that

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2069

each server is assigned a weight coefficient
depending on the performance and power of the
node, and applications for them are received
accordingly with the accepted rules:

𝑝௜

𝑤௜
ൌ 𝑐𝑜𝑛𝑠𝑡,

𝑇 ൌ ෍
1

𝑤
𝑤௜

𝜔௜ െ 𝜆

௡

௜ୀଵ

,

𝑤 ൌ ෍ 𝑤௜

௡

௜ୀଵ

.

3) Least Queue - a dynamic feedback

algorithm, the application will be sent to the
server with the least number of applications at the
time, in this order the queue length on all servers
will be the same:

෍ 𝑄௜ ൌ
𝜌௜

ଶ

1 െ 𝜌௜
ൌ 𝑐𝑜𝑛𝑠𝑡, 𝑖 ൌ min

௝ୀଵ,௡
ሼ𝑗: 𝜆 ൏ 𝜆௝ሽ,

𝑝௝ ൌ
𝑖𝜔௝ െ 𝜔ஊ

௜

𝑖𝜆
൅

1
𝑖

, ⟸ 𝜆 ൐ 𝜆௝

ൌ 𝜔ஊ
௝ିଵ െ ሺ𝑗 െ 1ሻ𝜔௝,

𝑝௝ ൌ 0, ⟸ 𝜆 ൏ 𝜆௝,

𝑇 ൌ
𝑖

𝜔ஊ
௜ െ 𝜆

4) Least Load - dynamic feedback

algorithm. The application is sent to the server
that is least loaded. The amount of server load can
be determined, for example, by the time of
connection with the server. The load on all servers
is the same:

1 െ 𝑈௜ ൌ 𝜌௜ ൌ 𝑐𝑜𝑛𝑠𝑡,

 𝑝௜ ൌ
𝜔௜

𝜔ஊ
,

 𝑇 ൌ
𝑛

𝜔ஊ െ 𝜆

5) Least Connections - a dynamic

feedback algorithm, taking into account the
number of connections supported by the servers at
the current time. The application is sent to the
server that is least loaded.

In [48] research, the authors proposed a
variant where the static round-Robin algorithm is
more efficient than the least-connected algorithms
since it can provide more bandwidth with less
CPU load and less overall latency.

Table-1 - Comparative characteristics of

balancing algorithms

Name Descript
ion

Benefits Disadvan
tages

Round
Robin

iterating
through
a
circular
cycle

protocol
independe
nce,
implement
ation cost,
lack of
communic
ation
between
servers

uniformit
y of
resources,
lack of
informati
on about
congestio
n

Weighte
d Round
Robin

iterating
through
a
circular
cycle,
taking
into
account
server
weights

flexible
load
distributio
n,
efficiency
with
known
compositi
on of
servers in
the cluster

prelimina
ry
determina
tion of
server
performa
nce and
power

Least
connecti
ons

requests
are sent
to the
server
with the
least
number
of
active
connecti
ons.

reliability
and
increased
fault
tolerance
by
submitting
a request
to a less
loaded
node, cost,
lack of
need for
data on
the
compositi
on of
servers

does not
take into
account
the load
of
individua
l requests

Weighte
d Least
Connecti
ons

when
load
balancin
g, it
takes

determinat
ion of the
node load
and takes
into

does not
take into
account
the load
of

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2070

into
account
the
number
of
active
connecti
ons and
the
weight
coeffici
ent of
servers

account
the weight
coefficient
of servers

individua
l requests

Least
Connecti
ons,
Locality
-Based
Least
Connecti
on
Scheduli
ng

“LC +”
principl
e
each
client
server is
assigned
a group
of cat IP
client
requests
. are
directed
to the
main
server if
it is
loaded
redirects
the
request
to
another
server

Effective
for
caching
proxies

does not
take into
account
the load
of
individua
l
requests,
requires
additional
resources

Locality
-Based
Least
Connecti
on
Scheduli
ng with
Replicati
on
Scheduli
ng

each IP
address
or group
of IP
addresse
s is
assigned
to a
group of
servers
the
request
is sent
to the
least
loaded
server

Avoid
Over
Replicatio
n

requires
additional
instructio
ns and
energy
costs
during
peak load

from the
group
if all
servers
from the
main
group
are
overloa
ded, a
new
server
will be
reserved

Sticky
session

requests
are sent
to the
server
of the
cluster
to
which
the
request
was sent
when
creating
the
session

protocol
independe
nce, lack
of
communic
ation
between
servers,
support in
NGINX
web
server

The load
on a
specific
server is
not taken
into
account
when
distributi
ng

The considered algorithms can be effectively

used to balance the load on servers under certain
conditions.

3.1 Comparative Analysis Of Algorithms By

Hierarchy Analysis

To systematize expert knowledge and analyze

the effectiveness of the considered algorithms, the
hierarchy analysis method (HAM) is well suited.
HAM does not provide an unambiguous correct
solution, however, it allows you to interactively
find the option that is best suited to solve a
specific problem with given restrictions. To
compare the algorithms, the following criteria
were selected:

K1 - justice;
K2 - uniformity;
K3 - processing time;
K4 - response time;
K5 - scalability - the algorithm should remain

operational with increasing load, changing the
number and characteristics of computing nodes;

K6 - implementation complexity.

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2071

According to the method of analyzing
hierarchies, it is first of all necessary to determine
the relative importance of criteria based on the
principle of discrimination and comparative
judgments. A matrix of pairwise comparisons of
criteria is given in table-2.

Table-2 - A matrix of pairwise comparisons

of criteria

 K1 K2 K3 K4 K5 K6
K1 1 7 1 1 3 3
K2 1/7 1 1/5 1/7 1/3 1
K3 1 5 1 1/3 3 5
K4 1 7 3 1 3 7
K5 1/3 3 1/3 1/3 1 3
K6 1/3 1 1/5 1/7 1/3 1

To determine the relative importance of the
criteria, it is necessary to calculate the estimates
of the components of the eigenvector. First you
need to calculate the geometric mean in each row
of the table of pairwise comparisons:

𝑏௜ ൌ ඩෑ 𝑎௜௞

௡

௞ୀଵ

೙

, 𝑖 ൌ 1, 𝑛

The calculation results are shown in summary

table-3:

Table-3 – The geometric mean in each row

𝑏ଵ 𝑏ଶ 𝑏ଷ 𝑏ସ 𝑏ହ 𝑏଺
1,994
7574

0,332
8783

1,70997
59

2,758
9242

0,83268
32

0,383
3672

Next, we calculate the amount

𝐵 ൌ ෍ 𝑏௜

௡

௜ୀଵ

, 𝐵 ൌ 8,01258616

We normalize the vector 𝑏

𝑥௜ ൌ
𝑏௜

𝐵

Results are shown in summary table-4:

Table-4 – Normalize the vector b

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺
0,248
953

0,041
5444

0,213
4112

0,344
3238

0,10392
19

0,04784
56

We carry out a normalization check

෍ 𝑥௜ ൌ 1

௡

௜ୀଵ

i.e

𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଷ ൅ 𝑥ସ ൅ 𝑥ହ ൅ 𝑥଺ ൌ
 0,248953009 ൅ 0,041544423 ൅
 0,21341124 ൅ 0,344323808 ൅

 0,1039219 ൅ 0,047845621 ൌ 1.

After calculating the estimates of the

significance of the criteria for the distribution of
second-level queries, conclusions can be drawn
about their significance, these results are shown in
table-5. We can conclude that the most significant
contribution to the analyzed system is made by
criterion K4.

Table-5 – Significance of the criteria

criteria pleace weight

K1 2 0,248953009
K2 6 0,041544423
K3 3 0,21341124
K4 1 0,344323808
K5 4 0,1039219
K6 5 0,047845621

Next, you need to calculate the consistency

ratio to confirm the correctness of the judgments
of experts. To do this, calculate the sum of the
matrix elements for each column:

𝑦௜ ൌ ෍ 𝑎௜௞

௡

௜ୀଵ

The calculation results are shown in table-6:

Table-6 – Sum of matrix elements for each
column

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ 𝑦ହ 𝑦଺

3,809
5238

24 5,733
3333

2,952
381

10,666
667

20

We calculate the largest eigenvalue:

𝜆௠௔௫ ൌ ෍ 𝑥௜𝑦௜

௡

௜ୀଵ

, 𝜆௠௔௫ ൌ 6,251004076

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2072

We determine the consistency index:

𝐼 ൌ
𝜆௠௔௫ െ 𝑛

𝑛 െ 1
, 𝐼 ൌ 0,050200815

We calculate the consistency ratio:

𝑅 ൌ
𝐼
𝐶

100% ൌ 4%

The value of the consistency ratio does not

exceed 10%, which is an acceptable value and
indicates the correctness of the judgments.

The algorithm described above compares the
algorithms for each of the criteria. As a result of
pairwise comparisons of the algorithms, the total
numbers of 1-5 places occupied by each of the
algorithms were obtained:

Table-6 – Significance of criteria for

algorithms

Algorithm 1 2 3 4 5
A1 - RR 1 2 1 2
A2 - LC 2 3 1
A3 - WLC 4 2
A4 - WRR 4 2

Table-7 – Contribution of criteria to the value

of a utility function

Algorithm K1 K2 K3 K4 K5 K6
A1 11% 2% 17% 31% 15% 25%
A2 19% 17% 21% 19% 9% 15%
A3 31% 3% 20% 35% 10% 2%
A4 31% 3% 20% 35% 10% 2%

When developing a load balancing

system, it is also necessary to take into account
that none of the considered algorithms
individually provides fault tolerance of the
computing system as a whole. Thus, it is
necessary to further develop a strategy for
distributing queries in the event of a failure of
computing nodes.

As part of further research, it is planned
to develop a simulation model of a load balancer
on a distributed computing system that includes
these algorithms. The simulation model will allow
you to analyze:

• the effectiveness of the application of
the considered algorithms in conditions close to
real ones;

• compare the effect of load growth on
the performance of a computer system;

• the ability to scale the computing
system by adding new nodes and increasing the
resources of existing nodes.

Based on the above research, we want to
modify the Least Connection algorithm and
supplement it with the following modifications.

4. IMPLEMENTATION OF LOAD

BALANCING ALGORITHMS ON
SERVERS DEPLOYED IN A SINGLE-
INSTANCE APPLICATION CLUSTER.
MODIFICATION OF THE LEAST
CONNECTIONS ALGORITHM.

Based on the studies, the quality of load

balancing on servers is implemented by the
following algorithms: Round Robin, Weighted
Round Robin, Load Least, Least Connections.
Theoretical and computational studies have
shown the advantages and disadvantages of these
load balancing algorithms on servers deployed in
a single-instance application cluster.

Currently, the Least Connections
balancing algorithm is relevant, which in
particular is used for services deployed in a single-
instance application cluster - each node has its
own application instance, a distributed cache is
used as a hash table, the data in which is available
on all servers [11]. To improve the original
algorithm, a modification is proposed where not
only the number of active connections is used, but
also a certain priority to the server depending on
its resources (power) compared to others in the
system.

The advantage of this algorithm is the
ability to initialize new cluster nodes, not only
from the file with the cluster settings, but also as
new requests are received. If the server to which
the request is being addressed is not located in the
server settings, the parameters of the requested
node are saved and the possibility of dynamically
expanding the composition of servers (clusters) is
provided, and the lowest load is assigned to this
node, since the computing power of this server is
unknown.

Suppose a cluster consists of N number
of servers. Depending on the incoming requests,
the server cluster provides different numbers of
nodes: 𝑆 ൌ 1, 𝑁തതതതത. First of all, the algorithm makes
the determination of the presence of the
parameters of the target server from a user request
by comparing it with a hash table where the server
data is stored in cluster 𝑆௜. If the identical server

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2073

is not located, a new node is recorded 𝑆௜ାଵ.
Following is the definition of the servers used:

a) if only one server 𝑆 ൌ 1 is used,
then the current request will be sent to this server,

b) if the number is more than two
𝑆 ൐ 2, then the server list is sorted, depending on
the number of active connections and server
weights provided even during initialization.

Next is the definition and selection of the
server with the least number of active connections
𝑆௜

௠௜௡ by the server power factor 𝑘௜ and the request
is redirected to this server.

Figure-3 – Flowchart of the modified Least
Connection algorithm

Thus, the modified Least Connections

algorithm for single-instance application clusters
contains the predominant difference with the

original sample due to the labeling of weights on
the servers.

The program code developed by the
authors contains the sorting of cluster nodes
according to the number of active connections and
the load factor for each individual node, and the
issuance of the corresponding address.

In addition, the modified Least
Connections algorithm, due to its dynamic
characteristics, can evenly distribute the load
across all server nodes deployed in a single-
instance application cluster.

We have a server with three nodes.
Consider the following example:

Server-1 processes 3 active transactions.
Server-2 processes 20 active

transactions.
Server-3 does not process any active

transactions.
The load balancer selects the service

using the value (K) of the following expression:
K is the number of active transactions.

Requests are delivered as follows:
Server-3 receives the first request

because the service does not process any active
transactions. A service without an active
transaction is selected first.

Server-3 receives the second and third
requests because the service has the next fewest
active transactions.

Server-1 receives the fourth request.
When server-1 and server-3 have the same
number of active transactions, Least Connections
performs load balancing in cyclic mode. So
server-3 gets the fifth request, server-1 gets the
sixth request, server-3 gets the seventh request,
and server-1 gets the eighth request, and so on.

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2074

Figure-4 – Visual Representation Of The Balancer Operation

Figure-5 – The Distribution Of Requests To
Across Three Server Nodes Using The Modified Least

Connections Algorithm

5. CONCLUSION

Studies and implementation of balancing
algorithms Round Robin, Weighted Round Robin,
Load Least, Least Connections, testing of the
results lead to the following conclusions:

- Least Connections algorithm is
efficient enough to solve the problem of load
balancing on servers deployed in a single-instance
application cluster;

- received uniform load balancing in
server nodes;

- the application of the proposed
modifications of the algorithm makes it possible
to scale applications and increases fault tolerance
due to the uniform distribution of load among the
nodes, which also increases the fault tolerance of
the system;

In general, as a result of the research, we
can conclude that when using the Least
Connections algorithm, the risk of failure of the
"weak" server nodes is reduced by determining
the computational characteristics and introducing
the server power factor. In addition, this algorithm
helps to reduce unnecessary delays and, due to its
dynamic characteristics, can evenly distribute the
load across all server nodes.

Thus, the studies conducted by the
authors of this article made it possible to analyze
and solve the load balancing problem using the
Least Connections algorithm in accordance with
the requirements of increasing efficiency and
increasing the load distribution performance.

When considering and comparing
existing balancing strategies, you should:
carefully analyze all the advantages and
disadvantages of the selected load balancing
option; take into account that simpler approaches
give better results; choose the model and method
of load balancing that is most suitable for a
specific application; try to implement new
algorithms in the form of separate software
modules or products with a convenient interface
for the SOFTWARE that is intended to use the
user application.

REFERENCES:

[1] Hyunyoung Kil, Reeseo Cha, Wonhong

Nam. Transaction history-based web service
composition for uncertain QoS.
International journal of web and grid
services, vol. 12 (2016):42.

[2] Balakayeva G.T., Aidarov K.A. Research of
algorithms and methods of load balancing
and construction of models for queuing
networks. Proceedings of the International

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2075

Conference on Computational and Applied
Mathematics "VPM’17"in the framework of
the Marchuk Scientific Readings,
Novosibirsk, June 25 – July 14 [Electron.
resource], (2017): 17–21.

[3] Goldstein B.S., Marshak MA, Mishin E.D.,
Sokolov N.A., Tum A.V. "Indicators of the
functioning of the multiservice
communication network of public use".
Journal of Communication Engineering, no.
3–4 (2009): 17.

[4] Balakayeva G., Aidarov K., Simulation of
load balancing algorithms based on queuing
networks. Abstracts of VI Congress of the
Turkic World Mathematical Society
(TWMS 2017), Astana, (2017): 313.

[5] EL-Sanosi I. and Ezhilchelvan, P. Improving
zookeeper atomic broadcast performance by
coin tossing. In European Workshop on
Performance Engineering, Springer, (2017):
249–265.

[6] Flannagen E. Michael. Syngress (2001)
”Administering CISCO QoS in IP-
Networks”, Syngress Media, ISBN
1928994210, 9781928994213, (2001): 519.

[7] Goldstein B.S., Marshak M.A., Mishin E.D.,
Sokolov N.A., Tum A.V. Kontrol
pokazatelei kachestva obsluzhivanya s
uchotom perekhoda k seti svyazi
sleduyushego pokolenya [Control of quality
of service indicators, taking into account the
transition to a next-generation
communication network]. Tekhnika Svyazi,
no 1 (2009).

[8] Andrzejak A., Arlitt M., Roila J. Bounding
the Resource Savings of Utility Computing
Models. Technical Report HPL-2002,
Internet Systems and Storage Laboratory,
HP Laboratories, (December 2002): 339.

[9] Kharchenko V, Illiashenko O, Boyarchuk A,
Sklyar V, Phillips C Emerging curriculum
for industry and human applications in
Internet of Things. In: 9th IEEE
International Conference on Intelligent Data
Acquisition and Advanced Computing
Systems: Technology and Applications
(IDAACS) Bucharest, Romania: Institute of
Electrical and Electronics Engineers Inc.,
(2017): 918-922.

[10] Chase, J. S., Anderson, D. C., Thakar, P. N.,
Vahdat, A. M., Doyle, R. P. Managing
energy and server resources in hosting
centers. ACM SIGOPS Operating Systems
Review., no 35(5), (2001): 103.

[11] Lee, Y. C., Zomaya, A. Y. . Energy efficient
utilization of resources in cloud computing
systems. The Journal of Supercomputing,
60(2), (2010): 268–280.

[12] Enokido, T., Aikebaier, A., Takizawa, M. A
Model for Reducing Power Consumption in
Peer-to-Peer Systems. IEEE Systems
Journal, 4(2),(2010): 221–229.

[13] Liu, S., Ren, S., Quan, G., Zhao, M., Ren, S.
Profit Aware Load Balancing for Distributed
Cloud Data Centers. 2013 IEEE 27th
International Symposium on Parallel and
Distributed Processing, (2013): 611–622.

[14] Vakilinia, S., Heidarpour, B., Cheriet, M.
Energy Efficient Resource Allocation in
Cloud Computing Environments. IEEE
Access, 4, (2016), 8544–8557.

[15] Zhang, W., Zhang, Z., Chao, H.-C. .
Cooperative Fog Computing for Dealing
with Big Data in the Internet of Vehicles:
Architecture and Hierarchical Resource
Management. IEEE Communications
Magazine, 55(12), (2017): 60–67.

[16] Nagpure, M. B., Dahiwale, P., Marbate, P.
An efficient dynamic resource allocation
strategy for VM environment in cloud. 2015
International Conference on Pervasive
Computing (ICPC) (2015).

[17] Mukherjee, M., Shu, L., Wang, D. Survey of
Fog Computing: Fundamental, Network
Applications, and Research Challenges.
IEEE Communications Surveys and
Tutorials, (2018): 1–1.

[18] Bodenstein, C., Schryen, G., Neumann, D.
Energy-aware workload management
models for operation cost reduction in data
centers. European Journal of Operational
Research, 222(1), (2012): 157–167.

[19] Mohammad Ali, H. M., El-Gorashi, T. E. H.,
Lawey, A. Q., Elmirghani, J. M. H. Future
Energy Efficient Data Centers With
Disaggregated Servers. Journal of
Lightwave Technology, 35(24), (2017):
5361–5380.

[20] Hameed, A., Khoshkbarforoushha, A.,
Ranjan, R., Jayaraman, P. P., Kolodziej, J.,
Balaji, P., . . . Zomaya, A. A survey and
taxonomy on energy efficient resource
allocation techniques for cloud computing
systems. Computing, 98(7), (2014): 751–
774.

[21] Ge, Y., Zhang, Y., Qiu, Q., Lu, Y.-H. A
game theoretic resource allocation for
overall energy minimization in mobile cloud
computing system. Proceedings of the 2012

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2076

ACM/IEEE International Symposium on
Low Power Electronics and Design -
ISLPED ’12., (2012): 279-284.

[22] Kliazovich, D., Arzo, S. T., Granelli, F.,
Bouvry, P., Khan, S. U. e-STAB: Energy-
Efficient Scheduling for Cloud Computing
Applications with Traffic Load Balancing.
2013 IEEE International Conference on
Green Computing and Communications and
IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing, (2013):7-
13.

[23] Aikebaier, A., Yang, Y., Enokido, T.,
Takizawa, M. Energy-Efficient
Computation Models for Distributed
Systems. 2009 International Conference on
Network-Based Information Systems
(2009): 424-431.

[24] Sharma, B., Wood, T., Das, C. R.
HybridMR: A Hierarchical MapReduce
Scheduler for Hybrid Data Centers. 2013
IEEE 33rd International Conference on
Distributed Computing Systems (2013):
102-111.

[25] Gao, Y., Guan, H., Qi, Z., Song, T., Huan,
F., Liu, L. Service level agreement-based
energy-efficient resource management in
cloud data centers. Computers and Electrical
Engineering, 40(5), (2014): 1621–1633.

[26] Gao, Y., Guan, H., Qi, Z., Song, T., Huan,
F., Liu, L. Service level agreement-based
energy-efficient resource management in
cloud data centers. Computers and Electrical
Engineering, 40(5), (2014): 1621–1633.

[27] Andrzejak A., Arlitt M., Roila J. Bounding
the Resource Savings of Utility Computing
Models. Technical Report HPL-2002,
Internet Systems and Storage Laboratory,
HP Laboratories, (December 2002): 339.

[28] Chase, J. S., Anderson, D. C., Thakar, P. N.,
Vahdat, A. M., Doyle, R. P. Managing
energy and server resources in hosting
centers. ACM SIGOPS Operating Systems
Review., no 35(5), (2001): 103.

[29] Mitrani I. Probabilistic Modelling.
Cambridge Univ. Press. 1998

[30] Clifford E. Cummings, “Simulation and
Synthesis Techniques for Asynchronous
FIFO Design,” SNUG 2002 (Synopsys
Users Group Conference, San Jose, CA,
2002) User Papers, March 2002, Section
TB2,. Also available at www.sunburst-
design.com/papers.

[31] Sen, Rathindra P. Operations Research:
Algorithms And Applications. Prentice-Hall
of India, 2010, ISBN 81-203-3930-4.

[32] Alberto Leon-Garcia «Probability, statistics,
and random processes for electrical
engineering». — 3rd. — Prentice Hall,
2008. — ISBN 0-13-147122-8.

[33] Kelly, F. P. . "Networks of
Queues". Advances in Applied
Probability. 8 (2): 416–432, 1976, doi:
10.2307/1425912. JSTOR 1425912.

[34] F. Baskett, K.M. Chandy, R.R. Muntz, F.G.
“Palacios Open, closed and mixed networks
of queues with different classes of
customers” Journal of the ACM (JACM)
2002.

[35] H. Kameda, E. Altman, T. Kozawa and Y.
Hosokawa „Braess-like paradoxes in
distributed computer systems. IEEE Trans”
Automatic Contr. 2000.

[36] H. Kameda, O. Pourtallier “Paradoxes in
distributed decisions on optimal load
balancing for networks of homogeneous
computers” Journal of the ACM (JACM),
2002.

[37] J. Palmer, I. Mitrani “Optimal tree structures
for Large service networks” in 1st EuroNGI
Conference on Next Generation Internet
Networks (NGI 2005), IEEE Computer,
2005.

[38] A.A. Tantawi, D. Towsley “Optimal static
load balancing in distributed Computer
Systems” Journal of the ACM, 1985.

[39] E.D. Lazowska, J. Zahorjan, G.S. Graham,
K.C. Sevcik “Quantative Computer
Performance: Computer System analysis
using Queuing Network Models” Prentice
Hall, 1984.

[40] R.V. van Newport, J. Maassen, G.
Wrzesinska, T. Kielmann and H.E. Bal
“Adaptive load balancing for Divide-and-
Conquer Grid Applications” in Journal of
Supercomputing, 2006.

[41] R.V. van Newport, T. Kielmann and H.E.
Bal “Efficient load balancing for wide-area
divide-and-conquer applications” in
Proceedings of the Eighth ACM SIGPLAN
Symposium on Principles and Practices of
Parallel Programming, New York, USA,
2006.

[42] R.D Blumofe, C. E. Leiserson "Scheduling
Multithreaded Computations by Work
Stealing" In: 35th Annual Symposium on
Foundations of Computer Science (FOCS

Journal of Theoretical and Applied Information Technology
30th June 2020. Vol.98. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2077

'94), Santa Fe, New Mexico, 1994: pp. 356-
368.

[43] J. Eckstein, C.A. Phillips and W.E. Hart,
"PICO: An Object-Oriented Framework for
Parallel Branch and Bound", RUTCOR
Research Report 40-2000, Rutgers
University, Piscataway, 2000.

[44] Robert C. Martin "Agile Software
Development: Principles, Patterns and
Practices" Pearson Education, 2002.

[45] Kento Aida, Wataru Natsume, Yoshiaki
Futakata "Distributed Computing with
Hierarchical Master-worker Paradigm for
Parallel Branch and Bound Algorithm,"
Proc. 3rd IEEE / ACM International
Symposium on Cluster Computing and the
Grid, 2003.

[46] M Kogias, E. Bugnion “HovercRaft:
Achieving Scalability and Fault-tolerance
for microsecond-scale Datacenter Services”
EuroSys 2020, Heraklion, Crete, Greece,
Avril 27-30, 2020, DOI
10.1145/3342195.3387545.

[47] D. Ongaro, J.K. Ousterhout In Search of an
Understandable Consensus Algorithm. In
Proceedings of the 2014 USENIX Annual
Technical Conference (ATC), 2014: pp.
305–319.

[48] H. Triangga, I. Faisal, I. Lubis “Analisis
Perbandingan Algoritma Static Round-
Robin dengan Least-Connection Terhadap
Efisiensi Load Balancing pada Load
Balancer Haproxy” Nfotekjar: Jurnal
Nasional Informatika Dan Teknologi
Jaringan- Vol. 4 No. 1 (2019).

